From Deep Seismic to Microseismic: A convergence of disciplines

David W. Eaton Department of Geoscience University of Calgary

Talk Outline

Modern global seismology & portable array deployments

Current and planned projects around the world

- Three-component instrumentation
- Techniques for imaging and data analysis

- Microseismic monitoring studies
- Possible interdisciplinary links

Global Seismic Network

CTBT international monitoring systems

Broadband seismometers

A seismic vault

A state-of-the-art threecomponent broadband seismometer (Streckeisen STS-1) under vacuum cover.

Noise characteristics

Peak noise at 4-6 s is caused by world's oceans

The Canadian POLARIS Project

The Canadian POLARIS Project

POLARIS station SILO

Sutton Inlier, Northern Ontario

New international initiatives

Japan's K-net

USArray is a giant 3-D seismic survey of the continental U.S. over a 10-year period

Earthscope is the largest NSF funded project in U.S. history

Global seismic tomography

Image of Swave velocity perturbation (blue fast, red slow).

Latitude of southern U.S.

Grand et al., 1997

Surface-wave tomography

Ambient noise tomography

Rayleigh group speed maps constructed by cross-correlating one month of ambient noise between Californian USArray stations. Black solid lines show known active faults. Triangles show locations of USArray stations used.

Shapiro et al., Science, 2005

Receiver-function analysis

Receiver functions are obtained by deconvolving a radial seismogram using the vertical component

Deconvolved trace shows mode-converted arrivals "free" of source-side scattering

http://eqseis.geosc.psu.edu/~cammon/HTML/RftnDocs/rftn01.html

Receiver-function analysis

Schulte-Pelkum et al., Nature, 2005.

Precise hypocentre determination

San-Andreas fault (Parkfield segment)

More precise hypocentre locations achieved by crosscorrelation (XC) and double-difference (DD) algorithms

Moment Tensor Inversion

Small earthquake in Georgian Bay, Ontario (October, 2005)

Waveform fitting (inversion) used to obtain accurate focal mechanism

Dineva et al., BSSA, 2007

Microseismic reservoir monitoring

Monitoring of in-situ heavy oil enhanced production, Peace River

Microseismicity shows that steam causes fracturing, preferentially in higher-permeablity zones (*not what was expected*)

Microseismic monitoring of hydraulic stimulation

- Hydraulic fracture stimulation, Carthage Cotton Valley, east Texas
- Existing fractures experience strike-slip reactivation within regional stress field Rutledge and Phillips, 2003

Microseismic monitoring of hydraulic stimulation

- Carefully re-located microseismic events correlate with perforation zones and injection rate
- Little or no hydraulic communication between discrete perforation intervals, came as a surprise

Rutledge and Phillips, 2003

Potential Cross-linkages between disciplines

