Sequential Gaussian Simulation —using multi-variable cokriging

Hong (Kiki) Xu, Jian Sun, Brian Russell, Kris Innanen

Outline

Motivation

Methodology

Case study --- Blackfoot data

➤Conclusion

Acknowledgements

Motivation

- A limitation of the deterministic method is the result generated has difficulty capturing the natural heterogeneity of reservoirs due to the smoothing effect.
- The sequential simulation technique provides a series of equal valid and possible realizations that reflect the distribution of reservoir properties.
- One of the key steps to generate a realization is to build the probability density distribution based on the conditional mean and covariance at each unsampled location.
- Heiskanen and Moritz (1967) and Dermanis (1984) showed that least square prediction is equivalent to a simple geostatistical system.
- Tarantola (2005) demonstrated that the least square problem can also be described as the posterior Gaussian probability density distribution.

> Hansen et al. (2006) expanded Tarantola's work to use two types datasets.

Methodology

$$P(m|a,b) = const. \exp\left[-\frac{1}{2}(\boldsymbol{m} - \boldsymbol{\mu}_{\boldsymbol{m}|\boldsymbol{a},\boldsymbol{b}})^T \sum_{m|a,b}^{-1} (\boldsymbol{m} - \boldsymbol{\mu}_{\boldsymbol{m}|\boldsymbol{a},\boldsymbol{b}})\right]$$

where the conditional mean as

$$\mu_{m|a,b} = \mu_m + (GC_m)^T (GC_mC^T + C_d)^{-1} (d - \mu_d)$$

where the conditional covariance matrix

$$\sum_{m|d} = C_m - C_m C^T (GC_m C^T + C_d)^{-1} (d - \mu_d)$$

$$\boldsymbol{d} = \begin{bmatrix} \boldsymbol{a} \\ \boldsymbol{b} \end{bmatrix}, \boldsymbol{C}_{d} = \begin{bmatrix} \boldsymbol{C}_{aa} & \boldsymbol{C}_{ab} \\ \boldsymbol{C}_{ab} & \boldsymbol{C}_{bb} \end{bmatrix}, \boldsymbol{\mu}_{d} = \begin{bmatrix} \boldsymbol{\mu}_{a} \\ \boldsymbol{\mu}_{b} \end{bmatrix},$$

 μ_m and C_m are the mean and covariance of target object.

$$\succ \text{For multiple types of datasets} \quad \boldsymbol{d} = \begin{bmatrix} d_1 \\ \vdots \\ d_n \end{bmatrix}, \quad \boldsymbol{C}_d = \begin{bmatrix} \boldsymbol{C}_{d_1 d_2} & \cdots & \boldsymbol{C}_{d_1 d_n} \\ \vdots & \ddots & \vdots \\ \boldsymbol{C}_{d_1 d_n} & \cdots & \boldsymbol{C}_{d_n d_n} \end{bmatrix}, \quad \boldsymbol{\mu}_d = \begin{bmatrix} \boldsymbol{\mu}_1 \\ \vdots \\ \boldsymbol{\mu}_n \end{bmatrix}$$

UNIVERSITY OF CALGARY

Department of Geoscience

FACL

Methodology

Rescaled Ordinary CoKriging (ROCK)

> We can extend rescaled ordinary cokriging from one to two secondary datasets :

$$\hat{u}_0 = \sum_{i=1}^n a_i u_i + \sum_{j=1}^m b_j (v_j - m_v + m_u) + \sum_{k=1}^p c_k (x_k - m_k + m_u)$$

