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Introduction 

 If you have been attending CREWES meetings for any 

length of time, you know the influence of the Gabor 

transform on the work of Gary Margrave. 

 But you may not know that the Gabor transform was only 

one of three remarkable inventions in Gabor’s landmark 

1946 paper: “Theory of Communication”, the others being 

time-frequency analysis and the complex signal. 

 After a brief discussion of both time-frequency analysis 

and the Gabor transform, I will focus on the complex 

signal and the development of seismic attribute analysis. 

 I will try to show the link among all seismic attributes. 

 But first, let me tell you a little bit more about Dennis 

Gabor, the man. 
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Dennis Gabor 

 Dennis Gabor was a Hungarian/British 

physicist who invented holography, for 

which he received the 1971 Nobel prize. 

 In 1946, he also wrote one of the most 

influential papers of the 20th century, 

entitled: “Theory of communication”. 

 In that paper, he invented the complex 

signal, the Gabor transform and time-

frequency analysis, each of which has 

had a major impact on our profession. 

 Today, I will discuss on how his complex 

signal lead to the development of 

seismic attribute analysis. 
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The Fourier transform 

 The standard approach to signal analysis is the Fourier 

transform, where a time signal s(t) is transformed to a 

frequency signal S(w):  
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 Note that we can also perform the inverse transform from 

frequency back to time. 

 Gabor observed two problems with this: 

(1) For perfect reconstruction of the forward and inverse 

transforms, an infinite signal length is required. 

(2) The time signal is real but the frequency signal is 

complex. 
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Time-Frequency analysis 

 To solve the first problem, and motivated by Heisenberg’s 

uncertainty principle, Gabor proposed a time-frequency 

“quantum” of information which satisfied DtDf ≈ 1.0. 

 That is, he proposed creating a grid of squares in time-

frequency space:  
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 The basic “quantum” of information 

is shown here by the red square of 

dimension Dt by Df . 

 For his “elementary signal” within 

each square, Gabor chose a 

sinusoidal function modulated by a 

Gaussian envelope.  



The Gabor wavelet/transform 

 Here is a pictorial representation of Gabor’s “elementary 

signal”, where the cosine is the real part of the signal and the 

sine is the imaginary part:    
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 This wavelet pair is now called the complex Gabor wavelet in 

wavelet transform theory. 

 The use of Gaussian modulation lead to the Gabor transform. 



The complex time signal 

 Gabor next went on to the second problem: how do we 

create a complex time signal, of which the observed signal 

is the real component? 

 Since the Fourier transform of a real signal has a symmetric 

shape on both the positive and negative frequency side, 

Gabor proposed that we suppress the amplitudes belonging 

to negative frequencies, and multiply the amplitudes of the 

positive frequencies by two, which gives: 
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 The Hilbert transform is a filter which applies a 90
o
 

phase shift to every sinusoidal component of a signal. 



Instantaneous attributes 

 Notice that the complex trace can be transformed from 

rectangular to polar coordinates, as shown below, to give the 

instantaneous amplitude A(t) and instantaneous phase F(t): 
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 The complex trace was introduced into geophysics by 

Taner et al. (1979), who also discussed its implementation. 



Instantaneous frequency 

 Taner et al. (1979) also introduced the instantaneous 

frequency of the complex seismic trace, which was initially 

derived by J. Ville in a 1948 paper entitled: “Théorie et 

applications de la notion de signal analytique”.  

 The instantaneous frequency is the time derivative of the 

instantaneous phase: 
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 Note that to compute w(t) we need to differentiate both the 

seismic trace and its Hilbert transform. 

 Like the Hilbert transform, the derivative applies a 90
o
 phase 

shift, but it also applies a high frequency ramp. 



A seismic volume 

 Here is a 3D seismic 

volume that was 

recorded over a 

karsted terrain 

(Hardage et al., 1996) 

 It consists of 97 

inlines and 133 

crosslines, each with 

200 samples (800–

1200 ms). 

 The karst features 

are illustrated by the 

red ellipses. 
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Slices through the volume 

Inline seismic section 146 
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Here are vertical and horizontal slices through 

the seismic volume: 

Note the karst feature at the east end of the line. 



Instantaneous attributes 

This figure shows 

the instantaneous 

attributes 

associated with 

the seismic 

amplitude slice at 

1000 ms. 
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New attributes 

 Attribute analysis until the mid-90s was thus based on the 

three basic attributes introduced by Gabor and Ville in the 

1940s: instantaneous phase, frequency, and amplitude. 

