

Internal multiple prediction in the continuous wavelet transform domain

Kris Innanen k.innanen@ucalgary.ca

CREWES Sponsors Meeting Dec 2013

Outline

Quick mention of AVO and FWI Review of Hernandez thesis results (2012) Internal multiple prediction on noisy land data Continuous wavelet transform maxima Continuous wavelet transforms Processing with CWT maxima Internal multiple prediction in the CWTM domain

CREWES research priority (Margrave et al., 2013)

Support & pre-condition iterative seismic inversion with existing standard methodologies

FWI for short offset (pre-critical) reflection data? Will involve AVO info & updates in 3 parameters $\delta \mathbf{s} = -\mathbf{H}$ update amplitudeamplitude in V_{P} , compromised correction V_S, ρ migration ?

A combined discrete-continuous formulation

Allowing a range of approximate Newton steps

Internal multiple prediction On noisy land traces

(Hernandez, 2012; following Weglein et al., 1997)

Nexen NEBC data (Zuleta, 2012)

Conclusions

Predictions correlate very well with modelled traces

Interpretation tool? Probability map of contamination with IMs

Subtraction? Need a way of combating noise...

Continuous wavelet transform Define the operator W_S

Continuous wavelet transform

Define the operator W

+ a "coarse" signal

Inversion W⁻¹

Inversion W⁻¹ accuracy

CWT modulus maxima Define the operator M

CWT modulus maxima

Question Is there a stable and accurate (MW)⁻¹? Answer Yes! ...approximately...

To find it, we need to define two spaces, Γ and V, and two operators, P_{Γ} and P_{V} .

 P_{Γ} : projection onto "nearest" element of Γ

V: all legitimate CWTs

P_V: projection onto "nearest" element of V

$P_V = WW^{-1}$

Iterative reconstruction

Aggressive denoising with thresholds

Aggressive denoising with thresholds

Aggressive denoising with thresholds

$PREDICTION = DATA \times DATA \times DATA$...nonlinear. Question:

prediction of wavelet maxima = wavelet maxima of prediction?

...yes, very close.

Opportunity for making IMP parameters vary with scale – surgical prediction

Aggressively denoised data in prediction operator

Aggressively denoised data in prediction operator

Codes

MATLAB 1D internal multiple prediction 2014 in CREWES toolbox (standalone available upon request) MATLAB 1.5D internal multiple prediction 2014

MATLAB continuous wavelet transform (W, W⁻¹) MATLAB reconstruction from maxima (MW)⁻¹ 2014

Acknowledgments

Nexen

M. J. Hernandez, H. Izadi