INVERSE SCATTERING INTERNAL MULTIPLE ATTENUATION: IMPLEMENTATION ON SYNTHETIC DATA AND PHYSICAL MODEL DATA

Presented by: Melissa Hernandez

Co-authors: Dr. Kris Innanen and Dr. Joe Wong
OUTLINE

- Introduction
- Theoretical Framework
- How the algorithm works?
- Synthetic data application
- Parameter testing
- Physical model data
- Discussion of results
- Conclusions and future work
INTRODUCTION

Multiple events can be mistaken for primary reflections, and may distort primary events and obscure the task of seismic interpretation.

A method due to Araujo and Weglein (1994) predicts and attenuates all orders of internal multiples.

This method derives from the inverse scattering series and attenuate internal multiples without any a-priori knowledge about the subsurface.

In this work, we implemented 1D version of the algorithm for normal incidence and applied on synthetic data and physical model data.
THEORETICAL FRAMEWORK

1D normal incidence internal multiple Attenuation

The first term in the internal multiple attenuation series for the 1D normal incidence case is (Araujo et. al., 1994):

\[b_{3IM}(k_z) = \int_{-\infty}^{\infty} dz'_{1} e^{ik_z z'_{1}} b_1(z'_{1}) \cdot \int_{-\infty}^{z'_{1}-\epsilon} dz''_{2} b_1(z''_{2}) \cdot e^{-ik_z z''_{2}} \int_{z''_{2}+\epsilon}^{\infty} dz'_{3} b_1(z'_{3}) \cdot e^{ik_z z'_{3}} \]

\(b_{3IM}(k_z) \) is a prediction of the internal multiple present in the data. It is in the \(k_z \)-domain, where \(k_z \) is the conjugate of pseudo-depth \(z=c_o t/2 \).

The \(b_1(z) \) entries are the input data traces in pseudo-depth domain.

\(\epsilon \) is related to width of the wavelet

The algorithm is *searching* for the correct subevents.
How the algorithm works?

The convolution of two arrivals will sum the travel time of those events, and the crosscorrelation will subtract their travel times.

Therefore, the travel time of subevent 1 and 3 will be summed while the travel time of subevent 2 will be subtracted.

This algorithm selects all the subevents that suit the **lower-higher-lower** and then combines theirs amplitudes and phases to construct a multiple.
IMPLEMENTATION

Input: Data (free of surface multiples) → FFT respect to time → Transform to vertical wave number

Search for subevents → Input transformed: b₁ → Transform to pseudo depth

Computation of b_{3IM}

The parameter epsilon limits the searching of the subevents that satisfy the lower-higher-lower condition

Prestack data set that contains the predicted multiples
Sketch of the synthetic model used

- **Sample number**: 512
- **Interval sample time**: 3ms
- **Type of wavelet**: Ricker
- **Wavelet central frequency**: 60Hz
- **Wave speed of the source/receiver medium**: 1500m/s
SYNTHETIC DATA

Epsilon : 7 (sample points)

Application of the 1D internal multiple attenuation algorithm for the synthetic model.
PARAMETER TESTING

Effects of the Wavelet

Missing internal multiples in the input

Underestimation of epsilon value

Overestimation of epsilon value
PHYSICAL MODEL LAB

- **Objective**: high quality seismic data, no noisy, with clear and strong primaries and, including internal multiples.

- Arrays of small ultrasonic source and detector transducers.
- Digital data acquisition is performed by circuits boards.
- Operating system used is Windows XP
- The movement of the transducers is automatically synchronize with the recording of the seismic signals.
- A pair of transducers are attached to the bottom tips of two rods.
- The source and the receiver were slightly immersed in the water. The frequencies emitted varying between 5 to 100Hz (field scaled).

Adapted from: Joe Wong, Kevin W. Hall, Eric V. Gallant, Rolf Maier, Malcolm B. Bertram, and Don C. Lawton.
PHYSICAL MODEL DESIGN

High contrast of Impedance

Sample interval is 1ms.
Receiver interval of 10m
Source interval of 10m.
RAW DATA

High quality seismic data, no noisy, with clear and strong primaries and internal multiples.

Dominant Frequency: 35 Hz
INPUT: DATA AFTER PROCESSING

Application of the Inverse Scattering internal multiple attenuation algorithm using common offset physical model data as input.
Setting at epsilon value of 50 (sample points) we predicted internal multiples reflections at 1.4, 1.9, 2.3, 2.6 and 2.7 seconds as we expected according to the model.
CONCLUSIONS AND FUTURE WORK

Based on the results found, several conclusions can be drawn:

• For synthetic model the algorithm works satisfactory, predict multiples in the correct time and the amplitude is similar.

• The output prediction depends strongly on the parameter epsilon. For the synthetic data the value of epsilon that performed the best prediction was 7, and for the physical model data was 50.

• Pre-processing (e.g. statics, deconvolution, filtering) of the data is required.

FUTURE WORK:

• Improve deconvolution to remove the effect of epsilon.

• Implement the algorithm in field data

• Subtraction of the internal multiples
ACKNOWLEDGMENTS

The authors would like to thank the Consortium for Research in Elastic Wave Seismology (CREWES) for supporting this project. We also want to thank CREWES sponsors, staff and students.
REFERENCES

Couëslan, M., 2007, Processing and Interpretation of Time-lapse Vertical Seismic Profile Data from the Penn West CO2 Monitoring Project, MSc., Thesis, University of Calgary.

Joe Wong, Kevin W. Hall, Eric V. Gallant, Rolf Maier, Malcolm B. Bertram, and Don C. Lawton, Seismic Physical Modelling at the University of Calgary

Thank you!

QUESTIONS ?