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Outline
1. Background: aspects of DAS technology

a) a key issue with the state of the art
b) what is in and what is out of the model

2. Geometrical model of helical fibre / deviated cable
a) axis of a deviated cable
b) adding in the helix

3. Applications
a) Embedding fibre in an elastic wavefield snapshot
b) Estimating vector displacement
c) Estimating tensor strain
d) General characterization of directionality



Background
Brooks AB FRS



Background
Fibre-optic acoustic sensing



Background
Fibre-optic acoustic sensing



Background
A key issue with the state of the art

Mateeva et al., 2014



Background
A key issue with the state of the art

Mateeva et al., 2014



Background
Possible solutions

Helically-wound 
fibre

“Twisted Strip” cable

Mateeva et al., 2014



Background
Today: goals

1. General model of fibre embedded in a 3D volume
a) helix + cable axis with arbitrary curvature
b) enumerate all tangents sensed by this fibre
c) formulate estimation of vector / tensor fields
d) generalize cos2θ directionality rules for incident P-wave

2. What is left out of the model
a) detailed calibration from strain to displacement
b) ground-to-casing-to-fibre coupling
c) SNR issues etc. in analyzing interrogator signal (except 

incorporation of gauge-length)



Geometrical model 
of a helical fibre wound round an arbitrary cable



By similar arguments the derivative of the tangent 
must lie in the plane perpendicular, therefore

Geometrical model 
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Geometrical model 
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Applications
II. Estimating 3C of u from ut

Input: ut(s) = uTt(s)



Applications

Input: ut(s) = uTt(s)

Assume: tangential component of 
displacement can be estimated from 

normal strain

II. Estimating 3C of u from ut
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inline

depth
Desired output: u = [u1,u2,u3]T in “field system”
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Applications

Problem: within some reconstruction volume, determine 
u from { ut(s1), ut(s2), ... ut(sN) }

II. Estimating 3C of u from ut



Applications

Single components ut(si) 
in reconstruction window

3C vector u in 
reconstruction window
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Applications
III. Estimating tensor strain from ett(s)
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III. Generalizing cos2θ directionality rules 

P-wave source

Fibre



Applications

P-wave source

Fibre
Assume: far field P-wave impinges on 
fibre, such that ett is the only nonzero 

strain tensor element activated by wave

III. Generalizing cos2θ directionality rules 
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ut = |u| û  t = |u| cos θ

ett = (û  t) |e| (û  t) = |e| cos2θ Strain response
Displacement response

III. Generalizing cos2θ directionality rules 



Applications
III. Generalizing cos2θ directionality rules 



Applications
III. Generalizing cos2θ directionality rules 



Conclusions
1. The next generation of geophysical methods for 

monitoring of production and exploration requires
a) dense sampling
b) repeatability
c) cost-effectiveness

2. Fibre / DAS systems a strong contender.  But:
a) overcome / characterize broadside insensitivity?
b) to what degree can we estimate 3C from fibre?

3. Modeling moves us towards answers.  Going forward:
a) design optimum practical geometries 
b) ...with outcomes (AVO/AVAz inversion, FWI) in mind
c) Field tests
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Single-mode
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