

Containment & Monitoring Institute

The seismic interpretability of a 4D data, a case study: The FRS project

Davood Nowroozi

Don Lawton

Hassan Khaniani

Outline

- Introduction
- Reservoir simulation
- Rock physics and fluid substitution
- Velocity perturbation models
 - Solid
 - Diffusive
- Full waveform analysis and imaging (acoustic)
- Saturation and plume size influences in the seismic response
- Conclusions and acknowledgments

The research workflow

The geometry of the formations

Porosity geomodel

UNIVERSITY OF CALGARY FACULTY OF SCIENCE Department of Geoscience

CO₂ phase diagram

FACULTY OF SCIENCE Department of Geoscience

♦ CMC

Containment &

Monitoring Institute

NSERC CRSNG

The fluid simulation result

UNIVERSITY OF CALGARY FACULTY OF SCIENCE Department of Geoscience

Fluid substitution, CO₂ effect on the velocity

Fluid substitution effect

Lab test result for the CO_2 injection into the Sandstone (B.Alemo et al., 2011)

CMC

Monitorina Institu

NSERC

CRSNG

UNIVERSITY OF CALGARY FACULTY OF SCIENCE Department of Geoscience

Vp, density and Vs in the reservoir during injection

3

The velocity and density models

Layers geometry is based on seismic interpretation result The velocity and density are from CMC main well log data Model has 1*1m cell size and geomodel made in Petrel

The velocity perturbation due to the reservoir

The seismic response of the reservoir

UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

Department of Geoscience

VSP models

Baseline

Difference

200

400

600

800

FACULTY OF SCIENCE

Department of Geoscience

UNIVERSITY OF CALGARY

Seismic response for solid and diffusive velocity

Saturation and velocity change effect

The plume size effect

3-layer model with diffusive velocity

100*10 m – 3%

♦ CMC

Containment &

Monitoring Institut

E,

NSERC CRSNG UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

Department of Geoscience

3-layer model with diffusive velocity

200*20 m – 7%

UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

Department of Geoscience

Narrow vs wide offset VSP models

UNIVERSITY OF CALGARY FACULTY OF SCIENCE Department of Geoscience

Conclusions

- The time-lapse seismic response of diffusive zone shows small changes in the amplitude compared to similar solid block changes.
- Because of velocity decrease in the reservoir , a time delay effect was detected in reflectors below the reservoir, so we should consider the changes in travel time of transmitted waveforms as an alternative framework for a full waveform study.
- Surface seismic acquisition is a suitable method for the shape estimation of the plume, but well seismic data has better amplitude and frequency content, so VSP are most useful for the small changes of fluid saturation.
- The Migrated data has a better amplitude condition , so interpretation is possible with the full migrated data.

- Industrial sponsors who support CREWES
- CMC Research Institutes, Inc.
- NSERC Grant
- CREWES team and students
- Helen Isaac for the seismic data processing

Full Waveform Inversion and plume model

- The basic equations used in this study is the acoustic velocity-stress wave equation approach.
- Wave equation are solved by Finite Difference Time Domain in an explicit scheme. 2nd order in time and 4th order in space, staggered grid in a leap frog scheme

Reservoir Geophysics

Plume Shape ~ f(k,φ,Injection rate)

Velocity and density change V ~ f(Km,Kf1,Kf2,Kd, φ,k) Density ~ f(ρm,ρf1,ρf2,φ)

Department of Geoscience

Monitoring Institute

GARY

iARY

ce

2D Acoustic approximation of wave propagation

Migration and inversion framework

 T_{max} ' is maximum recorded time,

 $S(t, \vec{x})$ is forward propagated source and

NSERC ÇRSNĞ ned by imaging conditions.

🔶 CMC

The base seismic and difference after injection (XW)

Model set up and seismic response

UNIVERSITY OF CALGARY FACULTY OF SCIENCE Department of Geoscience

Cross correlation: The simplest RTM imaging condition

$$I(\mathbf{x}) = \frac{1}{A(\mathbf{x})} \int S(\mathbf{x}, t) R(\mathbf{x}, T - t) dt \quad \mathbf{x} = (x, y, z)$$

- After time reversal of the receiver wavefield, the artifacts of the rtm occur where the two wavefields are traveling in the same direction
- Note the accumulating low wavenumber noise through time

Cumulative image to time t

www.crewes.org

www.crewes.org

UNIVERSITY OF CALGARY FACULTY OF SCIENCE Department of Geoscience

www.crewes.org

FACULTY OF SCIENCE Department of Geoscience