Numerical modelling of viscoelastic waves by a pseudospectral domain decomposition method

Matt McDonald*, Chris Bird, Michael Lamoureux

*University of Calgary
Given a set of nodes, \(\{x_1, \ldots, x_n\} \), and a set of function values, \(\{f(x_i), \ldots, f(x_n)\} \), how can we approximate \(f'(x_i) \)?
Given a set of nodes, \(\{x_1, \ldots, x_n\} \), and a set of function values, \(\{f(x_i), \ldots, f(x_n)\} \), how can we approximate \(f'(x_i) \)?

A first approach may be to take combinations of Taylor series at neighbouring points

\[
\begin{align*}
 f(x_{i+1}) &= f(x_i) + (\Delta x)f'(x_i) + \frac{(\Delta x)^2}{2}f''(x_i) + O((\Delta x)^3), \\
 f(x_{i-1}) &= f(x_i) - (\Delta x)f'(x_i) + \frac{(\Delta x)^2}{2}f''(x_i) + O((\Delta x)^3).
\end{align*}
\]
Given a set of nodes, \(\{x_1, \ldots, x_n\} \), and a set of function values, \(\{f(x_i), \ldots, f(x_n)\} \), how can we approximate \(f'(x_i) \)?

A first approach may be to take combinations of Taylor series at neighbouring points

\[
\begin{align*}
 f(x_{i+1}) &= f(x_i) + (\Delta x)f'(x_i) + \frac{(\Delta x)^2}{2}f''(x_i) + O((\Delta x)^3), \\
 f(x_{i-1}) &= f(x_i) - (\Delta x)f'(x_i) + \frac{(\Delta x)^2}{2}f''(x_i) + O(\Delta x^3).
\end{align*}
\]

If \((x_{i+1} - x_i) = (x_i - x_{i-1}) = \Delta x \) then the finite-difference approximations for \(f'(x_i) \) are

\[
\begin{align*}
 f'(x_i) &= \frac{f(x_{i+1}) - f(x_i)}{\Delta x} + O(\Delta x), \\
 f'(x_i) &= \frac{f(x_i) - f(x_{i-1})}{\Delta x} + O(\Delta x), \\
 f'(x_i) &= \frac{f(x_{i+1}) - f(x_{i-1})}{2\Delta x} + O(\Delta x^2).
\end{align*}
\]
A more general approach is to build a **Lagrange interpolating polynomial** and differentiate that.

![Lagrange Polynomials](image)

Figure: 3 node Lagrange polynomials defined on equally spaced nodes and the resulting interpolation.
The 3 point differentiation matrix that act on the sampled values of f and returns approximately the sampled values of f' is

\[
\frac{1}{2\Delta x} \begin{pmatrix}
-3 & 4 & -1 & 0 & 0 & \ldots & 0 \\
-1 & 0 & 1 & 0 & 0 & \ldots & 0 \\
0 & -1 & 0 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & -1 & 0 & 1 & 0 \\
0 & \ldots & \ldots & 0 & -1 & 0 & 1 \\
0 & \ldots & \ldots & 0 & 1 & -4 & 3
\end{pmatrix}
\]
We can generalize this approach until the differentiation matrix is fully populated, but the nodes must be chosen carefully due to Runge’s phenomenon.

Figure: 11 Lagrange polynomials defined on equally spaced nodes.
Two popular choices are the **Chebyshev** and **Legendre** points.

Figure: Chebyshev and Legendre polynomials.
Each set of nodes has an associated *pseudospectral differentiation matrix* D that exactly differentiates the interpolating polynomial.
Each set of nodes has an associated *pseudospectral differentiation matrix* D that exactly differentiates the interpolating polynomial.

And a set of *Gauss-Lobatto* integration weights w that are exact for polynomials of degree less than or equal $2N - 1$, where N is number of points.

$$\int_{-1}^{1} f(x)g(x)dx = \sum_{i=1}^{N} f(x_i)g(x_i)w_i.$$
\[\|D_N f - f'\|_\infty \text{ for } f = x^{10}. \ f = [f(x_0), ..., f(x_N)]^T. \ D_N \text{ is the } (N + 1) \times (N + 1) \text{ pseudospectral differentiation matrix.} \]

Figure: Convergence to machine-precision
To compare accuracies, consider an ugly function

\[f(x) = x(1 + \sin(10\pi \exp(-10x^2))) \] and its derivative.

