Predicting oil sands viscosity from well logs using an industry provided dataset

By: Eric Rops & Larry Lines December 4th, 2015

Presentation Outline

- 1. Brief introduction to viscosity
- 2. Theory of multi-attribute analysis
- 3. Athabasca North viscosity predictions
- 4. Athabasca South viscosity predictions
- 5. Conclusions
- 6. Future work

Introduction – Viscosity

Oil grades based on their viscosities

• Increasing reservoir temperature decreases the viscosity

McMurray formation viscosity measurements

Viscosity tends
 to increase with
 reservoir depth

Located about
10km south of
the study area

ConocoPhillips AER Report (2015)

Why do we care about viscosity?

- "Viscosity is the key controlling heavy-oil production and, as we shall see, it also has a strong influence on seismic properties." (Han & Liu & Batzle, 2008)
- It is used as a main criterion in determining the optimum recovery method.

Theory of multi-attribute-analysis

Multi-attribute analysis

• At each time sample, the target log is modeled as a linear combination of several attributes.

Example: Predicting Viscosity using 3 attributes

$$V(z) = w_0 + w_1 D(z) + w_2 G(z) + w_3 R(z)$$

where: V(z) = Viscosity (cP) D(z) = Bulk density (kg/m³) G(z) = Gamma ray (API units) R(z) = Resistivity (Ohm*m) V_1 $\begin{bmatrix} 1 \\ D_1 \\ C_1 \end{bmatrix}$ $\begin{bmatrix} 0 \\ C_1 \end{bmatrix}$ $\begin{bmatrix} 0 \\ W_2 \end{bmatrix}$

In matrix form:
$$\begin{bmatrix} v_1 \\ V_2 \\ \vdots \\ V_N \end{bmatrix} = \begin{bmatrix} 1 & D_1 & G_1 & K_1 \\ 1 & D_2 & G_2 & R_2 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & D_N & G_N & R_N \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ w_3 \end{bmatrix}$$

Or more compactly as: V = AW

The regression coefficients can be solved for using least-squares:

What are the best attributes to use?

Goal is to minimize the prediction error:

Step-wise regression:

1. Find the *single* best attribute, call it A1

2. Find the best *pair* of attributes *including* A1

3. Find the best *triplet* of attributes *including* A1 and A2

4. Carry on as long as desired

When do we stop adding attributes? (why would we want to?)

- Adding attributes is similar to fitting a curve through a set of points, using a polynomial of increasing order
- A higher order polynomial can
 "<u>over-fit</u>" the data
- Emerge[™] uses <u>Cross Validation</u> to determine when to stop adding attributes

Hampson-Russell Emerge[™] course notes

- Can plot the validation error as a function of number of attributes
- Here, anything more than 4 attributes over-trains the data

Athabasca North Viscosity Predictions

Project Location

Located about 40km SE of Fort McMurray

Athabasca North Study Area

CREWES

- 25 wells with multiple viscosity measurements and all logs INCLUDING shear sonic
- **45** TOTAL wells in this area with viscosity measurements
- Viscosity range from 35,000 cP to 802,000 cP

(Measured at 35°C)

Training the relationship

• Mud barriers must be avoided when defining training intervals

Weird log behavior in Athabasca North

Resistivity, shear sonic, and SP logs are questionable

Athabasca North Training Results (all log attributes)

Optimum viscosity prediction is found using <u>4 attributes</u>

UNIVERSITY OF CALGARY

Department of Geoscience

Athabasca North Training Results (SP removed)

Optimum viscosity prediction is found using <u>2 to 4 attributes</u>

Viscosity Prediction (validation) results

Experiment – Remove the top attribute (P-wave Sonic)

Athabasca South Viscosity Predictions

Athabasca South Study Area

CREWES

- **40** wells with multiple viscosity measurements and all logs INCLUDING shear sonic
- 78 TOTAL wells in this area with viscosity measurements
- Viscosity range from
 9,000 cP to
 541,000 cP

(Measured at 35°C)

Training the relationship

Resistivity logs more consistent than in Athabasca North

Athabasca South Training Results

Optimum viscosity prediction is found using 4 attributes

³¹

Department of Geoscience

Athabasca South Viscosity Prediction (validation) results

Experiment – Remove the top attribute (resistivity)

Number of Attributes

Dynamic behavior of the different predictors

What if we add depth as an attribute?

Adding *height above bitumen base* as an attribute

Optimum viscosity prediction is found using <u>5 to 7 attributes</u>

Conclusions

- Both <u>P-wave sonic</u> and (some form of) <u>resistivity</u> were top viscosity predictors in both Athabasca North and Athabasca South
- Average validation error in Athabasca North: 147,000cP (19% of total range)
- Average validation error in Athabasca South: 70,000cP (13% of total range)
- Bringing in <u>height above bitumen base</u> improved the validation error in Athabasca South to **60,000cP** (11% of total range)

Future Work

- Extrapolate the viscosity measurements to 10^oC (reservoir conditions) and 220^oC (steaming conditions)
- Determine how <u>depth</u> can best be used to predict viscosity in combination with the other logs
- Investigate the importance of the <u>S-wave sonic</u> log and <u>resistivity separation</u> (with improved log data)
- Try a **<u>neural network</u>** approach to predict viscosity

Acknowledgements

- CREWES sponsors
- NSERC (grant <u>CRDPJ 461179-13</u>)
- David Gray, Rudy Strobl, Kevin Pyke, & Scott Keating
- CREWES staff and students

40

SP as a predictor

Viscosity prediction equation using only SP:

 $\eta = 136000 + 4940 ln(|SP|)$

- Cone and Plate Viscometer is typically used for heavy oil
- The resistance to the rotation of the cone produces a torque that is proportional to the shear stress in the fluid

Department of Geoscience

Viscosity Concept

 $1 \, cP = 1 \, mPa \cdot s = 0.001 \, Pa \cdot s = 0.001 \, \frac{N}{m^2} \cdot s = 0.001 \, \frac{kg}{m \cdot s}$

• If a fluid is placed between two plates with distance 1 m, and one plate is pushed sideways with a shear stress of 1 Pa, and it moves at "u" m/s, then it has viscosity of "" $Pa \cdot s$

Image credit: Wikipedia

Uncertainty of the Viscosity Measurement

Miller et al (2006): Should you trust your heavy oil viscosity measurement?

Velocity Dispersion

- Velocities tend to increase with measurement frequency
- Laboratory measurements give higher velocities than sonic logs or seismic data
- Example from a heavy oil field 50km SW of Fort McMurray

