

A new S-wave seismic source

Don Lawton, Eric Gallant, Malcolm Bertram, Kevin Hall, Kevin Bertram, Rafael Asuaje

Bertram et al., Recent data from the Priddis Geophysical Observatory *Asuaje et al.,* Analysis of multicomponent seismic data recorded with the new thumper source

Motivation

- Near-surface P-wave and S-wave velocity structure
- Vp/Vs as a function of depth
- S-wave attenuation in near-surface layers
- S-wave statics in converted-wave surveys
- PP and PS section registration
- Shallow anisotropy
- Anisotropic S-wave statics

"Flintstone" S-wave hammer

Lawton, D.C., 1990, A nine-component refraction statics experiment: *Canadian Journal of Exploration Geophysics*, 26, 1-9.

The near-surface

Vertical vibe

SH vibe

Zuleta, 2012

```
Data courtesy of Nexen
```

Near-surface structure and Vp/Vs

of Nexen

P & S-wave statics

Zuleta and Lawton, 2012

The PP – PS registration conundrum

Stewart and Mazur, 2001, Steen River Impact Structure

United Service Alliance Model A200

- Anvil style compressed nitrogen accelerated weight drop
- 18 cm piston travel
- 3 kJ @ 1800 psi
- 2000 kg trailer mount

Thumper source operation

SH source into transverse component

Uof C campus Shallow Vp/Vs = 3.9

Experimental layout - Priddis

Zero offset VSP at Priddis well

Zero offset VSP at Priddis well: source V

Zero offset VSP at Priddis well: source Ys

Zero offset VSP at Priddis well: source Y's

Zero offset VSP at Priddis well: source Xs

Zero offset VSP at Priddis well: source X's

Input components, unrotated

Alford rotation

Courtesy Gary Margrave

Surface spread V source and V component receiver

Vp1 = 2000 m/s Vp2 = 2900 m/s

Surface spread SH source and T component receiver

Vs2 = 1360 m/s

V source, 20 m offset from well

Y source, 20 m offset from well

Y' source, 20 m offset from well

V source, 80 m offset from well

Y source, 80 m offset from well

Y' source, 80 m offset from well

Summary

- Source built and tested successfully
- Good P and S energy to 250 m offsets
- Good P and S energy to 150 m depth
- Vp/Vs = 3.9 on campus
- Vp/Vs = 4.2 to depth of 40 m at Priddis
- Vp/Vs = 2.3 below 40 m depth at Priddis
- Turning rays evident from offset shots
- Shallow azimuthal anisotropy evident

Acknowledgments

- CREWES sponsors
- NSERC
- Carbon Management Canada

