

Sponsors Meeting 2015

Shear wave near-surface corrections in the tau-p domain: a case study

Authors: Raul Cova* Xiucheng Wei Kris Innanen

Banff, December 3rd, 2015

- Henley (2012) introduced a method to remove S-wave nearsurface effects by using interferometric principles applied in the radial-trace (RT) domain.
- Cova et al. (2014) extended this idea to the τ-p domain, where no assumptions about the velocity model underlying the wave propagation are imposed.
- An important feature of this method is that near-surface effects are extracted from the reflected data (no first break picking is required).
- Can we use this method in fairly complex geological settings?

Near-surface effects

No near-surface effects

Survey Geometry

Vertical Component Stacked Section

Survey Problems

Survey Problems

Inline Component

Rotation Toward the Source

Radial Component

0

Radial Component

Radial Component

Radial Component

Radial Component Source Gather

Receiver Gathers

Raw Ray Parameter Panel

Receiver Station

Computing Cross correlation Functions

Removing the Near-surface Effects by Convolution

Corrected Ray Parameter Panel

Raw Common Ray-parameter Panel

Raw Ray Parameter Panel

Corrected Ray Parameter Panel

Raw Common Receiver Stack

Corrected Common Receiver Stack

Common Receiver Stacks

Raw Common Receiver Stack

Raw CCP Stack

Common Conversion Point Stack After Near-Surface Corrections

Corrected CCP Stack

Common Conversion Point Stacks

Raw CCP Stack

Corrected CCP Stack

- Changing the polarity of the receivers in one end of the spread does not consider the fact that some receivers may be outside of the plane defined by the survey.
- A full 2D rotation was needed to properly distribute the recorded amplitudes into the radial and transverse direction.
- In the processing of deep reflection data the assumption of vertical raypath angles may be sufficient for the use of a surface consistent approach.
- However, the very low velocity of S-waves and the ability of shallow events to reach wider reflection angles requires a ray-path dependent framework.
- Processing the statics in a raypath-consistent framework enabled us to remove near-surface effects for shallow and deep events simultaneously.

- SINOPEC
- David Henley
- NSERC (Grant CRDPJ 461179-13)
- CREWES sponsors
- CREWES faculty, staff and students.

