Orientation azimuth calibration of borehole geophones

Peter Gagliardi and Don C. Lawton

24th Annual CREWES Sponsor's Meeting November 29, 2012

Outline

• Objectives

- Methods and Survey Geometry
- Results and Modelling
- Conclusions
- Acknowledgements

Objectives

 Determine the optimal survey design for orientation calibration

 Characterise and quantify the effects of lateral raybending and seismic anisotropy on geophone orientation azimuth calibration

Geophone Orientation – Analytic Method

 The equation used to analytically calculate rotation azimuths was (DiSiena et al., 1984)

$$\tan 2\theta = \frac{2H_1 \otimes H_2}{H_1 \otimes H_1 - H_2 \otimes H_2}$$

Vertical Well:
$$\phi_r = \phi_s + \theta$$

- \otimes is a zero lag cross-correlation
- H_1 and H_2 are the windowed data (100 ms)
- θ is the source-receiver (H1 or X) orientation angle

Geophone Orientation – Analytic Method

 The equation used to analytically calculate rotation azimuths was (DiSiena et al., 1984)

$$\tan 2\theta = \frac{2H_1 \otimes H_2}{H_1 \otimes H_1 - H_2 \otimes H_2}.$$

- \otimes is a zero lag cross-correlation
- H_1 and H_2 are the windowed data (100 ms)
- θ is the source-receiver (H1 or X) orientation angle

Deviated Well:

<u>???</u>

Example of a Simple Radial Plot

CREWES

Lousana VSP

- 16 3-C receivers: spacing of ~15 m
- 2D Survey with four tool positions (64 total levels)
- 3D Survey (249 source locations)
- Vertical Well

Shot Gather (3D, X = 33 m, Y = -81 m)

9

Orientation vs. Offset

Orientation vs. Offset

Offset Sectoring

Offset range (m)

Theoretical Signal Based on Offset

Radial Plot

Orientation vs. Azimuth (Offset > 500 m)

Dipping Beds (Lateral Raybending)

16

Dipping Beds (Lateral Raybending)

CALGARY

Finite Difference Model (Using TIGER)

'AIGARY

Shot and Receiver Gathers

CREWES

Orientation vs. Azimuth

20

Orientation vs. Azimuth

Range: +/- 40°

Anisotropy (HTI)

22

REWES

Finite Difference Model

Shot and Receiver Gathers

Orientation vs. Azimuth

Range: +/- 10°

Orientation vs. Azimuth

Range: +/- 10°

JNIVERSITY OF

Conclusions: Objective 1

Determine optimal **survey design** for calibration

- Source locations nearer than 1/2 receiver depth increase scatter; optimal offset range between 1-2 times receiver depth.
- Scatter:
 - 2D (all/far offsets): 5.22°/0.67°
 - 3D (all/far offsets): 2.41°/1.74°

Conclusions: Objective 2

Characterise and quantify the effects of **lateral raybending** and **seismic anisotropy** on geophone orientation azimuth calibration

- Lateral raybending: one-cycle sinusoid over azimuth (zero updip and downdip)
- Azimuthal anisotropy: two-cycle sinusoid over azimuth (zero in fast and slow directions)
- Deviation patterns from lateral raybending possible match in Lousana case study

Acknowledgements

- Kris Innanen, Rob Ferguson
- Henry Bland
- Heather Lloyd, Chris Bird
- Faranak Mahmoudian, Kevin Hall
- Laura Baird
- CREWES faculty, staff & students
- Encana Corp.
- GEDCO
- CREWES Sponsors
- NSERC Alexander Graham Bell CGS
- SEG Scholarship
- Carbon Management Canada

