Processing ground roll for the study of near-surface Rayleigh wave dispersion

Andrew Mills and Kris Innanen

December 1, 2016

Outline

- Motivations
- Objectives
- Theory
 - Surface wave background
 - Near surface characterization
 - Synthetic modelling
 - Dispersion / Dispersion curves
- Experiment Data Comparison
- Method 1
- Method 2
- Conclusions

Motivations

- The near surface is an unconsolidated, heterogeneous layer, through which seismic waves must travel at least twice
- Recorded ground roll contains information about the difficult to characterize-near-surface
- Understanding the near surface helps to improve imaging
 - Static corrections, preconditioning FWI

- Generate dispersion spectra from synthetic, exploration scale seismic surveys
- Find the cause of noise in dispersion curves
- Test interpolation as a method to reduce noise
- Test other filtering to reduce noise

Find the most effective method of reducing dispersion spectrum noise, generated from sparsely sampled shot records

Surface Waves

- Surface waves arise from the presence of a free surface (air-rock boundary).
- Travel along this surface, confined within the near surface layers.
- Cylindrical propagation character
 - Less geometric attenuation
- Smaller distances travelled relative to body waves
- Attenuate rapidly with depth, less rapidly in propagation direction
- <u>Dispersive</u>
 - Different frequency components travel at different velocities

Surface Waves

Rayleigh Waves

- Incident compressional wave partitions into
 - Reflected and transmitted P and SV waves
- Coupled P-SV retrograde elliptical particle motion
- > $\frac{2}{3}$ of compressional source energy takes Rayleigh wave form
- Are ground roll in seismic recordings
 - Usually filtered out and discarded

Multichannel Analysis of Surface Waves (MASW)

- Uses a spread of low frequency receivers
- Swept frequency or explosive source (many frequencies simultaneously)
- Two off-end shots Detects lateral heterogeneity
- Similar to reflection seismic surveys

Forward Modelling Methods

- Vp, Vs, and ρ models built in Matlab
 - 5000m wide, 2500m deep
 - Near surface layers within top 100m
 - 2 reflectors at 510m and 1510m depth

REWES

Models input to SOFI2D

- 2D finite difference elastic wavefield modelling
- Receivers from 100m to 4900m, at 5m depth 20m and 10m spacing
- Explosive point source at x=2500m, z=5m
- Free surface at z=0

Dispersion / Dispersion Spectra

www.crewes.org

FACULTY OF SCIENCE Department of Geoscience

Geologic Model

20m Receiver Spacing

20m Dispersion Spectrum

10m Receiver Spacing

10m Dispersion Spectrum

www.crewes.org

Method 1 – Filtering Followed by Interpolation

Filtering followed by interpolation

Method 1 – Filtering

FK Filtered and Muted Refractions

Method 1 – Filtered Dispersion

Method 1 – Final Interpolation

Method 1 – Tau-p Data

Method 1 – Final Interpolation Dispersion

Method 2 – Interpolation Followed by Filtering

Interpolation Followed by Filtering

www.crewes.org

Method 2 – Interpolation

Method 2 – Tau-p Data

Method 2 – Interpolation Dispersion

www.crewes.org

Method 2 – FK Filtered Interpolation

Method 2 – Final Interpolation and Filtered Dispersion

UNIVERSITY OF CALGARY FACULTY OF SCIENCE Department of Geoscience

Method Comparison

CREWES

Conclusions

- Interpolation of sparsely sampled data resulted in significant improvement of dispersion spectra
- Filtering before interpolation results in an obscured dispersion curve at higher frequencies, loss of very low frequencies
 - Removal of aliased data; contains information in those frequencies.
- Following interpolation with FK filtering effective
 - Equivalent to, or better than original closer receiver spacing data

<u>Potential to conduct dispersion studies using data with non-ideal</u> <u>sampling</u> Existing seismic data libraries Cheaper acquisition design

www.crewes.org

Acknowledgements

- CREWES Industrial Sponsors
- NSERC CRDPJ Grant 461179-13
- CREWES Staff and Students

www.crewes.org

Questions

Appendix

www.crewes.org

UNIVERSITY OF CALGARY FACULTY OF SCIENCE Department of Geoscience

Interpolation

2D Trace Interpolation

- Requires NMO corrections (sub-horizontal events) and de-noising before interpolation
 - LNMO correction applied using average ground roll velocity**
- Traces are added by deconvolution of the original data operator built from original traces in the FK domain.
 - Iterated 10 times
- LNMO correction reversed using **

