# Gabor domain analysis of Q in the near surface

Robert J. Ferguson, Gary F. Margrave, and Kevin W. Hall

# Outline

- Introduction.
- Theory.
- Acquisition and processing.
- Interpretation and conclusions.
- Acknowledgements.

# Introduction

- $\bullet$  Goal: Q for the Rothney Geophysical Observatory.
- $\bullet$  From experience,  $Q\left(\tau\right)_{f}$  estimation is difficult.
- Attempt  $Q(f)_{\tau}$ .
- Acquire multilevel VSP with V,  $H_1$ , and  $H_2$  vibes.

### Theory

 $\bullet$  Planewave G in a homogeneous medium

$$G(\tau, f) = A(f) e^{-\beta(f)\tau} e^{i\phi(\tau, f)},$$

where  $\beta(f) = \pi f/Q$  and, for A > 0

$$\log\left\{\sqrt{G\left(\tau,f\right)\,G^{\dagger}\left(\tau,f\right)}\right\} = \log\{A\left(f\right)\} - \beta\left(f\right)\,\tau$$

CREWES, U of C

# Acquisition



# Acquisition

• Multilevel, 9C VSP plus a surface array.

| #         | 1  | 2  | 3  | 4  | 5  | 6  | 7  |
|-----------|----|----|----|----|----|----|----|
| Depth (m) | 95 | 90 | 80 | 70 | 55 | 30 | 10 |

• Long, narrow band sweeps.

| Sweep (Hz) | 1      | 2     | 3     | 4     | 5     | 6      | 7      | 8       |
|------------|--------|-------|-------|-------|-------|--------|--------|---------|
| V          | 10-250 | 10-25 | 15-35 | 25-50 | 40-70 | 60-105 | 95-155 | 145-250 |
| $H_1$      | 14-250 | 14-25 | 15-35 | 25-50 | 40-70 | 60-105 | 95-155 | 145-250 |
| $H_2$      | 14-250 | 14-25 | 15-35 | 25-50 | 40-70 | 60-105 | 95-155 | 145-250 |

### **Data quality**

- Source repeatability.
- Baseplate harmonics.
- Downhole harmonics and noise.

CREWES, U of C



CREWES, U of C



CREWES, U of C





















# Processing

- Apply match filters derived from the surface array.
- Apply spherical divergence and sweep-filter.
- Rotate receivers to point at the source.



CREWES, U of C



# **Processing continued**

• 
$$\sum_{j=1}^{3} \log_e \left\{ \sqrt{G_j G_j^{\dagger}} \right\}$$
 I, where  $j$  is the  $j^{th}$  receiver component.

• Sum along sweep time  $\tau$ .

CREWES, U of C



CREWES, U of C



CREWES, U of C



### Interpretation

• Two units identified - saturated and unsaturated.







CREWES, U of C



### Conclusions

- $\Delta \log A$  correlates with expected watertable.
- $\beta$  strong  $\uparrow$  with f for unsaturated.
- $\beta$  weak  $\downarrow$  with f for saturated.
- $\bullet Q$  estimates unreliable due to noise.
- Acquire 10  $\times$  # of  $\tau(z)$ , reduce noise.

### Acknowledgements

- Dr. Doug Schmitt, U of Alberta.
- Staff and sponsors of CREWES.
- NSERC Canada.
- Dr. Peter Manning (CREWES).