

Coils or capacitors? How should we measure motion?

Michael S. Hons, Robert R. Stewart, Don C. Lawton, Malcolm B. Bertram and Eric V. Gallant November 29, 2007

Outline

- Sensor response
 - Accelerometer
 - Comparison to geophones
 - Noise floors
- Field Data (Violet Grove CO2 injection project)
 - Introduction
 - Noise floors
 - Gabor TVS
- Conclusions

How geophones work

- Magnetic induction
 - Seismic Data = Sensitivity x Proof mass velocity
 - Resonance within seismic band: complicated response

Geophone response to velocity

- Ground displacement
- Proof mass displacement relative to case
 Proof mass displacement relative to fixed reference

Animation by Helga Meier-Cortes and Fritz Keller, Technical University of Clausthal, Germany

How MEMS work

- Capacitive detection
 - Seismic Data = Sensitivity x Proof mass displacement
 - Resonance well above seismic band: simple response

Accelerometer response to acceleration

Ground displacement

Proof mass displacement relative to caseProof mass displacement relative to fixedreference

CREWES

Response curves

$$V_{G} = S_{G} \frac{\partial X}{\partial t} = S_{G} \frac{\omega^{2}}{-\omega^{2} + 2i\lambda\omega\omega_{0} + \omega_{0}^{2}} \frac{\partial U}{\partial t}$$

Response curves, redux

$$V_{G} = S_{G} \frac{\partial X}{\partial t} = S_{G} \frac{-i\omega}{-\omega^{2} + 2i\lambda\omega\omega_{0} + \omega_{0}^{2}} \frac{\partial^{2}U}{\partial t^{2}}$$

• Geophone data (noise floor: ~0.7 μV)

Noise floors

• Correct to acceleration (noise ~215 ng at 10 Hz)

Noise floors Compare to MEMS (noise floor ~806 ng)

Station 183

Data acquisition

• 8 stations

- Single sensor stations
- 2 geophones, 1 DSU
 - 3 geophones at stations 183 and 184
- 1 m spacing xline, 20 m receiver spacing
- 3 shot lines
 - Dynamite
 - Line 1
 - 75 shots
 - Minimum offset ~300 m

Sensor types

Manufacturer	Model	Element	Stations
Input/Output	IO-Spike	SM24 (coil)	5183-5190
OyoGeospace	GS-3C	GS-20DM (coil)	5183-5190
Sercel	DSU3	MEMS	5183-5190
OyoGeospace	OG-Nail	GS-32CT (coil)	5183-5184

Oyo (GS-3C I/O S	Oyo Nail pike

Geophone recorder	MEMS recorder
ARAM Aries	Sercel 408XL
0.8 f(nyq) zero-phase AAF	0.82 f(nyq) minimum- phase AAF
2 ms sampling	2 ms sampling

CREWES

Geophone accel

CREWES

MEMS

- All data shown in acceleration domain
- Before first breaks

• Before first breaks

60 Hz Noise?

- Fairly equal on geophone and MEMS records
- More pronounced towards right (later shots)

Trouble at High Amplitudes

Normalized Spectral Difference

Normalized Spectral Difference

Conclusions

- Frequency content with both sensors is very similar
 - Especially 3 to 70 Hz range
- Separation of signal and noise essential
- Accelerometers should have a lower noise floor at high frequencies
 - Depending on ambient noise strength
- Both sensors record line noise at this location
- Significant difference also observed at high frequencies under strong motion
- Further studies at West Castle, Violet Grove pod test, and Spring Coulee

Acknowledgements

• Thanks to Glenn Hauer of ARAM for constructive comments, and all the CREWES sponsors

References

Cooper, N. M., 2002, Seismic Instruments-What's new? What's true? CSEG Recorder, Dec., 36-45

Lawton, D. C., Bertram, M. B., Margrave, G. F., and Gallant, E. V., 2006, Comparisons between data recorded by several 3-component coil geophones and a MEMS sensor at the Violet Grove monitor seismic survey, CREWES research report, 18, 2.1-2.24

http://www.ifg.tu-clausthal.de/java/seis/seis_doc-e.html