Acquisition and analysis of 3C land streamer data

Gabriela M. Suarez and Robert R. Stewart

November 29th, 2007
CREWES Sponsor Meeting 2007
Outline

- The land streamer idea
- Geophysics Field school data 2007
- CREWES land streamer
- Future work and conclusions
The land streamer idea:
Is this the last geophone you will ever plant?

“A land streamer is an array of geophones designed to be towed along the ground”
Land Streamer equipment

- Receivers
- Sources
- Streamer
Advantages

- Acquisition geometries

Variable receiver spacing for reflection and refraction survey acquisition (Modified from Nitsche, F. O., Delouis, B. and Green, A.G. (Institute of Geophysics, ETH Zürich))

Montana Tech and PFM Manufacturing

3D land streamer design
Advantages

- **Field effort and recording time**

<table>
<thead>
<tr>
<th>Seismic source</th>
<th>Traditional approach</th>
<th>Towed land streamer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crew size</td>
<td>Recording time (hours)</td>
</tr>
<tr>
<td>Sledgehammer</td>
<td>5</td>
<td>23</td>
</tr>
<tr>
<td>Pipegun</td>
<td>6</td>
<td>43</td>
</tr>
</tbody>
</table>

Example taken from Van der Veen et al (2001)

- All terrain tool
- No special instrumentation is needed
- 2D and 3D
Several innovators have been exploring the use of land streamers:

- Alan Green, ETH Switzerland
- Carsten Ploug, COWI, Denmark
- Andre Pugin, Illinois Geological Survey
- Rick Miller, Kansas Geological Survey
- Jorgen Ringgaard, Ramboll, Denmark
- John Clark, Bay Geophysical, Traverse City Michigan
- Mats Svensson, Tyréns Infrakonsult AB, Sweden

Marvin Speece, Curtis Link, Pat Miller and Jack Kruppenbach, Montana Tech and PFM Manufacturing
Acquired at the Rothney Astrophysical Observatory (RAO), located near Priddis (Alberta), about 30km southwest of the Calgary city center.
CREWES Land Streamer

- 3C geophones
- Top and base metallic plates
- Anti-rotation wing
- Tow webbing
CREWES land streamer

- Single streamer: 20 3C geophones every 1m, sources every 5 m
- 38 shots, 211 stations - Total streamer length = 210 m
Land Streamer data examples

- Raw 3-C shots
Amplitude spectrum for FFID 1798
Vertical component filtered shots
Inline component filtered shots
Filtered stack sections

Vertical

Integrated
Comparison P-PS stack sections

Suggest V_P/V_S ratio ≈ 3
VSP vs. land streamer data

VSP corridor stack

Vertical component stack
Section (1st 100 ms)
Refraction modelling

Statics values

First breaks fitting
Refraction modelling

Velocity

Modeled Layer Velocities

X-COORDINATE

920 m/s

330 m/s

≈ 2 m

≈ 1 m

≈ 2 m

≈ 5 m
Conclusions and future work

- Strong reflection observed around 30 ms, corroborated with VSP corridor stack
- V_p/V_s ratio of 3 for this area
- 2 layer refraction model with velocities of around 300 m/s and 900 m/s
- Used of vibroseis as seismic source
- Variable geophone spacing
- Acquire conventional 3C data to compare land streamer data
- Find an area with a specific problem to solve to test land streamer
Acknowledgments

- Robert R. Stewart
- David Henley
- Kevin Hall
- Soo Miong
- CREWES sponsors