# Rock physics, inversion and Bayesian classification

#### **Brian Russell**



www.crewes.org



FACULTY OF SCIENCE Department of Geoscience

- Today, most geoscientists have an array of tools available to perform seismic reservoir characterization.
- However, the complexity of these tools increases year by year, and can be overwhelming at times.
- In this talk, I want to discuss some visualization tools that improve the user-friendliness of the reservoir characterization process.
- These tools will include both statistical methods and deterministic methods, and will combine both well log measurements and pre-stack inversion.
- I will illustrate the various methods with examples from a shallow gas sand in Alberta.





#### Gas Sand well log



- This figure shows the shallow gas sand used in this study.
- The P-wave sonic and density logs were recorded with wireline logs, the Swave log was created using the Castagna equation and Gassmann fluid substitution.





- This is a cross-plot of V<sub>P</sub>/V<sub>S</sub> ratio versus P-impedance
  (ρV<sub>P</sub>) for the zone between
  600 and 700 m around the gas sand.
- We can analyze this crossplot either statistically or deterministically.
- I will start with statistical clustering and then use a deterministic approach to explain the clusters.







- The clusters on the crossplot have been identified using *K*-means clustering with a statistical distance algorithm.
- The key question is how to interpret these five clusters.
- I will next discuss a rock physics template method which allows us to perform such an interpretation.







#### The rock physics template (RPT)

- Ødegaard and Avseth (2003) developed a rock physics template in which the fluid and mineralogical content of a reservoir could be estimated on a cross-plot of  $V_P/V_S$  ratio against acoustic impedance.
- The elastic constants are computed as a function of porosity, pressure and saturation using Hertz-Mindlin theory, the lower Hashin-Shtrikman bound and Gassmann fluid substitution.
- This cross-plot allows us to identify pressure, clay content, porosity, cement and fluid trends.



from Ødegaard and Avseth (2003)





## Interpreting the clusters

- The clusters from the previous plot can be interpreted as shown using the Ødegaard and Avseth RPT template.
- This is one use of the rock physics template.
- A second use, shown next, is to draw a set if curves on the cross-plot as a function of saturation and porosity, or any other two parameters.







- The rock physics template for the gas sand model is shown here, as a function of water saturation and porosity.
- Note that the template fits the gas sand well for low
   S<sub>W</sub> and high porosity.
- Later, I will show how to colour-code this RPT and display the results on the seismic.







- The top figure shows CMP gathers over a seismic line that intersects our well.
- An AVO Class 3 anomaly is observed around the gas sand, created by a drop in Pimpedance and V<sub>P</sub>/V<sub>S</sub> ratio.
- The bottom part of the figure shows the stack of these gathers, which forms part of an amplitude "bright spot".







#### Simultaneous pre-stack inversion

- The simultaneous pre-stack inversion of the gathers on the previous slide, where colour shows V<sub>P</sub>/V<sub>S</sub> ratio and wiggle trace shows Pimpedance.
- The gas sand displays a low  $V_{\rm P}/V_{\rm S}$  ratio.
- Above the gas sand is are Cretaceous sand/shales.
- Below the gas sand are cemented sands and carbonates.







- Three zones have been picked on the section: wet (blue), gas (red) and consolidated (green).
- We would hope that these zones would correspond to the RPT interpretation.
- The best way to test this is on a V<sub>P</sub>/V<sub>S</sub> ratio vs P-impedance X-plot.







- Here are the three zones picked on the previous inverted section.
- The V<sub>P</sub>/V<sub>S</sub> ratio and acoustic impedance histograms of the three zones are also displayed.
- These zones show good correspondence to the zones seen on the well logs.







- This figure shows the superposition of a rock physics template of S<sub>W</sub> vs
  Porosity on the seismic cross-plot, optimized by adjusting V<sub>shale</sub> and pressure.
- Note that the red points from the gas sand show high porosity and low water saturation, as expected.







