Orientation azimuth calibration of borehole geophones

Peter Gagliardi and Don C. Lawton

24th Annual CREWES Sponsor’s Meeting
November 29, 2012
Geophone orientation calibration

Overhead View

H1

H2

Side View

Well

Cable

VSP Tool

Microseismic Hypocenter
Outline

• Objectives

• Methods and Survey Geometry

• Results and Modelling

• Conclusions

• Acknowledgements
Objectives

• Determine the optimal survey design for orientation calibration

• Characterise and quantify the effects of lateral raybending and seismic anisotropy on geophone orientation azimuth calibration
Geophone Orientation – Analytic Method

• The equation used to analytically calculate rotation azimuths was (DiSiena et al., 1984)

\[
\tan 2\theta = \frac{2H_1 \otimes H_2}{H_1 \otimes H_1 - H_2 \otimes H_2}.
\]

Vertical Well:

\[\phi_r = \phi_s + \theta\]

• \(\otimes\) is a zero lag cross-correlation
• \(H_1\) and \(H_2\) are the windowed data (100 ms)
• \(\theta\) is the source-receiver (H1 or X) orientation angle
The equation used to analytically calculate rotation azimuths was (DiSiena et al., 1984)

\[\tan 2\theta = \frac{2H_1 \otimes H_2}{H_1 \otimes H_1 - H_2 \otimes H_2}. \]

- \otimes is a zero lag cross-correlation
- H_1 and H_2 are the windowed data (100 ms)
- θ is the source-receiver (H_1 or X) orientation angle
Example of a Simple Radial Plot

- **One Standard Deviation Envelope**
- **Mean & Standard Deviation**
 - Mean: 44.5°
 - STD: 2.59°
- **Data Point**
 - Offset = 1100 m
 - Angle = 49°
- **Mean Orientation Azimuth**
Lousana VSP

- 16 3-C receivers: spacing of ~15 m
- 2D Survey with four tool positions (64 total levels)
- 3D Survey (249 source locations)
- Vertical Well
Shot Gather (3D, X = 33 m, Y = -81 m)
Orientation vs. Offset

Receiver 1 (717 m)

Deviation from Mean (degrees) vs. Absolute Offset (m)

Near offset cutoff

Legend:
- 0°-180°
- 45°-225°
- 90°-270°
- 135°-315°
Orientation vs. Offset

Receiver 1 (717 m)

Receiver 5 (778 m)

Receiver 9 (838 m)

Receiver 13 (899 m)
Offset Sectoring

\[\sim = \text{Receiver depth} \]

\[\sim = 2 \times \text{Receiver depth} \]
Theoretical Signal Based on Offset

Geometrical spreading & incident angle:

\[\frac{A_H}{A_0} = \frac{x}{x^2 + z^2} \]

- Assumes very high Q
- Ignores raybending
Radial Plot

- Mean: 300.5°
 - STD: 1.63°

- Mean: 258.0°
 - STD: 1.64°

- Mean: 102.5°
 - STD: 1.75°

- Mean: 124.0°
 - STD: 2.21°

- Mean: 135.9°
 - STD: 1.63°
Orientation vs. Azimuth (Offset > 500 m)
Dipping Beds (Lateral Raybending)
Dipping Beds (Lateral Raybending)

Assumed Angle

Measured Angle

X (m)

Y (m)

Z (m)

0

100

200

300

-300

-200

-100

0

100

200

300

400

500

600
Finite Difference Model (Using TIGER)

30 receivers
10-300 m
(10 m spacing)

Layer 1 $V_p=2000$ m/s
Layer 1 $V_S=1000$ m/s
Layer 2 $V_p=2900$ m/s
Layer 2 $V_S=1740$ m/s

30° Dip
Depth at well=175 m
90 shots (30 per line)
10 m spacing
Shot and Receiver Gathers
Orientation vs. Azimuth

Range: +/- 40°
Orientation vs. Azimuth

Range: +/- 40°
Anisotropy (HTI)

Plan View

Symmetry Axis (Slow Direction)
Source
Source-Receiver Azimuth

Possible Error in Orientation Azimuth
Receiver
Phase Angle θ
Group Angle ϕ

Adapted from Thomsen (1986)
Finite Difference Model

30 receivers
10-300 m
(10 m spacing)

Layer 1 \(V_p = 2000 \text{ m/s} \)
Layer 1 \(V_s = 1000 \text{ m/s} \)
Layer 2 \(V_p = 2900 \text{ m/s} \)
Layer 2 \(V_s = 1740 \text{ m/s} \)

Layer 1 \(\varepsilon = 0.1 \)
Layer 1 \(\delta = 0.025 \)
Layer 1 \(\gamma = 0.1 \)
Depth at well = 180 m

90 shots (30 per line)
10 m spacing
Shot and Receiver Gathers

- **Graph 1:**
 - X-Y axis: Time (s) vs. Receiver Number
 - Graph shows two components: H1 (X) Component and H2 (Y) Component

- **Graph 2:**
 - X-Y axis: Time (s) vs. Shot Horizontal Offset (m)
 - Graph shows two components: H1 (X) Component and H2 (Y) Component

Legend:
- **Blue Line:** H1 (X) Component
- **Red Line:** H2 (Y) Component
Orientation vs. Azimuth

Range: +/- 10°
Orientation vs. Azimuth

Range: +/- 10°
Signatures from Dip or HTI?
Conclusions: Objective 1

Determine optimal **survey design** for calibration

- Source locations nearer than 1/2 receiver depth increase scatter; optimal offset range between 1-2 times receiver depth.

- Scatter:
 - 2D (all/far offsets): $5.22^\circ/0.67^\circ$
 - 3D (all/far offsets): $2.41^\circ/1.74^\circ$
Conclusions: Objective 2

Characterise and quantify the effects of lateral raybending and seismic anisotropy on geophone orientation azimuth calibration.

- Lateral raybending: one-cycle sinusoid over azimuth (zero updip and downdip)

- Azimuthal anisotropy: two-cycle sinusoid over azimuth (zero in fast and slow directions)

- Deviation patterns from lateral raybending possible match in Lousana case study
Acknowledgements

- Kris Innanen, Rob Ferguson
- Henry Bland
- Heather Lloyd, Chris Bird
- Faranak Mahmoudian, Kevin Hall
- Laura Baird
- CREWES faculty, staff & students

- Encana Corp.
- GEDCO
- CREWES Sponsors
- NSERC Alexander Graham Bell CGS
- SEG Scholarship
- Carbon Management Canada