Spread Spectrum Techniques for Simultaneous Multi-Source Seismic Acquisition

Joe Wong
(wongjoe@ucalgary.ca)
OUTLINE

1. Introduction / Motivation.
2. PRBS pilots for seismic vibrators.
3. Results
4. Discussion and Summary.
Introduction: Simultaneous Sources

1. Multiple airguns (Beasley, 2007).
2. DSSS (Bouska, 2010).
3. HFVS (Krohn et al., 2010 - variphas.)
Pecholcs et al., 2010:
- 24 vibrators running simultaneously;
- > 40,000 vibe points in 24 hours.

Sallas et al., 2010, 2011:
- vibrator pilots = modified Gold codes;
- Gold codes are weakly correlated.
Pseudorandom Binary Sequences (PRBS)

- m-Sequences (maximal-length sequences);
- Gold codes (Gold, 1967);
- basis for spread-spectrum techniques widely used in science and engineering.
m-Sequences and Gold codes:

- **Periodic entities with -1 and +1 values.**
- **Autocorrelations are periodic triangular spikes (mimic white noise).**
- **Each entity is defined by** m, L, and t_b :
 \[
 L = 2^m - 1.
 \]
- **The period in milliseconds is**
 \[
 T_m = L t_b.
 \]
$m = 11$
$L = 2047$
$t_b = 4\, ms$
$t_s = 1\, ms$
Controlled Source Acquisition

Frequency Sweep

m-Sequence
Spread Spectrum Acquisition and Simultaneous Multiple Sources
Quality of separated signals depend on how “orthogonal” the set of pilots are under (circular) correlation.

The less crosstalk in the cross-correlations of the pilots, the more “orthogonal” they are.
PRBS Degree= 11; Sequence Length= 2047

Normalized Amplitude

Time, msec.
Source function with a strong and a very weak event

no AGC

with AGC
Convolutions $R_i(t) = \int w(t-\tau) S_i(\tau) \, d\tau$, delayed by arrival times
Comparison of Gold-code and m-Sequences as Pilots For Vibrators Operating Simultaneously
PRBS Degree= 11; Sequence Length= 2047
Possible Applications
SIMULTANEOUS MULTIPLE SOURCES

Physical Modeling:
10 piezopin transmitters

Crosswell Scanning:
8 downhole vibrators
SIMULTANEOUS MULTIPLE SOURCES

Marine Surveys: SONAR sources

Land Surveys: Mechanical vibrators
Summary

Operating multiple vibrators simultaneously results in large gains in field survey efficiency.

- Shifted m-sequences or Gold codes can be used as pilot signals for simultaneous sourcing.

- Numerical simulations suggest m-sequences are the better choice because of much lower correlation noise and crosstalk.

- Extensive experimental testing (real surveys) needed to verify that the PRBS/correlation method adequately separates weak signals due to one source from strong signals due to another source.
ACKNOWLEDGEMENTS

This research was supported by NSERC and the industrial sponsors of CREWES.

Thanks to JODEX Limited for technical contributions.
REFERENCES