- We can now fill in a colour template for the RPT.
- Note that each colour fills in a grid cell delineated by porosity and water saturation increments.

|           | 6% Por | 8% Por | 10% Por | 12% Por | 14% Por | 16% Por |  |
|-----------|--------|--------|---------|---------|---------|---------|--|
| 0% Water  |        |        |         |         |         |         |  |
| 10% Water |        |        |         |         |         |         |  |
| 20% Water |        |        |         |         |         |         |  |
| 30% Water |        |        |         |         |         |         |  |
| 40% Water |        |        |         |         |         |         |  |
| 50% Water |        |        |         |         |         |         |  |
| 60% Water |        |        |         |         |         |         |  |
| 70% Water |        |        |         |         |         |         |  |
| 80% Water |        |        |         |         |         |         |  |
| 90% Water |        |        |         |         |         |         |  |





- Here is the application of the colour palette with opacity turned on so we can still see the points.
- We can now superimpose these colours on the seismic data traces (wiggle trace only).







- Here is the superposition of the RPT colours on the seismic section.
- Although the gas sand shows up as the purple and blue colours, the other colours makes this display too "busy" to easily interpret.
- To improve this display, we can edit the colours.







- All the colours are initially set to white and then slowly filled in with red.
- Note that a region with moderate porosity and gas saturation has been highlighted.

|           | 6% Por | 8% Por | 10% Por | 12% Por | 14% Por | 16% Por |  |
|-----------|--------|--------|---------|---------|---------|---------|--|
| 0% Water  |        |        |         |         |         |         |  |
| 10% Water |        |        |         |         |         |         |  |
| 20% Water |        |        |         |         |         |         |  |
| 30% Water |        |        |         |         |         |         |  |
| 40% Water |        |        |         |         |         |         |  |
| 50% Water |        |        |         |         |         |         |  |
| 60% Water |        |        |         |         |         |         |  |
| 70% Water |        |        |         |         |         |         |  |
| 80% Water |        |        |         |         |         |         |  |
| 90% Water |        |        |         |         |         |         |  |
|           |        |        |         |         |         |         |  |





- Here is the application of the new colour palette with opacity turned on so we can still see the points.
- We can now superimpose these new colours on the seismic data traces (wiggle trace only).







- Here is the new colour scheme superimposed on the seismic volume, clearly showing the gas sand.
- Although this is a 2D line, in a 3D volume the colour would be mapped throughout the entire volume.







- Now that we have identified the clusters associated with gas, wet and cemented sands on the crossplot, we can assign a Bayesian probability classification scheme to the three clusters.
- For *K* clusters, the  $k^{th}$  cluster, or class, can be defined by the Gaussian pdf  $f(x|c_k)$ .
- Note that x can be a single variable, in which case the pdf is a Gaussian curve, or a two-dimensional vector, in which case the pdf is an ellipse.
- We then compute the separation between the *i<sup>th</sup>* and *j<sup>th</sup>* clusters using the following Bayesian decision boundary:

 $f(x | c_i) p(c_i) = f(x | c_j) p(c_j)$ , where  $p(c_i)$  and  $p(c_j)$  are the priors.





#### **Bayesian Classification**

- The Bayesian priors are computed by adding the total number of points for all classes and dividing the number of points in each class by the total number of points.
- If the priors are set to equal values, the result is called maximum likelihood (ML) classification, rather than Bayesian classification.
- Here is an example from a 1D data set, where the figure on the left shows ML classification, and the one on the right shows Bayesian classification:







21

Here are the statistics for the classification of the three 2D clusters seen on the previous inversion result and crossplot.

| Parameters      | Value    | Parameters | Value            | Parameters | Value             |  |  |
|-----------------|----------|------------|------------------|------------|-------------------|--|--|
| x mean          | 5658 m/s | x mean     | 5322 m/s         | x mean     | 7288 m/s          |  |  |
| y mean          | 1.87     | y mean     | 2.77             | y mean     | 2.148             |  |  |
| x variance      | 29341    | x variance | 4825             | x variance | 627481            |  |  |
| y variance      | 0.0091   | y variance | 0.043            | y variance | 0.011             |  |  |
| covariance      | 9.316    | covariance | -33.93           | covariance | 5.402             |  |  |
| Cluster 1 (Red) |          | Cluster 2  | Cluster 2 (Blue) |            | Cluster 3 (Green) |  |  |





22

#### **Bayesian Classification**

- Here is the result of Bayesian classification of the three zones, with Gaussian PDFs.
- Since these zones were picked by the user, automatic clustering is not needed.
- Note that the univariate PDFs have been superimposed on the histograms.