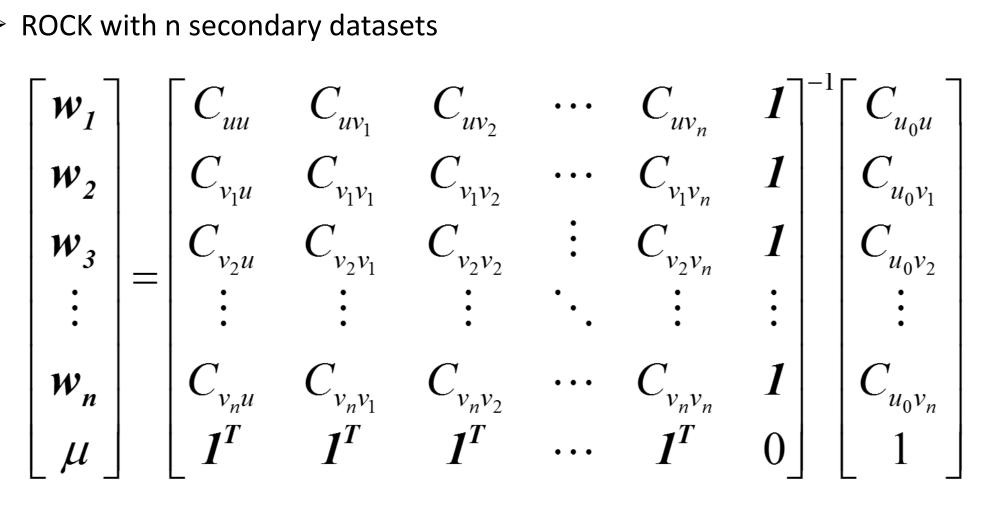
> The weights are computed using the matrix equation:

$$\begin{bmatrix} a \\ b \\ c \\ \mu \end{bmatrix} = \begin{bmatrix} C_{uu} & C_{uv} & C_{ux} & 1 \\ C_{vu} & C_{vv} & C_{vx} & 1 \\ C_{xu} & C_{xv} & C_{xx} & 1 \\ 1^T & 1^T & 1^T & 0 \end{bmatrix}^{-1} \begin{bmatrix} C_{u_0u} \\ C_{u_0v} \\ C_{u_0v} \\ 1 \end{bmatrix}$$

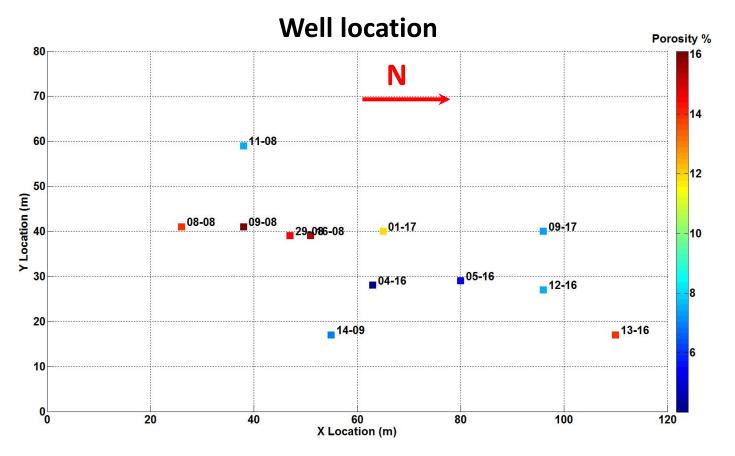
$$\begin{split} &C_{ux} = \text{well to } 2^{\text{nd}} \text{ seismic covariance,} \\ &C_{vx} = 1^{\text{st}} \text{ seismic to } 2^{\text{nd}} \text{ seismic covariance,} \\ &C_{xx} = 2^{\text{nd}} \text{ seismic to } 2^{\text{nd}} \text{ seismic covariance,} \\ &C_{u_0x} = \text{unknown well to } 2^{\text{nd}} \text{ seismic covariance.} \end{split}$$

Methodology

ROCK with n secondary datasets



Case study --- Blackfoot

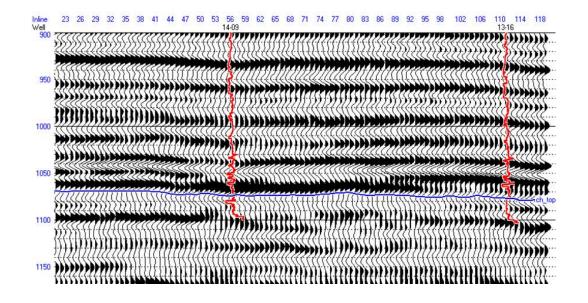


➤12 wells are located in the seismic survey area

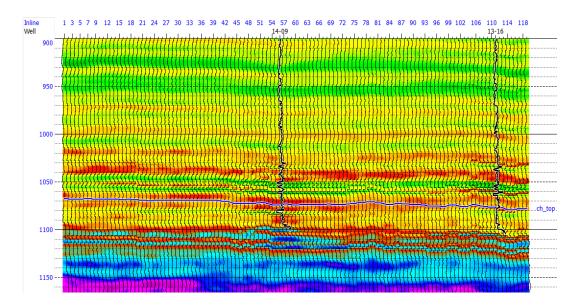
> The color indicates the average porosity value of each well in the target zone

