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Introduction HAMPSON-RUSSELL

* If you have been attending CREWES meetings for any
length of time, you know the influence of the Gabor
transform on the work of Gary Margrave.

* But you may not know that the Gabor transform was only
one of three remarkable inventions in Gabor’'s landmark
1946 paper: “Theory of Communication”, the others being
time-frequency analysis and the complex signal.

= After a brief discussion of both time-frequency analysis
and the Gabor transform, | will focus on the complex
signal and the development of seismic attribute analysis.

= | will try to show the link among all seismic attributes.

= But first, let me tell you a little bit more about Dennis
Gabor, the man.
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Dennis Gabor HAMPSON-RUSSELL

* Dennis Gabor was a Hungarian/British
physicist who invented holography, for
which he received the 1971 Nobel prize.

* In 1946, he also wrote one of the most
influential papers of the 20t century,
entitled: “Theory of communication”.

* In that paper, he invented the complex
signal, the Gabor transform and time-
frequency analysis, each of which has R/
had a major impact on our profession. g‘\

= Today, I will discuss on how his complex | __ leune@‘m
signal lead to the development of Budapest, Kingdom of

Hungary

seismic attribute analysis. Died & February 1979 (aged 78)

London, England
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The Fourier transform HAMPSON-RUSSELL

* The standard approach to signal analysis is the Fourier
transform, where a time signal s(t) is transformed to a
frequency signal S(w):

1 % - 1 % -
s(t) = — | S(w)e'*dw < S(w) = ——=— | s(t)e"'“*dt, where
0= j () (@) == j (t)
w =2, f =frequency, and S(w) = the Fourier transform of s(t).

* Note that we can also perform the inverse transform from
frequency back to time.

= Gabor observed two problems with this:

(1) For perfect reconstruction of the forward and inverse
transforms, an infinite signal length is required.

(2) The time signal is real but the frequency signal is
complex. \
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Time-Frequency analysis HAMPSON-RUSSELL

» To solve the first problem, and motivated by Heisenberg’s
uncertainty principle, Gabor proposed a time-frequency
“‘quantum” of information which satisfied AtAf=1.0.

* That is, he proposed creating a grid of squares in time-
frequency space:

* The basic “quantum” of information
H_ IS shown here by the red square of

dimension At by Af.

* For his “elementary signal” within
each square, Gabor chose a
sinusoidal function modulated by a

| At Gaussian envelope.
time —m™™>

frequency —>
>
<>
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The Gabor wavelet/transform HAMPSON-RUSSELL

» Here is a pictorial representation of Gabor’'s “elementary
signal”, where the cosine is the real part of the signal and the
sine Is the imaginary part:

Gaussian
envelope

cosine

amplitude ——

time or frequency —>

* This wavelet pair is now called the complex Gabor wavelet in
wavelet transform theory.

= The use of Gaussian modulation lead to the Gabor transform.
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The complex time signal HAMPSON-RUSSELL

= Gabor next went on to the second problem: how do we
create a complex time signal, of which the observed signal
IS the real component?

» Since the Fourier transform of a real signal has a symmetric
shape on both the positive and negative frequency side,
Gabor proposed that we suppress the amplitudes belonging
to negative frequencies, and multiply the amplitudes of the
positive frequencies by two, which gives:

2(t) = s(t) +ih(t), where i=+/-1,
Z(t) =thecomplex signal, and
h(t) =the Hilbert transform of s(t).

= The Hilbert transform is a filter which applies a 90°
phase shift to every sinusoidal component of a signal.
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Instantaneous attributes HAMPSON-RUSSELL

* Notice that the complex trace can be transformed from
rectangular to polar coordinates, as shown below, to give the
Instantaneous amplitude A(t) and instantaneous phase ®(t):

+
PLC

Z(t) — S(t) + |h(t) = A(t)ei‘b(t)
= A(t) cos D(t) +IA(t) sin D(t),

where : A(t) = \/S(t)z +h(t)?,

and:  O(t) = tanl{h(t)}
s(t)

A(t)

time

= The complex trace was introduced into geophysics by
Taner et al. (1979), who also discussed its implementation.
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Instantaneous frequency HAMPSON-RUSSELL

= Taner et al. (1979) also introduced the instantaneous
frequency of the complex seismic trace, which was initially
derived by J. Ville in a 1948 paper entitled: “Théorie et
applications de la notion de signal analytique”.