- Classification results are then projected back onto the seismic data.
- The colour intensity indicates distance below the peak of the distribution.
- Now the gas sand and other lithologies are each assigned a probability.







- Next, we will extend our Bayesian analysis using the mixture model approach with Gaussian pdfs.
- In this approach, each cluster is modeled as the sum of J Gaussian pdf functions with weights w<sub>i</sub>, given by:

$$p(x|c_k) = \sum_{j=1}^{J} w_j f(x|j)$$
, where:  
 $\sum_{j=1}^{J} w_j = 1.0$  and  $\iint_{x,y} f(x|j) dx dy = 1.0$ 

That is, the sum of the weights and the area of the final pdf function both equal 1.0.





#### Mixture model classification

Here are the statistics and weights for the first cluster (the other two clusters have a similar look):

|                | Mixture 1 | Mixture 2 | Mixture 3 |
|----------------|-----------|-----------|-----------|
| Mixture weight | 0.3298    | 0.3319    | 0.3382    |
| x mean         | 5572      | 5565      | 5832      |
| y mean         | 1.827     | 1.869     | 1.918     |
| x variance     | 5815      | 3197      | 31002     |
| y variance     | 0.0056    | 0.0098    | 0.0073    |
| covariance     | 4.347     | 2.350     | 8.551     |





- Here is the result of mixture model classification of the three zones.
- Again, the univariate PDFs have been superimposed on the histograms.
- Note that the fit to the points is much tighter than in the single Gaussian approach.

REWES





#### Mixture model classification results

- The mixture model classification results are projected back onto the seismic data, as shown here.
- Again, the colour intensity indicates distance below the distribution peak.
- The gas sand extent has been decreased from the single Gaussian results.







- In this talk, I discussed two separate approaches to linking rock physics models to inverted seismic data: a deterministic and a statistical approach.
- In the deterministic approach, we built petro-elastic models and displayed the resulting rock physics templates (RPTs) on  $V_P/V_S$  versus P-impedance cross-plots.
- By connecting the RPT grid lines and assigning colours to the resulting grid cells, we then visualized the results on the seismic display.
- Our first statistical approach performed automatic clustering on the cross-plot and correlation with the deterministic RPT results.
- Our second statistical approach used Bayesian classification with single Gaussian pdfs.
- Finally, this was extended to a mixture model approach, in which multiple Gaussian pdfs were used to model each cluster.





- I wish to thank the CREWES sponsors and my colleagues at Hampson-Russell, CGG, and CREWES.
- In particular, I want to thank Dr. Qing Li and Kim Andersen for their efforts in implementing the ideas shown in this talk in the Hampson-Russell software platform.
- Also, I want to thank Dan Hampson and Jon Downton for their suggestions that improved this talk.





### The Ødegaard/Avseth equations for the dry moduli

• Ødegaard and Avseth (2003) compute  $K_{dry}$  and  $\mu_{dry}$  as a function of porosity and pressure using Hertz-Mindlin theory and the lower Hashin-Shtrikman bound:

$$K_{dry} = \left[\frac{\phi/\phi_c}{K_{HM} + (4/3)\mu_{HM}} + \frac{1 - \phi/\phi_c}{K_m + (4/3)\mu_{HM}}\right]^{-1} - \frac{4}{3}\mu_{HM}$$
  
$$\mu_{dry} = \left[\frac{\phi/\phi_c}{\mu_{HM} + z} + \frac{1 - \phi/\phi_c}{\mu_m + z}\right]^{-1} - z, \text{ where } z = \frac{\mu_{HM}}{6} \left(\frac{9K_{HM} + 8\mu_{HM}}{K_{HM} + 2\mu_{HM}}\right),$$
  