Figure: An ugly function \(f(x) = x(1 + \sin(10\pi \exp(-10x^2))) \) and its derivative.
Error Vs. Number of Points

Figure: Various derivative approximations
Figure: Final number of points, times and errors for Chebyshev and 8th order finite differences.
We are concerned with solving wave equations of the form

$$\rho \ddot{u}_i = \partial_j \sigma_{ij}(u) + f_i, \quad x \in \Omega, \quad t > 0$$
We are concerned with solving wave equations of the form

\[\rho \ddot{u}_i = \partial_j \sigma_{ij}(u) + f_i, \ x \in \Omega, \ t > 0 \]

For a Kelvin-Voigt material

\[\sigma(u) = E\varepsilon + \eta \dot{\varepsilon} (1 - D) \]

\[\sigma_{ij}(u) = \lambda \nabla \cdot u \delta_{ij} + 2\mu \varepsilon_{ij}(u) + \lambda' \nabla \cdot v \delta_{ij} + 2\mu' \varepsilon_{ij}(v) (N - D) \]
We are concerned with solving wave equations of the form

\[\rho \ddot{u}_i = \partial_j \sigma_{ij}(u) + f_i, \quad \mathbf{x} \in \Omega, \ t > 0 \]

For a Kelvin-Voigt material

\[\sigma(u) = E \varepsilon + \eta \dot{\varepsilon} \quad (1 - D) \]

\[\sigma_{ij}(u) = \lambda \nabla \cdot \mathbf{u} \delta_{ij} + 2\mu \varepsilon_{ij}(u) + \lambda' \nabla \cdot \mathbf{v} \delta_{ij} + 2\mu' \varepsilon_{ij}(\mathbf{v}) \quad (N - D) \]

\(\lambda \) and \(\mu \) are the elastic parameters, \(\lambda' \) and \(\mu' \) are the anelastic parameters.
Let \(u_j(x, z, t) = \hat{u}_j(x, z)e^{i\omega t} \), then

\[
\sigma_{ij} = \lambda \nabla \cdot \hat{u}\delta_{ij} + 2\mu\varepsilon_{ij}(\hat{u}) + i\omega (\lambda' \nabla \cdot \hat{u}\delta_{ij} + 2\mu'\varepsilon_{ij}(\hat{u})) = \Lambda \nabla \cdot \hat{u}\delta_{ij} + 2\mathcal{M}\varepsilon_{ij}(\hat{u})
\]
Let \(u_j(x, z, t) = \hat{u}_j(x, z)e^{i\omega t} \), then

\[
\sigma_{ij} = \lambda \nabla \cdot \hat{u} \delta_{ij} + 2\mu \varepsilon_{ij}(\hat{u}) + i\omega \left(\lambda' \nabla \cdot \hat{u} \delta_{ij} + 2\mu' \varepsilon_{ij}(\hat{u}) \right)
\]

\[
= \Lambda \nabla \cdot \hat{u} \delta_{ij} + 2M \varepsilon_{ij}(\hat{u})
\]

\(\Lambda = \lambda + i\omega \lambda' \) and \(M = \mu + i\omega \mu' \) are the complex Lamé parameters dependent on the frequency \(\omega \).
Let \(u_j(x, z, t) = \hat{u}_j(x, z)e^{i\omega t} \), then

\[
\sigma_{ij} = \lambda \nabla \cdot \hat{u}\delta_{ij} + 2\mu \varepsilon_{ij}(\hat{u}) + i\omega \left(\lambda' \nabla \cdot \hat{u}\delta_{ij} + 2\mu' \varepsilon_{ij}(\hat{u}) \right)
\]

\[
= \Lambda \nabla \cdot \hat{u}\delta_{ij} + 2M \varepsilon_{ij}(\hat{u})
\]

\(\Lambda = \lambda + i\omega \lambda' \) and \(M = \mu + i\omega \mu' \) are the complex Lamé parameters dependent on the frequency \(\omega \).

