A modeling and migration study of fault shadows

by Winnie S. Ajiduah and Gary F. Margrave

• Objective

- Objective
- Fault shadows: what are they?

- Objective
- Fault shadows: what are they?
- Methodology

- Objective
- Fault shadows: what are they?
- Methodology
- Result comparisons
 - Time migrations
 - Depth migrations

- Objective
- Fault shadows: what are they?
- Methodology
- Result comparisons
 - Time migrations
 - Depth migrations
- Conclusion

Motivation

Need for deep prospectivity

Objective

Objective

 To investigate the cause of fault shadow in real dataset from a modeling point of view

Objective

 To investigate the cause of fault shadow in real dataset from a modeling point of view

 A steer for the next project phase with the aim of ultimately resolving fault shadows

- Objective
- Fault shadows: what are they?
- Methodology
- Result comparisons
 - Time migrations
 - Depth migrations
- Conclusion

• They are zones of unreliable imaging in footwall reflections

- They are zones of unreliable imaging in footwall reflections
- They can exist in the footwall as

- They are zones of unreliable imaging in footwall reflections
- They can exist in the footwall as
 - anticlines (or synclines) , time pull up and sags

- They are zones of unreliable imaging in footwall reflections
- They can exist in the footwall as
 - anticlines (or synclines) , time pull up and sags
 - misinterpreted subseismic faults

- They are zones of unreliable imaging in footwall reflections
- They can exist in the footwall as
 - anticlines (or synclines) , time pull up and sags
 - misinterpreted subseismic faults
 - zone of poor illuminations

- They are zones of unreliable imaging in footwall reflections
- They can exist in the footwall as
 - anticlines (or synclines), time pull up and sags
 - misinterpreted subseismic faults
 - zone of poor illuminations
- may be false or real

- They are zones of unreliable imaging in footwall reflections
- They can exist in the footwall as
 - anticlines (or synclines), time pull up and sags
 - misinterpreted subseismic faults
 - zone of poor illuminations
- may be false or real
- exist in extensional and compressive faulted regime

- They are zones of unreliable imaging in footwall reflections
- They can exist in the footwall as
 - anticlines (or synclines), time pull up and sags
 - misinterpreted subseismic faults
 - zone of poor illuminations
- may be false or real
- exist in extensional and compressive faulted regime
- Reported cases

- They are zones of unreliable imaging in footwall reflections
- They can exist in the footwall as
 - anticlines (or synclines), time pull up and sags
 - misinterpreted subseismic faults
 - zone of poor illuminations
- may be false or real
- exist in extensional and compressive faulted regime
- Reported cases
 - Boundary fault of South Texas

- They are zones of unreliable imaging in footwall reflections
- They can exist in the footwall as
 - anticlines (or synclines), time pull up and sags
 - misinterpreted subseismic faults
 - zone of poor illuminations
- may be false or real
- exist in extensional and compressive faulted regime
- Reported cases
 - Boundary fault of South Texas, Tertiary graben of Poland,

- They are zones of unreliable imaging in footwall reflections
- They can exist in the footwall as
 - anticlines (or synclines) , time pull up and sags
 - misinterpreted subseismic faults
 - zone of poor illuminations
- may be false or real
- exist in extensional and compressive faulted regime
- Reported cases
 - Boundary fault of South Texas, Tertiary graben of Poland, regressive delta of the Gulf of Guinea

- They are zones of unreliable imaging in footwall reflections
- They can exist in the footwall as
 - anticlines (or synclines) , time pull up and sags
 - misinterpreted subseismic faults
 - zone of poor illuminations
- may be false or real
- exist in extensional and compressive faulted regime
- Reported cases
 - Boundary fault of South Texas, Tertiary graben of Poland,
 regressive delta of the Gulf of Guinea and permafrost of Siberia

- Objective
- Fault shadows: what are they?
- Methodology
- Result comparisons
 - Time migrations
 - Depth migrations
- Conclusion

