A new S-wave seismic source

Don Lawton, Eric Gallant, Malcolm Bertram, Kevin Hall, Kevin Bertram, Rafael Asuaje

Bertram et al., Recent data from the Priddis Geophysical Observatory
Asuaje et al., Analysis of multicomponent seismic data recorded with the new thumper source
Motivation

• Near-surface P-wave and S-wave velocity structure
• Vp/Vs as a function of depth
• S-wave attenuation in near-surface layers
• S-wave statics in converted-wave surveys
• PP and PS section registration
• Shallow anisotropy
• Anisotropic S-wave statics
“Flintstone” S-wave hammer

The near-surface

Vertical vibe

Vertical

SH vibe

Transverse

Zuleta, 2012

Data courtesy of Nexen
Near-surface structure and Vp/ Vs

Zuleta and Lawton, 2012

Well data courtesy of Nexen
P & S-wave statics

Zuleta and Lawton, 2012
The PP – PS registration conundrum

Stewart and Mazur, 2001, Steen River Impact Structure
United Service Alliance Model A200

- Anvil style compressed nitrogen accelerated weight drop
- 18 cm piston travel
- 3 kJ @ 1800 psi
- 2000 kg trailer mount
Thumper source operation
SH source into transverse component

Uof C campus
Shallow Vp/Vs = 3.9
Experimental layout - Priddis
Zero offset VSP at Priddis well

Offset $dx = 2.5 \text{ m W}$
Offset $dy = 3.7 \text{ m S}$
Zero offset VSP at Priddis well: source V

Offset $dx = 2.5$ m W
Offset $dy = 3.7$ m S

$V_{p1} = 2160$ m/s
$V_{p2} = 3210$ m/s
Zero offset VSP at Priddis well: source Ys

Offset $dx = 2.5$ m W
Offset $dy = 3.7$ m S

$Vs_1 = 520$ m/s
$Vs_2 = 1400$ m/s
Zero offset VSP at Priddis well: source Y’s

Offset \(dx = 2.5 \text{ m W} \)
Offset \(dy = 3.7 \text{ m S} \)
Zero offset VSP at Priddis well: source Xs

Offset $dx = 2.5$ m W
Offset $dy = 3.7$ m S
Zero offset VSP at Priddis well: source X’s

Offset $dx = 2.5$ m W
Offset $dy = 3.7$ m S
Input components, unrotated
Alford rotation

Courtesy Gary Margrave
Surface spread
V source and V component receiver

Vp1 = 2000 m/s
Vp2 = 2900 m/s
Surface spread
SH source and T component receiver

$V_{s2} = 1360 \text{ m/s}$
V source, 20 m offset from well

Vertical component receiver
Y source, 20 m offset from well

Vertical component receiver
Y' source, 20 m offset from well

Vertical component receiver
V source, 80 m offset from well

Vertical component receiver
Y source, 80 m offset from well

Vertical component receiver
Y’ source, 80 m offset from well

Vertical component receiver
Summary

• Source built and tested successfully
• Good P and S energy to 250 m offsets
• Good P and S energy to 150 m depth
• $V_p/V_s = 3.9$ on campus
• $V_p/V_s = 4.2$ to depth of 40 m at Priddis
• $V_p/V_s = 2.3$ below 40 m depth at Priddis
• Turning rays evident from offset shots
• Shallow azimuthal anisotropy evident
Acknowledgments

• CREWES sponsors
• NSERC
• Carbon Management Canada