

Microseismic focal mechanisms: A tutorial ...beyond dots in a box

David W. Eaton Department of Geoscience University of Calgary

McGillivray, 2005

IVERSIT

Outline

- Magnitude scales
- Earthquake spectra
- Demystifying beach balls
- Moment tensors
- Stress transfer

General form:

 $M = \log (A/T^n) + Q(h,\Delta)$

where

A is signal amplitude

T is dominant period

h is focal depth

 Δ is distance

Bolt, 1993

Richter scale (California): $M_L = \log A + 2.56 \log \Delta - 1.67$ where

A is maximum amplitude in mm measured on a Wood-Anderson seismograph

 Δ is epicentral distance in km

Bolt, 1993

Magnitude versus Energy

Seismic Moment

$$M_0 = \mu DA$$

where

 μ is shear modulus (rigidity)

D is average slip

A is rupture area

Moment magnitude:

 $M_w = \log M_0 / 1.5 - 10.73$

 1906
 2004

 San Francisco
 Sumatra

 (7.8)
 (9.0 – 9.3)

Spectral Characteristics

Dislocation on a small circular crack (Brune source model)

Far-field spectra

 $\omega_{\rm c}$ = 1/ τ is the corner frequency

Spectral Characteristics

Example: small earthquake in Georgian Bay, Ontario

 $\omega_{\rm c}$ ~ 25 s⁻¹

Dineva et al., 2006

Spectral Characteristics

Dineva et al., 2006

$$\mathbf{M} = M_0 \begin{bmatrix} M_{xx} & M_{xy} & M_{xz} \\ M_{yx} & M_{yy} & M_{yz} \\ M_{zx} & M_{zy} & M_{zz} \end{bmatrix}$$

• A more general representation of an earthquake source

• Each tensor component represents a force couple

• Since **M** is symmetric (zero net torque), 6 are independent

Most earthquakes
 can be approximated
 by a double-couple

As with other
 forms, eigenvectors
 of M yield principal
 stress axes (P, T)

• An explosive source is represented by an isotropic moment tensor

http://www.iwb.uni-stuttgart.de/grosse/aet/mti.htm

$$\begin{array}{cccc} M_{0} & 0 & 0 \\ 0 & M_{0} & 0 \\ 0 & 0 & M_{0} \end{array}$$

 A crack opening under tension (fluid injection) can be represented by the sum of an isotropic moment tensor and a compensated linear vector dipole (CVLD)

http://www.iwb.uni-stuttgart.de/grosse/aet/mti.htm

$$\begin{array}{ccc} M_0 & 0 & 0 \\ 0 & -2M_0 & 0 \\ 0 & 0 & M_0 \end{array}$$

Moment Tensor Inversion

Waveform inversion for source mechanism

Requires good velocity model

Ma and Eaton, 2008

Coulomb Failure Function

Stress transfer due to an earthquake can be modelled using the so-called Coulomb failure function (Stein, 1999)

$$\Delta \sigma_f = \Delta \tau + \mu (\Delta \sigma_n + \Delta P)$$

Where

 $\Delta \tau$ is the change in shear stress μ is the coefficient of friction $\Delta \sigma_n$ is the normal stress ΔP is change in pore pressure

King et al., 1994

Coulomb Failure Function

Although far-field stress changes are small (a few bars or less), earthquake aftershocks are more probable in regions of increased $\Delta \sigma_f$ and less probable in regions of decreased $\Delta \sigma_f$ (Stein, 1999)

→ Potential application to induced microseismicity from hydraulic fracturing?

King et al., 1994

Key points

• Various methods are used to describe earthquakes (magnitude, seismic moment, focal mechanism) and are applicable, in principle, to microseismic monitoring studies

• Application of these methods may yield useful information about stress state and failure mechanisms

 Recent models for stress transfer may also have applicability to modelling and understanding induced seismicity