Methodology

Methodology

Model Building

Exploding Reflector section

UNIVERSITY OF

CALGARY

NSERC

CRSNG

True velocity model in depth

well-log stratigraphy

UNIVERSITY OF

CALGARY

SERC

CRSNG

True velocity model in time

well-log stratigraphy

True velocity model in time

well-log stratigraphy

Post-stack time migration

RMS velocity Normal-faulted geology

UNIVERSITY OF

NSERC CRSNG

Exploding reflector post-STM

Common midpoint post-STM

Post and pre-stack depth migration with true velocities

True velocity model in depth

well-log stratigraphy

UNIVERSITY OF

CALGARY

SERC

CRSNG

Exploding reflector post-SDM

SA2 Sitamai Ajiduah, 12/3/2014

Common midpoint post-SDM

Shot-domain pre-SDM

Approximate velocities from flat initial model

detailed stratigraphy

Flat model

detailed stratigraphy

Flat model

detailed stratigraphy

Flat model

detailed stratigraphy

Flat model

Iterated depth migration with approximate models

Post-SDM with flat model

Iterative migration with fault constrained velocities from first pick

Iterative migration with fault constrained velocities from second pick

Iterative migration with fault constrained velocities from final pick

Prestack depth migration with third pick

Approximate velocities from Gaussian smoothed flat initial model

Gaussian-smoothed stratigraphy

Flat model

Gaussian-smoothed stratigraphy

Flat model

Gaussian-smoothed stratigraphy

Flat model

Gaussian-smoothed stratigraphy

Flat model

Iterated depth migration with gaussian-smoothed approximate models

Post-SDM with Gaussian-smoothed flat model

Iterative migration with fault constrained velocities from first pick

Iterative migration with fault constrained velocities from second pick

Iterative migration with fault constrained velocities from third pick

Prestack depth migration with third pick

- We have seen that fault shadows can occur as
 - false anticlines (or synclines)
 - false subseismic faults
 - poor illumination in the footwall

- We have seen that fault shadows can occur as
 - false anticlines (or synclines)
 - false subseismic faults
 - poor illumination in the footwall
- Primarily caused by strong velocity gradient across a fault.

- We have seen that fault shadows can occur as
 - false anticlines (or synclines)
 - false subseismic faults
 - poor illumination in the footwall
- Primarily caused by strong velocity contrast across a fault.
- Non-hyperbolic reflections created by dipping fault forces poststack migrations to fail

- We have seen that fault shadows can occur as
 - false anticlines (or synclines)
 - false subseismic faults
 - poor illumination in the footwall
- Primarily caused by strong velocity contrast across a fault.
- Non-hyperbolic reflections created by dipping fault forces poststack migrations to fail
- Time migration is in addition inherently limited by RMS.

Conclusion

• Migration with less than optimal velocity models may cause even the best depth migrations to fail.

Conclusion

- Migration with less than optimal velocity models may cause even the best depth migrations to fail.
- Prestack depth migration is promising if the velocity is accurate.

Conclusion

- Migration with less than optimal velocity models may cause even the best depth migrations to fail.
- Prestack depth migration is promising if the velocity is accurate.
- Lastly, fault shadow is a velocity and wave propagation problem and requires accurate understanding of the velocities as well as the structural geology and stratigraphy of the area

Future Work

In the future, we will work on

- a more realistic geologic model
- building effective migration velocity models
- and incorporate seismic attenuation and anisotropy.

Acknowledgment

- NSERC for the grant CRDPJ 379744-08
- CREWES Sponsor
- CREWES Staff
- Colleagues

Bibliography

- Aikulola, U. O, S.O. Olotu, and Yamusa. I., 2010, Investigating fault shadows in Niger Delta, TLE.
- Bancroft J.C., 2007. A Practical Understanding of Pre- and Poststack Migrations, Volume 1 (Prestack), SEG Course Notes Series No. 14, Society of Exploration Geophysicists, Tulsa, OK.
- Bednar, J.B, J Stein, Yoon., K, and Lines, L., 2003, Two-way-wave-equation migration: Overkill or Necessity CSEG Convention Abstract.
- Doust, H. and E.M. Omatsola, 1990, Divergent and Passive Margins. AAPG Memoir, NO 48, p.201-238.
- Ferguson, R. J., and G. F. Margrave., 2005. Planned seismic imaging using explicit oneway operators: Geophysics, 70, no. 5, S101–S109.
- Gazdag, J., and P. Sguazzero, 1984, Migration of seismic data by phase-shift plus interpolation: Geophysics, 49, 124–131.
- Schultz, P., 1999, The seismic velocity model as an interpretation asset, SEG Distinguish Instructor Short Course, Series, No.2
- Quigley, D., Lau, A., Stewart, K., Yin, Chuan., Mann, A., Fitzpatrick, A., 2012, Benefits of constraints for velocity modeling a fault shadow: A case study, SEG Annual meeting.
- Stuart, F., 1996. The fault shadow problem: Its nature and elimination: The Leading Edge, 15, 1005–1013, doi: 10.1190/1.1437403.

Thank you I will now take some questions

Appendix

Fault Shadows on typical real seismic datasets in SEG and CSEG publications

CALGARY

CRSNG