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Introduction
 Poroelastic Medium

 Biot (1962): anelastic effects from the relative movement of the 
fluid.

 Biot’s theory: Important in oil and gas exploration, CO2 storage 
monitoring and hydrogeology.

 The Theory predicts two compressional waves and one shear 
wave.

(Russell et al., 2003)
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Biot’s Theory(1962)
Assumptions :
 Elastic rock frame
 Connected pores
 Seismic wavelength     average pore size
 Small deformations
 Statistically isotropic medium
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 Stress-Strain Relation For Porous Media (Biot, 1962)

Fluid Pressure

Solid Stress

Coupling Modulus

Lame Parameters 
of the Saturated 
Rock.
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 Equations of motion for a statistically isotropic porous media 
saturated with viscous fluid:

MobilityFluid Displacement 
Relative to the Solid

Effective                      
Fluid Density Density of Saturated 

Rock

Fluid Density 
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Substituting                 and                  in the equations of motion 
and taking derivatives with respect to time from both sides of 
the stress-strain relationship we have:

and
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 2D case:

(1)

(3)
(4)

(5)

(6)

(7)

(8)

(2)
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Staggered-Grid Finite Difference(Levander, 
1988)
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Numerical Examples

 CO2 storage in Basal Cambrian 
Sands or BCS, which is a saline 
aquifer within Western Canadian 
Sedimentary Basin (WCSB)

 Data from well SCL-8-19-59-20W4

Single layer model based on QUEST Project

Quest
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Single Layer Model
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Gassmann Fluid Substitution 

BCS: 40% CO2
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 Fourth order in space and second order in time.
 The stability condition is the same as the one in the elastic 

case (Zhu:1991)

 The size of the model was 1500 m  by 1500 m 
 Explosive source: Ricker wavelet with dominant frequency 

50 Hz
 Source location : 
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 Vertical Particle Velocity of the Solid
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 Comparison with elastic algorithm
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Two-Layered Model
Top Layer                  Bottom Layer
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 Vertical Particle Velocity of the Solid
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Conclusion and Future Goals
 The Poroelastic algorithm Generates slow compressional

wave as predicted by Biot’s theory.
 At a poroelastic boundary the slow P-wave is converted to a

fast P-wave.
 The algorithm handles layered models and should be

examined for more complex models.
 The algorithm could be used for inversion to obtain porous

media properties that are ignored in elastic algorithms.
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 Fluid Pressure
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