Azimuthal anisotropy in elastic and equivalent media

Sitamai Ajiduah*, Gary Margrave and Patrick Daley

www.crewes.org

Outline

- Theory
 - Schoenberg and Muir Equivalent model
 - Shear-wave birefringence
- Workflow
- Results
 - Ruger modeling
 - Numerical dataset modeling of elastic and equivalent media
 - AVAZ analysis
 - TVAZ analysis
- Conclusions

UNIVERSITY OF CALGARY

FACULTY OF SCIENCE Department of Geoscience

Schoenberg and Muir Theory

Criteria: (i). Backus averaging criteria

(ii). Linear slip conditions or imperfectly bounded interface.

CREWES

$$\overline{C}_{TN} = \langle C_{TN} C_{NN}^{-1} \rangle \overline{C}_{NN}$$

$$\overline{C}_{TT} = \langle C_{TT} \rangle - \langle C_{TN} C_{NN}^{-1} C_{NT} \rangle + \overline{C}_{TN} \langle \overline{C}_{NN}^{-1} C_{NT} \rangle$$

$$\{V_{ph}, V_{sh}, \rho_h, V_{pf}, V_{sf}, \rho_f\}$$

$$\{V_{p0}, V_{s0}, \rho^e, \epsilon^e, \gamma^e, \varphi\}$$

www.crewes.org

UNIVERSITY OF CALGARY

- Shear-wave splits into fast S1 and slow S2 modes
- Shear wave splitting effects: Sinusoidal event seen on radial dataset; Mode separation and polarity reversal seen on transverse component.

www.crewes.org

RSITY OF CALGARY

Department of Geoscience

Theory. Workflow

Theory. Workflow: Seismic Acquisition

	Heterogeneous elastic model	Homogeneous equivalent model
Layer1	Vp = 3500, Vs = 2140 , $ ho = 2200$	same
HTI Layer	$Vp_1 = 4700,$ $Vs_2 = 3980,$ $\rho_1 = 2500$ $Vp_2 = 4210,$ $Vs_2 = 2430,$ $\rho_2 = 2300$	$Vp_0 = 4438,$ $Vs_0 = 2746,$ $\rho^e = 2401,$ $\epsilon^e = .0034,$ $\gamma^e = .0607,$ $\delta^e =0545$
Layer3	Vp = 5000, Vs = 3300, ho = 2900	same

Acquisition

- 3D-3C acquisition WAZ
- Orthogonal design
- Finite difference

• Explosive P source.

- 40m source & receiver depth
- Source frequency is 15hz

Theory. Constant azimuth radial scans and constant offset azimuthal scans

Theory. Method. Result: Analytical results from Ruger approx. -TOP OF HTI

Theory. Method. Identifying typical PP, PPpp, PS and PPps

www.crewes.org

Theory. Method. Example: Vertical dataset

Elastic modeling

UNIVERSITY OF CALGARY

FACULTY OF SCIENCE Department of Geoscience

Theory. Method. Example: Vertical component dataset

Equivalent modeling

FACULTY OF SCIENCE Department of Geoscience

Theory. Method. Example: Radial component dataset

Elastic modeling

FACULTY OF SCIENCE Department of Geoscience

CREWES

Theory. Method. Example: Radial component dataset

Equivalent modeling

CREWES

www.crewes.org

Theory. Method. Example: Transverse component dataset

Elastic modeling

Theory. Method. Example: Transverse component dataset

Equivalent modeling

Theory. Method. Example: Constant-azimuth Radial Scans

www.crewes.org

Theory. Method. Example: Constant-azimuth Radial Scans

www.crewes.org

Theory. Method. Example: Constant-azimuth Radial Scans

www.crewes.org

Theory. Method. Example: Constant-offset azimuthal scans

Theory. Method. Example : Constant-offset azimuthal scans

Method. Example : Constant-offset azimuthal scans

Theory. Method. Example: Offset-Azimuth analysis: Top of HTI

Theory. Method. Example: Offset-Azimuth analysis: Top of HTI

Theory. Method. Example: Offset-Azimuth analysis: Top of HTI

Theory. Method. Example: AVAZ analysis, top of HTI

r=.4 - r=1 - r=1.6

www.crewes.org

Theory. Method. Example: AVAZ analysis elliptical fitting , top of HTI

r=.4 - r=1 - r=1.6

www.crewes.org

Theory. Method. Example: AVAZ analysis elliptical fitting, top of HTI

r=.4 - r=1 - r=1.6

www.crewes.org

Theory. Method. Example: interval TVAZ analysis, top-base of HTI

r=.4 - r=1 - r=1.6

www.crewes.org

Theory. Method. Example: interval TVAZ analysis, top-base of HTI

- r=.4 - r=1 - r=1.6

CREWES

www.crewes.org

UNIVERSITY OF CALGARY

Theory. Method. Example. Conclusion

- We have demonstrated and compared numerical datasets from elastic and equivalent models.
- We also carried out PP- and PS- AVO, AVAZ and interval TVAZ analysis from elastic and equivalent modeling and compared the P-wave modeling results P-wave results with Ruger modeling.
- We see that the moveout signature and arrival times of the primary PP and PS- events are the same for both models, however the equivalent modeling produce other stronger multimodes.
- We can infer that the quality of P-wave AVO/AVAZ analysis from the analytical Ruger modeling is closer to the elastic modeling than to the finite-difference equivalent modeling.
- Also, the quality of the PS converted AVAZ result for both models was very good. However, the quality of the P-wave modeling is noisier in the equivalent model

www.crewes.org

Theory. Method. Example. Conclusion

- We have also seen that the finite difference elastic modeling generates less noisier multiples and multimodes than the equivalent modeling.
- We can agree that heterogeneous medium produce attenuated multiples and multimodes events because of irregular scattering and layer filtering effect.
- We can conclude that in some circumstances modeling using heterogeneous elastic models might be of higher processing and imaging value than with equivalent media.
- Detailed analysis of the distorted long offset P-wave primary reflections will be objects of further study.

