Elimination of seismic multiples by anisotropic, prestack depth migration and filtering

Robert J. Ferguson
Outline

- Introduction.
- Theory.
- Examples.
- Conclusions.
- Acknowledgements.
Introduction

• Assume that $\psi_P(x, t)$ and $\psi_M(x, t)$ are a superposition of Huygens point scatterers.

• Given ν_{H_2O}, focus WB multiples with ZOM, erase, un-focus.

• Derive group and phase velocity for ZOM.
Theory

• Seafloor model: a continuum of diffractors.

• Source $\psi_S \downarrow$ a diffractor.

• Primary $\psi_P \uparrow \Rightarrow \downarrow z=0$.

• Reflection $\psi_R \downarrow$ from $z = 0$.

• Multiple $\psi_M \downarrow \Rightarrow \uparrow z=0$.
a) Source raypath to a diffractor.

b) Scattering to the surface by the diffractor.

c) Surface reflection.

d) Multiple scattering.
• For a diffractor at z_0 and a mirror diffractor at $z = 2z_0$, traveltimes for ψ_P and ψ_M are

$$\Delta t_0 (x, v_0) = \frac{z_0}{v_0} \sqrt{1 + \left(\frac{x}{z_0} \right)^2},$$

and

$$\Delta t_z (x, v_0) = \Delta t_0 (x) + \frac{z - z_0}{v_0}.$$
• Write ψ_M traveltime as

$$
\Delta t_z (x, v_z) = \frac{z}{v_z} \sqrt{1 + \left(\frac{x}{z}\right)^2},
$$

where v_z is associated with mirror depth z.

• Set $\Delta t_z (x, v_z) = \Delta t_z (x, v_0)$ and solve for v_z:

$$
v_z (x, z, z_0) = z v_0 \frac{\sqrt{1 + \left(\frac{x}{z}\right)^2}}{z - z_0 + z_0 \sqrt{1 + \left(\frac{x}{z_0}\right)^2}},
$$
or in terms of group angle $\tan \phi = x/z$:

$$v_z (\phi, z, z_0) = \frac{z v_0}{\cos \phi \left[z - z_0 + z_0 \sqrt{1 + \left(\frac{z}{z_0} \tan \phi \right)^2} \right]}$$
Stolt migration

• Stolt migrate with $q(z_0, v_0, p)$.

• Assume that $\frac{d}{dx} z_0$ is small and modulate v_0 until ψ_M focus satisfactorily.

• Erase multiples.

• Inverse Stolt.
Constant offset: 9112.5 ft
Conclusions

• Focusing velocity for WB multiples is anisotropic.

• Numerical group \rightarrow phase velocity developed for use with reversible Stolt migration.

• Focus multiples, erase, unfocus.
Acknowledgements

• Dr.s Ray Ergas (formerly Chevron) and Charles Mosher (ConocoPhillips).

• Staff and sponsors of CREWES.

• NSERC Canada.