$$K_{HM} = \left[\frac{n^2(1 - \phi_c)^2 \mu_m^2}{18\pi^2(1 - \nu_m)^2} P\right]^{\frac{1}{3}}, \mu_{HM} = \frac{4 - 4\nu_m}{5(2 - \nu_m)} \left[\frac{3n^2(1 - \phi_c)^2 \mu_m^2}{2\pi^2(1 - \nu_m)^2} P\right]^{\frac{1}{3}},$$
  
$$P = \text{confining pressure}, K_m, \mu_m = \text{mineral bulk and shear modulus}, n = \text{contacts}$$

per grain,  $v_m$  = mineral Poisson's ratio,  $\phi$  = porosity, and  $\phi_c$  = critical porosity.





# Fluid substitution with the Gassmann equation

The Gassmann (1951) equation is then used for fluid substitution for the saturated bulk modulus:

$$\frac{K_{sat}}{K_m - K_{sat}} = \frac{K_{dry}}{K_m - K_{dry}} + \frac{K_f}{\phi(K_m - K_f)}, \text{ where } : K_{sat} = \text{saturated bulk modulus,}$$
$$\frac{1}{K_f} = \frac{S_w}{K_w} + \frac{1 - S_w}{K_{hc}}, K_f = \text{fluid bulk modulus,} K_w = \text{water bulk modulus,}$$
$$K_{hc} = \text{hydrocarbon bulk modulus, and } S_w = \text{water saturation.}$$

Note that Gassmann shows that there is no change in the shear modulus, meaning that:

$$\mu_{sat} = \mu_{dry}$$





For a single variable with K clusters, the k<sup>th</sup> cluster, or class, can be defined by the following Gaussian pdf:

$$f(x | c_k) = \frac{1}{\sigma_k \sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{x - \mu_k}{\sigma_k}\right)^2\right], \text{ where}$$
$$\mu_k = \frac{1}{N_k} \sum_{i=1}^{N_k} x_{ki}, \text{ and } \sigma_k^2 = \frac{1}{N_k} \sum_{i=1}^{N_k} (x_{ki} - \mu_k)^2.$$

 We then compute the separation between the *i<sup>th</sup>* and *j<sup>th</sup>* clusters using the following Bayesian decision boundary:

 $f(x | c_i) p(c_i) = f(x | c_j) p(c_j)$ , where  $p(c_i)$  and  $p(c_j)$  are the priors.





33

#### Two-Dimensional Classification

For an two-dimensional variable with K clusters, the k<sup>th</sup> cluster can be defined by the following two-dimensional Gaussian pdf:

$$f(z|c_k) = \frac{1}{2\pi |\Sigma_k|^{1/2}} \exp\left[-\frac{1}{2}(z-\mu_k)^T \Sigma_k^{-1}(z-\mu_k)\right]$$
  
where :  $z = \begin{bmatrix} x \\ y \end{bmatrix}, \mu_k = \begin{bmatrix} \mu_{kx} \\ \mu_{ky} \end{bmatrix}, \Sigma_k = \begin{bmatrix} \sigma_{kxx} & \sigma_{kxy} \\ \sigma_{kxy} & \sigma_{kyy} \end{bmatrix}, \sigma_{kxx} = \sigma_x^2,$   
 $\sigma_{kyy} = \sigma_y^2$  and  $\sigma_{kxy} = \frac{1}{N_k - 1} \sum_{i=1}^{N_k} \left[ (x_i - \mu_{kx}) (y_i - \mu_{ky}) \right].$ 





- We can extend our Bayesian analysis using the mixture model approach with Gaussian pdfs.
- In this approach, each cluster is modeled as the sum of J Gaussian pdf functions with weights w<sub>i</sub>, given by:

$$p(z|c_k) = \sum_{j=1}^{J} w_j f(z|j)$$
, where :  
 $\sum_{j=1}^{J} w_j = 1.0$  and  $\iint_{x,y} f(z|j) dx dy = 1.0$ .

 Note that the sum of the weights and the area of the final pdf function both equal 1.0.



