Improving deconvolution at low frequencies

Sina Esmaeili*, Gary F. Margrave

Outline

- Introduction to Frequency domain deconvolution
- Various smoother types
- Minimum phase color operator
- Synthetic data processing and impedance inversion results
- Conclusion
- Acknowledgements

Frequency domain deconvolution

- The easiest deconvolution technique to conceptualize
- Four assumptions:
 - The wavelet should be minimum phase
 - The wavelet amplitude spectrum should be smooth
 - The wavelet should be stationary
 - The reflectivity should be random so it has a white amplitude spectrum
- The embedded wavelet can be estimate by smoothing the amplitude spectrum of seismic data
 Amplitude Spectrum of Seismic Trace

Smoothers for amplitude spectra

Boxcar smoother (BS)

$$\bar{x}[i] = \frac{1}{2M+1} \sum_{j=-M}^{M} x[i+j]$$

4

Smoothers for amplitude spectra

• Gaussian smoother with constant σ (CGS)

5

Frequency dependent smoother

- Gaussian smoother with frequency dependent σ (FDGS)
 - lower frequencies require longer temporal windows.
 - Higher frequencies require small temporal windows.

$$\sigma_f = \frac{f}{n} = \frac{k\Delta f}{n}$$

Deconvolution of zero-offset synthetic data

- Synthetic seismogram created by *seismo* in CREWES Matlab toolbox
- Husky Hussar well 12-27 reflectivity
- 15Hz minimum phase wavelet with one millisecond sample rate.
- Only the P-wave seismic data are used
- The multiple reflections are not considered

Deconvolution of zero-offset synthetic data Amplitude spectra

Deconvolution of zero-offset synthetic data Smoother choice makes little difference

9

Where the problem is initiated!

 ✓ The frequency domain deconvolution assumes that the amplitude spectrum of reflectivity should be white

✓ While the most reflectivities from wells all over the world do not have white spectra (Walden and Hosken, 1985).

- The color operator should depend only on the observed spectral shape of the reflectivity.
- The color operator should be minimum phase.
- Only the frequencies below than 250 (in this case) are interested.
- Color spectrum should be flat at high frequencies but show low-frequency roll off.

11

• arctan color operator

arctan color operator

• Sigmoidal color operator

Sigmoidal color operator

Color model =
$$\left|\frac{R(f)}{S_d(f)}\right| * b(f)$$

 $S_d(f)$: Deconvolved Seismic trace b(f) : Smoother

Processing synthetic AVO gather

Processing synthetic AVO gather

- Synthetic data created by *Syngram* in CREWES Matlab toolbox.
- Husky Hussar well 12-27 data have been used.
- 15Hz minimum phase wavelet with one millisecond sample rate.

Designing window for decon algorithm

Deconvolution synthetic AVO gather with CGS

Deconvolution Of AVO Gather With Gaussian Smoother Deconvolution

Applying arctan color operator to the deconvolved data

The Deconvolved Traces After Applying arctan Color Op.

Applying Sigmoidal color operator to the deconvolved data

The Deconvolved Traces After Applying Sigmoidal Color Op.

Applying Forced color operator to the deconvolved data

The Deconvolved Traces After Applying Forced Color Op.

Amplitude spectrum of stacked data with arctan color operator

Amplitude spectrum of stacked data with Sigmoidal color operator

Amplitude spectrum of stacked data with Forced color operator

Impedance inversion

- ✓ The acoustic impedance was calculated by BLIMP algorithm in CREWES Matlab toolbox (Ferguson and Margrave, 1996).
- ✓ The low cut-off frequency was selected 1Hz in BLIMP algorithm.

Impedance inversion arctan color operator

Impedance inversion sigmoidal color operator

Impedance inversion forced color operator

Impedance estimation errors in frequency domain

Impedance Inversion Errors In Frequency Domain (Synthetic Shot Gather Data)

Impedance estimation errors in time domain

Impedance Inversion Errors In Time Domain (Synthetic Shot Gather Data)

Conclusion

- Deconvolution can be affected by choosing different smoothers but the differences are minor.
- A deconvolved trace shaped to a white spectrum can be corrected by applying a color operator right after deconvolution.
- The result of impedance inversion is greatly improved after applying color correction because this affects the low frequencies.
- Any color correction is better than no color correction.

Acknowledgment

- All CREWES sponsors
- All the students and staff in CREWES
- NSERC through CRD grant 379744-08