- NSERC: grant CRDPJ 379744-08
- CREWES sponsors
- CREWES staff and students

Thank you

Theory-Schoenberg and Muir (1989)

Stress-strain relation of individual layers of a layered medium

Carcione (2012) paper on Numerical test on the Schoenberg and Muir theory

 σ_{Ti} and e_T are the in-plane or tangential stress and strain

 σ_N and e_{Ni} are the cross-plane or normal stress and strain

C_{TTi}, C_{NNi}, C_{TNi} and C_{NTi}, are 3 x 3 stiffness submatrices denoting stiffness of individual layer

The long-wavelength equivalent homogeneous medium have average = stiffness

$$\overline{C_{TT}} \qquad \overline{C_{TN}} \\ \overline{C_{TN}}^{\dagger} \qquad \overline{C_{NN}}$$

Theory-Schoenberg and Muir (1989)

Stress-strain relation of **individual layers** of a layered medium

The long-wavelength equivalent homogeneous medium have average stiffness

The new stress strain relation for homogeneous equivalent medium

$$\overline{C}_{NN} = \langle \overline{C}_{NN}^{-1} \rangle^{-1}, \overline{C}_{TN} = \langle C_{TN} C_{NN}^{-1} \rangle \overline{C}_{NN}, \overline{C}_{TT} = \langle C_{TT} \rangle - \langle C_{TN} C_{NN}^{-1} C_{NT} \rangle + \overline{C}_{TN} \langle \overline{C}_{NN}^{-1} C_{NT} \rangle,$$

$$= \frac{\overline{C_{TT}}}{\overline{C_{TN}}} + \frac{\overline{C_{TN}}}{\overline{C_{NN}}}$$

$$= \begin{array}{c} \langle \sigma_T \rangle = \overline{C_{TT}} e_T + \overline{C_{TN}} \langle e_N \rangle \\ \sigma_N = \overline{C_{TN}}^{\dagger} e_T + \overline{C_{NN}} \langle e_N \rangle \end{array}$$

where
$$\langle C \rangle = \sum_{i=1}^{N} H_i C_i$$

UNIVERSITY OF CALGARY FACULTY OF SCIENCE Department of Geoscience

Carcione (2012)

Numerical test on

the Schoenberg

and Muir theory

paper on

Theory-Schoenberg and Muir (1989)

 $C_{33}^{e} = \langle \frac{1}{C_{33}} \rangle^{-1},$ $C_{44}^{e} = C_{55}^{e} = \langle \frac{1}{c_{44}} \rangle^{-1},$ $C_{13}^{e} = C_{23}^{e} = \langle \frac{C_{12}}{C_{33}} \rangle \langle \frac{1}{C_{33}} \rangle^{-1},$ $C_{66}^{e} = C_{66},$ $C_{11}^{e} = C_{22}^{e} = \langle C_{11} \rangle + \langle \frac{C_{12}}{C_{33}} \rangle^{2} \langle \frac{1}{C_{33}} \rangle^{-1} - \langle \frac{C_{12}^{2}}{C_{33}} \rangle$ $C_{12}^{e} = \langle C_{12} \rangle + \langle \frac{C_{12}}{C_{33}} \rangle^{2} \langle \frac{1}{C_{33}} \rangle^{-1} - \langle \frac{C_{12}^{2}}{C_{33}} \rangle = C_{11}^{e} - 2C_{66}^{e}.$

Thomsen-style anisotropic parameter estimation for finitedifference modeling $V_{p0} = \sqrt{C_{33}/\rho},$ $V_{s0} = \sqrt{C_{55}/\rho},$ $\varepsilon^{\nu} = (C_{33} - C_{11})/2C_{11},$ $\gamma^{\nu} = (C_{44} - C_{55})/C_{55},$ $\delta^{\nu} = ((C_{13} + C_{55})^2 - (C_{33} - C_{55})^2)/2C_{55},$ $Vs_{slow} = V_{so} = \sqrt{C_{55}/\rho},$ $Vs_{fast} = \sqrt{C_{44}/\rho} \approx V_{so}(1 + \gamma^{\nu})$

Average stiffness and fracture parameter estimation

Elasticity matrix of HTI from rotated VTI

VTI stiffness matrix									
	0	0	0	0	0	CGG			
	0	0	0	0	C55	0			
	0	0	0	C55	0	0			
	<i>C</i> ₁₃	C13	C33	0	0	0			
	<i>C</i> ₁₂	<i>C</i> ₁₁	<i>C</i> ₁₃	0	0	0			
/	<i>C</i> ₁₁	<i>C</i> ₁₂	<i>C</i> 13	0	0	0			

 $\rightarrow \begin{pmatrix} c_{33} & c_{13} & c_{13} & 0 & 0 & 0 \\ c_{13} & c_{11} & c_{12} & 0 & 0 & 0 \\ c_{13} & c_{12} & c_{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & c_{66} & 0 & 0 \\ 0 & 0 & 0 & 0 & c_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & c_{55} \end{pmatrix}$ HTI matrix from VTI rotation

nent of Geoscience

