The promise of 3D 3C seismic data for improved imaging and reservoir characterization in the Alberta oil sands

Bobby Gunning*, Don Lawton and Helen Isaac December 1, 2016

Project objectives

- Objectives
 - Characterize and understand key geological intervals through joint PP-PS interpretation and inversion
 - Demonstrate the value of acquiring and processing converted wave seismic data in in-situ oil sands type operational scenario

PP and PS stacked seismic data

UNIVERSITY OF CALGARY FACULTY OF SCIENCE Department of Geoscience

Geological setting

Modified from Hien et al., 2008

UNIVERSITY OF CALGARY FACULTY OF SCIENCE Department of Geoscience

Geological and operational setting

• Reservoir

- McMurray formation
 - Unconsolidated fluvial to marginal marine sands and mudstones
 - Inclined heterolithic stratification (IHS)
- Trap and seal
 - Upper Clearwater Formation and Colorado Group
 - Mostly marine shales
- Secondary hydrocarbon recovery method
 - Steam assisted gravity drainage (SAGD)

Todorovic-Marinic et al. 2015

Dataset

3D outline and well positions

Sources (red) and receivers (blue)

- 17 km² 3C-3D seismic data
 - Orthogonal acquisition design
 - Dynamite source
 - 125 m source and receiver line interval
 - 25 m source and receiver spacing
- 14 logged wells
 - 3 dipole sonic logs
- Polarity convention
 - Peaks blue (positive acoustic impedance contrast)
 - Troughs red (negative acoustic impedance contrast)

Raw records

- Vertical component (left)
 - PP reflection energy
- Radial component (right)
 - P-SV reflection energy
 - Rotated from inline and crossline components into radial and transverse

PP and PS Processing

• PP and PS data are processed jointly

- Several of the PP processing outputs are used in PS processing
 - Source statics, PP stacking velocities, CMP bin locations for instance
- Many PP processing tools are implemented in PS processing

PP and PS Processing

- Geometry and bin grid assignment
- Refraction and elevation statics
- Radial transform denoise
- Amplitude corrections
- Gabor deconvolution
- Spectral balancing
- P wave velocity analysis and normal moveout correction
- Residual statics
- Repeated velocity analysis and residual statics (x4)
- CMP stack
- PSPI migration
- FXY signal enhancement

- Geometry assignment and bin grid assignment
- Trace rotation into radial and transverse components
- P wave shot statics and elevation statics application
- Radial transform denoise
- Gabor deconvolution
- Spectral balancing
- Converted wave velocity analysis
- Common receiver stack
- S wave receiver statics
- Asymptotic common conversion point binning and stacking
- Residual statics
- Repeated velocity analysis, receiver statics and residual statics (x4)
- Common conversion point (CCP) stack
- PSPI migration
- FXY signal enhancement

Fully processed stack data examples

www.crewes.org

FACULTY OF SCIENCE Department of Geoscience

PP synthetic seismogram

www.crewes.org

UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

Department of Geoscience

PS synthetic seismogram

PP seismic stratigraphy

- Good reflection continuity
 - Paleozoic unconformity
 - Clearwater Fm
 - Grand Rapids Fm
- Marginal reflection continuity
 - McMurray Fm
 - Colorado Gp

www.crewes.org

UNIVERSITY OF CALGARY

Department of Geoscience

PS seismic stratigraphy

- Good reflection continuity
 - All major events besides Quaternary

PS amplitude spectrum

50

Frequency (Hz)

70

Amplitude (dB)

10

30

Interval of interest – PP

www.crewes.org

UNIVERSITY OF CALGARY FACULTY OF SCIENCE Department of Geoscience

Interval of interest – PS

www.crewes.org

UNIVERSITY OF CALGARY FACULTY OF SCIENCE Department of Geoscience

McMurray time structure and isochron

REWES

McMurray time structure

25 45

McMurray – Paleozoic isochron

- McMurray structure follows regional Paleozoic topography
- High structure, thick isochron trend from NE to SW
 - McMurray channel fill

McMurray channel – PP

Middle McMurray stratal slide (amplitude)

McMurray channel – PS

www.crewes.org

UNIVERSITY OF CALGARY

FACULTY OF SCIENCE Department of Geoscience

McMurray natural gas

Upper McMurray RMS amplitude

- Depth (m) High RMS amplitude in the
 Upper McMurray correlated to
 in situ natural gas
 - Based off of porosity logs

Horizon based interval V_p/V_s

- Horizon based interval V_p/V_s maps require large intervals
 - To avoid creating large anomalies from small picking errors
- Bad picks are amplified in interval V_p/V_s maps
 NW corner of survey for example

• Well log average V_p/V_s is 2.25 in the interval

Inversion

- Inversion P-impedance input model, created from three pervasive reflection horizons and a single well
- Inversion wavelet, extracted from the zone of interest in the PP seismic data

Post-stack inversion results

www.crewes.org

UNIVERSITY OF CALGARY

FACULTY OF SCIENCE Department of Geoscience

Interval RMS impedance

REWES

- High RMS impedance correlates to better quality reservoir
 - Based on GR and porosity logs

www.crewes.org

ILD (Ωm)

Depth (m)

375

400

425

450

475

1000

Impedance cross section through McMurray Channel

Pre-stack model based inversion – Angle gathers

Angle (°)

- Pre-stack data conditioning
 - Filtering
 - Super gather
 - Radon de-noise
 - Trim statics
 - Angle gather

Comparing inversions

www.crewes.org

UNIVERSITY OF CALGARY

FACULTY OF SCIENCE Department of Geoscience

Pre-stack model based inversion

www.crewes.org

UNIVERSITY OF CALGARY FACULTY OF SCIENCE Department of Geoscience

Interval RMS shear impedance and V_p/V_s

REWES

• Relatively low shear impedance and high V_p/V_s in the McMurray channel

Summary and future work

- Processing of 3C 3D seismic data from Athabasca Oil Sands
 - Vertical and Radial geophone components processed to PP and PS stacks
- Regional geologic interpretation
 - Pervasive reflection horizons
 - Identification of large McMurray channel from structure and isochron maps
- Inversion analysis to identify high quality reservoir zones
- Future work:
 - PP-PS joint inversion and comparison to pre-stack PP inversion
 - Linear and nonlinear multiattribute analysis

Acknowledgements

• Data provider: Canadian Natural Resources Limited

 Software providers: Seisware, Hampson-Russell, GeoScout, ProMAX, Vista

CREWES Sponsors

• NSERC grant CRDPJ 461179-13