 Then, in the space of two years, papers on two new 

approaches to attribute analysis appeared: 

 The coherency method (Bahorich and Farmer, 1995) 

 2-D (and 3-D) complex trace analysis (Barnes, 1996) 

 The coherency method was a new approach which relied 

on cross-correlations between traces. 

 It was hard to see how instantaneous attributes and 

coherency were related. 

 However, the link was provided in the paper by Barnes on 

2-D and 3-D complex trace analysis. 
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The coherency method 

 The first coherency method involved finding the maximum 

correlation coefficients between adjacent traces in the x 

and y directions, and taking their harmonic average. 

 Marfurt et al. (1998) extended this by computing the 

semblance of all combinations of J traces in a window.  
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 This involves searching over 

all x dips p and y dips q, over 

a 2M + 1 sample window: 

Marfurt et al. (1998)  
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Coherency slice 

The x, y and z slices through a coherency 

volume with the 1000 ms data and coherency 

slices on the right. Note the low amplitude 

discontinuities and the highlighted event. 
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Instantaneous x and y freq. 

 Re-visiting our earlier 

3D dataset, notice that 

we only computed the 

frequency attribute in 

the time direction 

 Since the Hilbert 

transform is actually a 

function of three 

coordinates (i.e. F(t,x,y)) 

we can also compute 

frequencies in the inline 

(x) and crossline (y) 

directions. 
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Instantaneous wavenumber 

 Analogous to instantaneous frequency, Barnes (1996) 

defined the instantaneous wavenumbers kx and ky: 
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 The instantaneous time dips in the x and y direction, p 

and q, are given as: 
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Dip and azimuth attributes 

 To illustrate this, let’s 

look at a dipping 

cosine wave in 3D. 

 In this display, we 

have sliced it along 

the x, y and t axes.  

 For this dipping event, 

it is clear how the dips 

and azimuths are 

related to the inst. 

frequencies. 

 Next, we will look at 

azimuth on our karst 

example. 
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Instantaneous azimuth 
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Seismic with 3 x 3 alpha-trim mean Instantaneous Azimuth 



Curvature attributes 

 Roberts (2001) shows that curvature can be estimated from 

a time structure map by fitting the local quadratic surface 

given by: 

20 November, 2012 

feydxcxybyaxyxt  22),(

 This is a combination of an ellipsoid and a dipping plane. 



Curvature attributes 

 Roberts (2001) computes the curvature attributes by first 

picking a 3D surface on the seismic data and then finding the 

coefficients a through f from the map grid shown below: 
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 Klein et al. (2008) show how to generalize this to each point 

on the seismic volume by finding the optimum time shift 

between pairs of traces using cross-correlation. 
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Curvature attributes 

 The coefficients d and e are identical to dips p and q defined 

earlier, so when a = b = c = 0, we have a dipping plane and 

can also define the true dip and azimuth as before.  

 For a curved surface, Roberts (2001) defines the following 

curvature attributes (Kmin and Kmax are shown on the surface): 
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Curvature and instantaneous attributes 

23 November, 2012 

 Differentiating the Roberts quadratic, we find that at x = y = 0 

we get the following relationships for the coefficients: 
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 This leads to the following quadratic relationship: 

 Thus, all of the curvature attributes can be derived from the 

instantaneous dip attributes described earlier, using a 

second differentiation. 

 The next figures shows a comparison between azimuth 

maximum curvature derived the two different ways.  



Azimuth comparison 
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Instantaneous Azimuth Azimuth from curvature by correlation  



Max Curvature Comparison 
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Inst. maximum curvature Corr. maximum curvature 

High 

Low 

Data slice 

 Notice that the curvature features are similar, but that instantaneous 

curvature shows higher frequency events. 

 However, lower frequency events are present on the correlation approach. 



Conclusions 

 In this talk, I have shown how Dennis Gabor can be thought 

of as the “father” of modern seismic attribute analysis. 

 In his 1947 paper, Gabor invented the concept of the 

complex signal, which allowed us to derive the 

instantaneous phase, amplitude and frequency.  

 These attributes were introduced into geophysics by Taner 

et al. (1979) and were initially just computed in time. 

 Correlation attributes involve cross-correlating pairs of 

traces, where coherency is based on the correlation 

coefficient and curvature on the correlation time-shift. 

 By computing instantaneous frequency in x and y as well as 

time, we can derive dip, azimuth and curvature. 

 Thus, we can see Gabor’s initial work as being the pre-

cursor of most seismic attribute methods.  
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Appendix: The coherency method 

 Defining the covariance matrix between locations i and j as: 
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the two coherency measures are as follows: 
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 A third measure (Gursztenkorn and Marfurt, 1999) is:  


