

An interferometric solution for raypathconsistent shear wave statics

Authors;

Raul Cova* David Henley Kris Innanen

Introduction

- The S-wave statics problem:
 - The near surface "seen" by S-waves is different than the one seen by P-waves (e.g. water table depth).
 - S-wave statics solutions may be independent of P-wave statics.
 - Slow velocities magnify the effect of small changes in the propagation.
 - Non-Stationarity? Why? How to correct them?

PS Ray-Tracing

 Reflection times with the same transmission angle are recorded at different offsets Geometry of the problem

Travel times for a dipping LVL:

 $\begin{array}{l} h: \text{Vertical thickness} \\ V: \text{Shear wave velocity} \\ \phi: \text{Dip of the base of the LVL} \\ \theta: \text{Raypath angle} \end{array}$

$$t_{calc} = \frac{h}{V_{LVL}} \frac{\cos(\theta)}{\cos(\phi_{LVL} - \theta)}$$

Traveltime Interferometry

Total static time – – > $\Delta t = \tau'_{SOR} - \tau_{SOR}$

Receiver side static time – – > $\Delta t_R = \tau'_{OR} - \tau_{OR}$

Traveltime Interferometry

Statics processing workflow

Finite-Difference Modeling

Raw X-component Shot Gather

Receiver Gather

Receiver Gather (Zoom at offset 250m)

≠ Stationary

Receiver Gather

Radial-Trace Gather

RT Gather (zoom at 500 m/s radial trace)

≈ Stationary

Finite-difference modeling

S-wave Velocity (m/s)

ACP Stack w/o statics

Common rayparameter gather (350 m/s)

De-structured rayparameter gather

Pilot rayparameter gather

Cross-correlation functions

ACP Stack w/o statics

ACP Stack w surface consistent statics

ACP Stack w ray-path consistent statics

$$t_{calc} = \frac{h}{V_{LVL}} \frac{\cos(\theta)}{\cos(\phi_{LVL} - \theta)}$$

- *h* : Vertical thickness
- V: LVL velocity
- ϕ : Dip of the base of the LVL
- θ : Transmission angle

Summary

- If velocity contrasts at the near surface are not large, S-wave statics may show ray-path dependency
- Ray-path dependency implies a non-stationary behavior in time domain.
- Interferometric statics applied in the R-T domain showed to solved the problem.
- Straight ray-path assumptions for applying the radial transform may not be enough. Snell ray transform can be the next step.
- Inversion of the cross-correlations peaks time may be used for computing a velocity model for the near surface.

Acknowledgements

- David Henley.
- Kris Innanen.
- GEDCO (VISTA[®] processing software).
- CREWES students, staff and sponsors.

... THANKS!!!