Case study

crossline 18 from the seismic volume

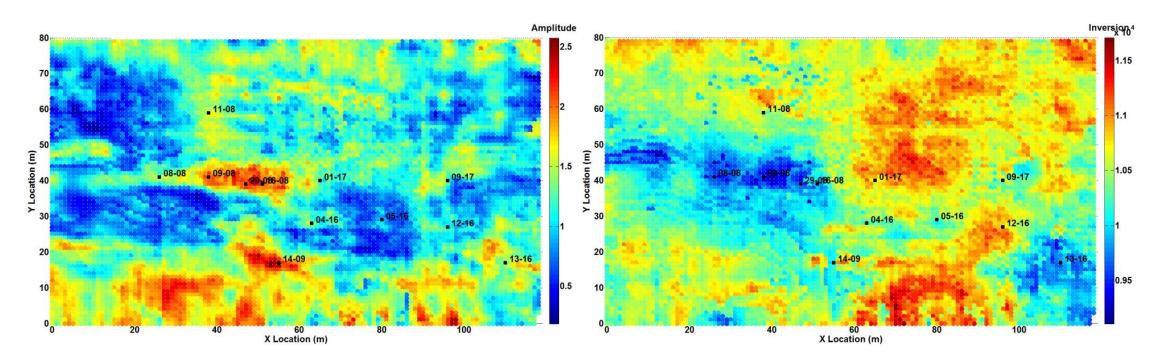


crossline 18 from the inverted volume



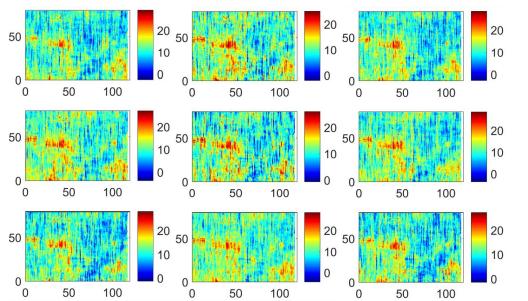
Case study

Amplitude of near-angle stack

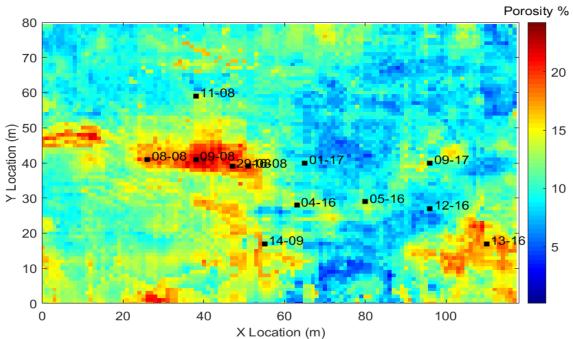


Result

9 realizations (SGS-extended ROCK)