* The instantaneous frequency is the time derivative of the
Instantaneous phase:

dh(t) ds(t)
oty 820 _ dtan(h()/s() _ SO 5 MO ”
dt dt A(t)?
» Note that to compute o(t) we need to differentiate both the
seismic trace and its Hilbert transform.

= Like the Hilbert transform, the derivative applies a 90° phase
shift, but it also applies a high frequency ramp.
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A seismic volume HAMPSON-RUSSELL

Here is a 3D seismic
volume that was
recorded over a
karsted terrain
(Hardage et al., 1996)

It consists of 97
Inlines and 133
crosslines, each with
200 samples (800—
1200 ms).

The karst features
are illustrated by the
red ellipses.
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Slices through the volume = HnMPSON-RUSSELL

Here are vertical and horizontal slices through

the seismic volume' -
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Instantaneous attributes HAMPSON-RUSSELL
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New attributes HAMPSON-RUSSELL

= Attribute analysis until the mid-90s was thus based on the
three basic attributes introduced by Gabor and Ville in the
1940s: instantaneous phase, frequency, and amplitude.

* Then, in the space of two years, papers on two new
approaches to attribute analysis appeared:

* The coherency method (Bahorich and Farmer, 1995)
» 2-D (and 3-D) complex trace analysis (Barnes, 1996)

* The coherency method was a new approach which relied
on cross-correlations between traces.

= |t was hard to see how instantaneous attributes and
coherency were related.

* However, the link was provided in the paper by Barnes on
2-D and 3-D complex trace analysis.
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The coherency method HAMPSON-RUSSELL

» The first coherency method involved finding the maximum
correlation coefficients between adjacent traces in the x
and y directions, and taking their harmonic average.

= Marfurt et al. (1998) extended this by computing the
semblance of all combinations of J traces in a window.

* This involves searching over
all x dips p and y dips g, over
a 2M + 1 sample window:

i
y

\,

©
=

©

qdip | I

2M+1 samples lt(ms)
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Coherency slice HAMPSON-RUSSELL
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The X, y and z slices through a coherency
volume with the 1000 ms data and coherency
slices on the right. Note the low amplitude
discontinuities and the highlighted event.
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Instantaneous x and y freq. HnrvPson-RUSSELL

» Re-visiting our earlier
3D dataset, notice that
we only computed the
frequency attribute in
the time direction

» Since the Hilbert
transform is actually a
function of three
coordinates (i.e. d(t,x,y))
we can also compute
frequencies in the inline
(x) and crossline (y)
directions.
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Instantaneous wavenumber HAMPSON-RUSSELL

= Analogous to instantaneous frequency, Barnes (1996)
defined the instantaneous wavenumbers k, and k,;:

* The instantaneous time dips in the x and y direction, p
and g, are given as:

k
pzﬁ and q=-.

) )

» Using p and g, the azimuth ¢ and true time dip @ are:

¢=tan"(p/q)=tan"(k,/k,),
and 6 =+/p? + .
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= To illustrate this, let’s
look at a dipping
cosine wave in 3D.

* In this display, we
have sliced it along
the x, y and t axes.

* For this dipping event,
It is clear how the dips
and azimuths are
related to the inst.
frequencies.