The complex P and S wave velocities are defined as

\[
\hat{V}_p = \sqrt{\frac{\Lambda + 2M}{\rho}}, \quad \text{and} \quad \hat{V}_s = \sqrt{\frac{M}{\rho}}
\]
Let $u_j(x, z, t) = \hat{u}_j(x, z)e^{i\omega t}$, then

$$\sigma_{ij} = \lambda \nabla \cdot \hat{\mathbf{u}}\delta_{ij} + 2\mu\varepsilon_{ij}(\hat{\mathbf{u}}) + i\omega \left(\lambda' \nabla \cdot \hat{\mathbf{u}}\delta_{ij} + 2\mu'\varepsilon_{ij}(\hat{\mathbf{u}}) \right)$$

$$= \Lambda \nabla \cdot \hat{\mathbf{u}}\delta_{ij} + 2M\varepsilon_{ij}(\hat{\mathbf{u}})$$

$\Lambda = \lambda + i\omega\lambda'$ and $M = \mu + i\omega\mu'$ are the complex Lamé parameters dependent on the frequency ω.

The complex P and S wave velocities are defined as

$$\hat{V}_p = \sqrt{\frac{\Lambda + 2M}{\rho}}, \quad \text{and} \quad \hat{V}_s = \sqrt{\frac{M}{\rho}}$$

The frequency-dependent P and S wave quality factors

$$Q_p = \frac{\lambda + 2\mu}{\omega(\lambda' + 2\mu')}, \quad Q_s = \frac{\mu}{\omega\mu'}.$$
The elastic parameters, λ and μ are

$$\mu = \rho V_s^2 g(Q_s), \quad \lambda = \rho V_p^2 g(Q_p) - 2\mu$$
The elastic parameters, λ and μ are

$$\mu = \rho V_s^2 g(Q_s), \quad \lambda = \rho V_p^2 g(Q_p) - 2\mu$$

The anelastic parameters are

$$\lambda' = \frac{1}{\omega} \left(\frac{\lambda + 2\mu}{Q_p} - \frac{2\mu}{Q_s} \right) \quad \mu' = \frac{1}{\omega Q_s}.$$
The elastic parameters, λ and μ are

$$\mu = \rho V_s^2 g(Q_s), \quad \lambda = \rho V_p^2 g(Q_p) - 2\mu$$

The anelastic parameters are

$$\lambda' = \frac{1}{\omega} \left(\frac{\lambda + 2\mu}{Q_p} - \frac{2\mu}{Q_s} \right) \quad \mu' = \frac{1}{\omega Q_s}.$$

g is obtained algebraically from the above equations as

$$g(Q) = \frac{1}{2} (1 + Q^{-2})^{-1/2} (1 + (1 + Q^{-2})^{-1/2}).$$
Consider a 2-layer, 2-D model.
Consider a 2-layer, 2-D model.

The idea is to solve the wave equation in each subdomain and connect them using interface conditions.
Let’s ignore the force term for now leaving

\[\rho \ddot{u}_i = \partial_j \sigma_{ij}(\mathbf{u}) \]
Let’s ignore the force term for now leaving

$$\rho \ddot{u}_i = \partial_j \sigma_{ij}(\mathbf{u})$$

Multiplying both sides by an arbitrary function ϕ and integrating over space we obtain

$$\int_{\Omega} \rho \ddot{u}_i \phi d\Omega = \int_{\Omega} \partial_j \sigma_{ij}(\mathbf{u}) \phi d\Omega$$
Let’s ignore the force term for now leaving

\[\rho \dddot{u}_i = \partial_j \sigma_{ij}(u) \]

Multiplying both sides by an arbitrary function \(\phi \) and integrating over space we obtain

\[\int_{\Omega} \rho \dddot{u}_i \phi d\Omega = \int_{\Omega} \partial_j \sigma_{ij}(u) \phi d\Omega \]

Now we split the integral over the two regions

\[\sum_{k=1}^{2} \int_{\Omega^k} \rho \dddot{u}^k_i \phi d\Omega^k = \sum_{k=1}^{2} \int_{\Omega^k} \partial_j \sigma_{ij}(u^k) \phi d\Omega^k \]