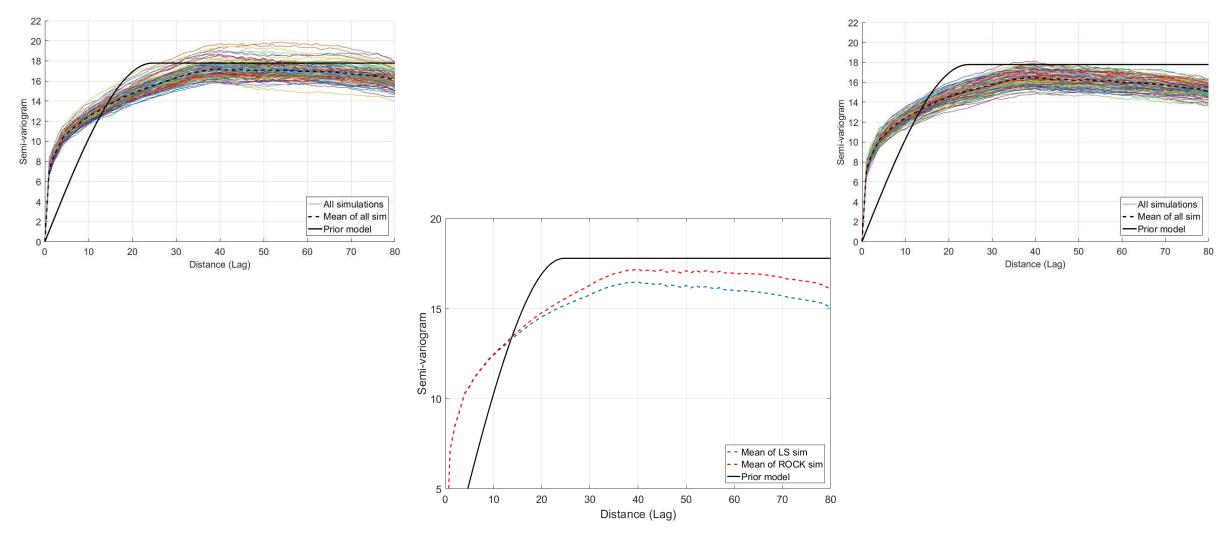
Porosity mean value map of all 100 realizations



Comparison

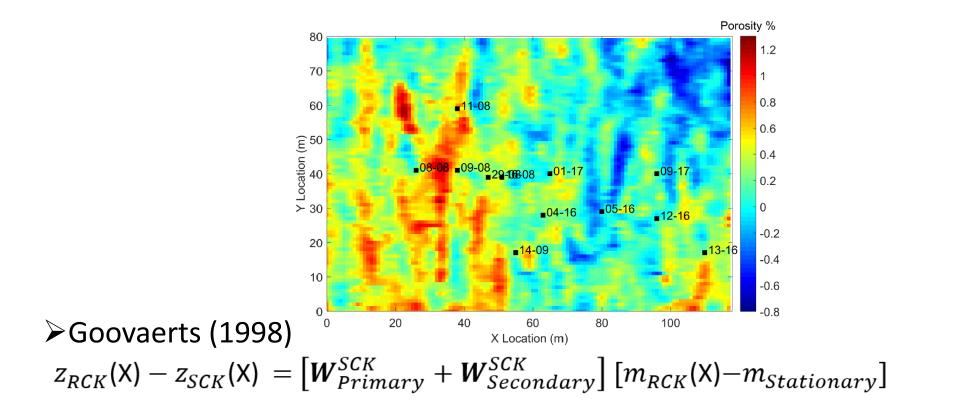
Semi-variograms (SGS-extended ROCK)

Semi-variograms (SGS-LS)



Comparison

➤The difference of mean maps from 100 realizations between SGS-ROCK and SGS-LS



The difference between extended ROCK and Least Square (SCK) $z_{ROCK}(X) - z_{SCK}(X) = \left[W_{Primary}^{SCK} + W_{Secondary1}^{SCK} + W_{Secondary2}^{SCK}\right] [m_{ROCK}(X) - m_{Stationary}]$

Department of Geoscience

Conclusion

➢We presented an approach to implement the sequential Gaussian simulation(SGS) by extended Rescaled Ordinary CoKriging, which allows more than one secondary variable to participate in the process.

➢The comparison of semi-variograms demonstrates that the realizations created by SGS-extended ROCK honor better to the prior information.

➤The difference of mean maps shows that the SGS-Least Square is limited due to the global mean.

▶ If local mean is higher than global mean, values are underestimated with SGS-LS.

➢ If local mean is lower than global mean, values are overestimated with SGS-LS

Acknowledgements

- ➢ Dr. Russell and Dr. Innanen
- ≻Jian Sun
- Nic Martini, Arthur Lee, and co-workers in Hampson Russell Software division CGG
- ➢All CREWES staff and students
- ► All CREWES sponsors

Thank You!