= Next, we will look at
azimuth on our karst
example.
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Instantaneous azimuth HAMPSON-RUSSELL
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Curvature attributes HAMPSON-RUSSELL

= Roberts (2001) shows that curvature can be estimated from
a time structure map by fitting the local quadratic surface
given by:

t(x,y) =lax® +by* +cxy HHdx +ey + f

* This iIs a combinatio an ellipsoid and a dipping plane.
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Curvature attributes HAMPSON-RUSSELL

» Roberts (2001) computes the curvature attributes by first
picking a 3D surface on the seismic data and then finding the
coefficients a through f from the map grid shown below:

< A _/,’\ » For example, the linear dips in the x
p ())& and y directions (d and e), are:

ot (L,+t+t)—(t,+t,+t,)
N A\ (% d=—=3>°%_23 B
Y O—)— oX 2AX

ot (t,+t+t)—(t,+t, +t;)

_@ @ @' oy 20y

= Klein et al. (2008) show how to generalize this to each point
on the seismic volume by finding the optimum time shift
between pairs of traces using cross-correlation.
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Curvature attributes HAMPSON-RUSSELL

» The coefficients d and e are identical to dips p and q defined
earlier, so when a=b =c¢ =0, we have a dipping plane and
can also define the true dip and azimuth as before.

» For a curved surface, Roberts (2001) defines the following
curvature attributes (K., and K__. are shown on the surface):

max

Kmax :Kmean+\/K2 -K

mean gauss?

Kmin = Kmean o \/K2 -K

mean gauss’
; 4ab — c*
|| " e gy ey

~a(l+e®)+b(@+d?*)—cde
mean (1_|_ dz 4 e2)3/2 |
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Curvature and instantaneous attributes HAMPSON-RUSSELL

» Differentiating the Roberts quadratic, we find thatatx =y =0
we get the following relationships for the coefficients:

a= (Gpjb (aq]’ (ﬁp aOIJd:pande:q.
2\ OX 2\ oy 2\oy 0O

* This leads to the following quadratic relationship:

1(op). . oq op 0q
t(x,y)=—| — = f
(X,Y) Z(ax)x +2(6’y)y + (8y ~ jxy+ PX +qy +

= Thus, all of the curvature attributes can be derived from the
Instantaneous dip attributes described earlier, using a
second differentiation.

* The next figures shows a comparison between azimuth
maximum curvature derived the two different ways.
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Azimuth comparison HAMPSON-BUSSELL
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Instantaneous Azimuth Azimuth from curvature by correlation
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Max Curvature Comparison HAMPSON-RUSSELL

High

Low

Data slice Inst. maximum curvature  Corr. maximum curvature

= Notice that the curvature features are similar, but that instantaneous
curvature shows higher frequency events.

= However, lower frequency events are present on the correlation approach.
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Conclusions HAMPSON-RUSSELL

* |n this talk, | have shown how Dennis Gabor can be thought
of as the “father” of modern seismic attribute analysis.

* In his 1947 paper, Gabor invented the concept of the
complex signal, which allowed us to derive the
Instantaneous phase, amplitude and frequency.

* These attributes were introduced into geophysics by Taner
et al. (1979) and were initially just computed in time.

= Correlation attributes involve cross-correlating pairs of
traces, where coherency is based on the correlation
coefficient and curvature on the correlation time-shift.

* By computing instantaneous frequency in x and y as well as
time, we can derive dip, azimuth and curvature.

* Thus, we can see Gabor’s initial work as being the pre-
cursor of most seismic attribute methods.
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Appendix: The coherency method HAMPSON-RUSSELL

» Defining the covariance matrix between locations 1 and j as:

C, ... C o
C(p.a)=| i . i | c;= D.stt—px —ay)s(t—px,—ay,),
t

=—MAt
_CJ 1 e o o CJJ |

the two coherency measures are as follows:

1/27] T
coh, = max ( Gz — ek 1/zj and coh, = max{a C(p,q)a}
(CuiCn)"? (C11Cs) Tr[C(p,q)]
wherea” =[1, ..., 1]and Tr|[C(p, q)] sum of main diagonal of C(p, q).

» A third measure (Gursztenkorn and Marfurt, 1999) is:

coh, = maX{Tr[Cﬂ(ip, q)]} A, = max eigenvalue of C(p,q).
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