Where \(u^k \) are the displacements in the region \(\Omega^k \).
Integrating the right hand side by parts produces

\[\sum_{k=1}^{2} \int_{\Omega^k} \partial_j \sigma_{ij}(u^k) \phi d\Omega^k \]

\[= \sum_{k=1}^{2} \left\{ \oint_{\partial\Omega_k} \sigma_{ij}(u^k) \phi n^k_j dS - \int_{\Omega^k} \sigma_{ij}(u^k) \partial_j \phi d\Omega^k \right\} \]

where \(n^k_j \) is the \(j^{th} \) component of the unit normal vector in the region \(\Omega_k \).
Integrating the right hand side by parts produces

\[\sum_{k=1}^{2} \int_{\Omega_k} \partial_j \sigma_{ij}(u^k) \phi d\Omega^k = \sum_{k=1}^{2} \left\{ \oint_{\partial \Omega_k} \sigma_{ij}(u^k) \partial_j \phi dS - \int_{\Omega_k} \sigma_{ij}(u^k) \partial_j \phi d\Omega^k \right\}\]

where \(n_j^k\) is the \(j^{th}\) component of the unit normal vector in the region \(\Omega_k\).

We now have

\[\sum_{k=1}^{2} \int_{\Omega_k} \left\{ \rho i u^k_i \phi + \sigma_{ij}(u^k) \partial_j \phi \right\} d\Omega^k = \sum_{k=1}^{2} \oint_{\partial \Omega_k} \sigma_{ij}(u^k) \phi n_j^k dS\]
At the free-surface the appropriate stresses should disappear (zero-traction).

\[\sigma_{ij}(\mathbf{u}^1)n_j^1|_{\Gamma_N} = 0, \]
At the free-surface the appropriate stresses should disappear (zero-traction).

\[\sigma_{ij}(\mathbf{u}^1)n_j^1|_{\Gamma_N} = 0, \]

At a welded interface we enforce several matching conditions.
At the free-surface the appropriate stresses should disappear (zero-traction).

$$\sigma_{ij}(u^1)n^1_j|_{\Gamma_N} = 0,$$

At a welded interface we enforce several matching conditions.

- Continuity of displacement

$$u^1|_{\Gamma_B} = u^2|_{\Gamma_B}$$
At the free-surface the appropriate stresses should disappear (zero-traction).

\[\sigma_{ij}(u^1)n_j^1|_{\Gamma_N} = 0, \]

At a welded interface we enforce several matching conditions.

- Continuity of displacement
 \[u^1|_{\Gamma_B} = u^2|_{\Gamma_B} \]

- Continuity of stress
 \[\sigma_{ij}(u^1)|_{\Gamma_B} = \sigma_{ij}(u^2)|_{\Gamma_B} \]
➤ At the free-surface the appropriate stresses should disappear (zero-traction).

\[\sigma_{ij}(u^1)n_j^1 |_{\Gamma_N} = 0, \]

➤ At a welded interface we enforce several matching conditions.
 - Continuity of displacement
 \[u^1 |_{\Gamma_B} = u^2 |_{\Gamma_B} \]
 - Continuity of stress
 \[\sigma_{ij}(u^1) |_{\Gamma_B} = \sigma_{ij}(u^2) |_{\Gamma_B} \]
➤ These conditions determine the reflection and transmission coefficients at the interface.
- Continuity is enforced by construction of the basis elements.

Figure: Interface function in 1-D.
Higher-dimensional constructions use product-bases.

Figure: Interface function in 2-D.
Terms involving stresses are enforced by modifying the surface integrals:

\[\int_{\partial\Omega_1} \sigma_{ij}(\mathbf{u}^1)n_j^1 \phi dS + \int_{\partial\Omega_2} \sigma_{ij}(\mathbf{u}^2)n_j^2 \phi dS \]

\[\Gamma_N \quad \sigma_{ij}(\mathbf{u}^1)n_j^1|_{\Gamma_N} = 0 \]

\[\Gamma_W \quad \sigma_{ij}(\mathbf{u}^1)|_{\Gamma_W} = \sigma_{ij}(\mathbf{u}^2)|_{\Gamma_B} \]

\[\Gamma_S \quad \Gamma_E \]

\[\Omega_1 \quad \Omega_2 \]
The discretization results in a system of equations for the k^{th} element

$$M_k^k \ddot{u}_i^k(t) + \sum_j \hat{K}_{ij}^k \dot{u}_i^k(t) + \sum_j K_{ij}^k u_j^k(t) = M_f^k f_i^k(t).$$
The discretization results in a system of equations for the k^{th} element

$$M^k \ddot{u}_i^k(t) + \sum_j \hat{K}_{ij}^k \dot{u}_i^k(t) + \sum_j K_{ij}^k u_j^k(t) = M^k f_i^k(t).$$

Absorbing boundaries are enforced by replacing interior derivatives with one-way wave equations.

$$\partial_z u_1 \leftarrow -\frac{1}{V_s} v_1 + \frac{V_s - V_p}{V_s} \partial_x u_2, \ x \in \Gamma_S$$
The discretization results in a system of equations for the k^{th} element

$$
M^k \ddot{u}^k_i(t) + \sum_j \hat{K}^k_{ij} \dot{u}^k_i(t) + \sum_j K^k_{ij} u^k_j(t) = M^k f^k_i(t).
$$

Absorbing boundaries are enforced by replacing interior derivatives with one-way wave equations.

$$
\partial_z u_1 \leftarrow -\frac{1}{V_s} v_1 + \frac{V_s - V_p}{V_s} \partial_x u_2, \quad x \in \Gamma_S
$$

This is implemented by modifying the damping matrices \hat{K}^k_{ij} in the elements along the absorbing boundaries.
The discretization results in a system of equations for the k^{th} element

$$M^k \dddot{u}_i^k(t) + \sum_{j} \hat{K}_{ij}^k \ddot{u}_i^k(t) + \sum_{j} K_{ij}^k u_j^k(t) = M^k f_i^k(t).$$

Absorbing boundaries are enforced by replacing interior derivatives with one-way wave equations.

$$\partial_z u_1 \leftarrow -\frac{1}{V_s} v_1 + \frac{V_s - V_p}{V_s} \partial_x u_2, \; x \in \Gamma_S$$

This is implemented by modifying the damping matrices \hat{K}_{ij}^k in the elements along the absorbing boundaries.

The system is written in block form

$$\begin{pmatrix} M & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} \dot{V} \\ \dot{U} \end{pmatrix} + \begin{pmatrix} \hat{K} & K \\ I & 0 \end{pmatrix} \begin{pmatrix} V \\ U \end{pmatrix} = \begin{pmatrix} F \\ 0 \end{pmatrix}$$
To show the high-frequency damping present in the anelastic part of the model we purposefully choose a grid too coarse to represent the source wavelet (30 Hz Ricker). The boundary is at \(z = 250\text{m} \). The model is time-stepped using a \(4^{th} \) low-storage explicit Runge-Kutta (LSERK) method.

<table>
<thead>
<tr>
<th>(\Omega)</th>
<th>(\rho)</th>
<th>(V_p)</th>
<th>(V_s)</th>
<th>(Q_p)</th>
<th>(Q_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Omega_1)</td>
<td>2.06</td>
<td>2400</td>
<td>1500</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>(\Omega_2)</td>
<td>2.06</td>
<td>2400</td>
<td>1500</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>
t=0.07 sec.
t = 0.15 sec.
t = 0.23 sec.
t = 0.32 sec.
t=0.4 sec.
t=0.48 sec.
Consider the case of a reflection strictly from a difference in Q_p and Q_s. The boundary is at $z = 500m$ and is again time-stepped using 4th order LSERK.

<table>
<thead>
<tr>
<th></th>
<th>ρ</th>
<th>V_p</th>
<th>V_s</th>
<th>Q_p</th>
<th>Q_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ω_1</td>
<td>2.06</td>
<td>2400</td>
<td>1500</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>Ω_2</td>
<td>2.06</td>
<td>2400</td>
<td>1500</td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>
Thank you
Thank you
(a) Original trace.

(b) Clipped trace.
Figure: Horizontal displacement.
Figure: Vertical Displacement.
Figure: Horizontal velocity.
Figure: Vertical velocity.
Thank you!

- Chris Bird
- Michael Lamoureux
- Crewes
- Potsi
- mprime
- Pims
- Nserc