IMMI: the role of well calibration in the context of high geological complexity

Sergio Romahn Kris Innanen

Dic-2017

www.crewes.org

Outline

- Introduction
 - IMMI
 - Objective
- FWI process
- Well calibration
- Conclusions
- Future work

www.crewes.org

• IMMI was introduced by Margrave, Innanen, & Yedlin in 2012 (chapter 70, CREWES report).

IMMI

- IMMI stands for iterative, modelling, migration and inversion, which can be seen as the cycle of FWI.
- IMMI proposes the incorporation of standard processing techniques into the process of FWI.
- Examples of IMMI's approach are the use of any migration method to obtain the gradient and the use of well velocity to calibrate it.

Objective

To evaluate the role of well calibration in the context of increasingly complex geology

www.crewes.org

FWI process

www.crewes.org

Observed shots

Inversion process

UNIVERSITY OF CALGARY

FACULTY OF SCIENCE Department of Geoscience

www.crewes.org

1st step: Modelled shots

Inversion process

UNIVERSITY OF CALGARY

FACULTY OF SCIENCE Department of Geoscience

www.crewes.org

1st step: Modelled shots

Inversion process

UNIVERSITY OF CALGARY

FACULTY OF SCIENCE Department of Geoscience

www.crewes.org

1st step: Modelled shots

www.crewes.org

2nd step: Migrate and stack data residuals

www.crewes.org

Inversion process

CREWES

2nd step: Migrate and stack data residuals

Inversion process

REWES

UNIVERSITY OF CALGARY FACULTY OF SCIENCE Department of Geoscience

www.crewes.org

IMMI's approach

Well calibration

vs Line search method or an approximation of the inverse Hessian matrix

www.crewes.org

Inversion process

www.crewes.org

Inversion process

www.crewes.org

Inversion process

An Amplitude scalar a so that δvel – ag is mimimized by least squares

A phase rotation φ , so that, δ vel and the calibrated gradient have a similar phase

www.crewes.org

Inversion process

www.crewes.org

Inversion process

www.crewes.org

4th step: Updated velocity model

Inversion process

CREWES

4th step: Updated velocity model

Inversion process

www.crewes.org

www.crewes.org

www.crewes.org

www.crewes.org

www.crewes.org

UNIVERSITY OF CALGARY

www.crewes.org

UNIVERSITY OF CALGARY

www.crewes.org

www.crewes.org

www.crewes.org

www.crewes.org

www.crewes.org

www.crewes.org

UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

Department of Geoscience

www.crewes.org

www.crewes.org

www.crewes.org

UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

Department of Geoscience

Spatial distribution of the error

www.crewes.org

UNIVERSITY OF CALGARY FACULTY OF SCIENCE Department of Geoscience

9000

m/s 5000

> 4000 3500

3000

2500

2000

Model 2

www.crewes.org

www.crewes.org

UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

Department of Geoscience

www.crewes.org

www.crewes.org

www.crewes.org

REWES

www.crewes.org

www.crewes.org

www.crewes.org

www.crewes.org

www.crewes.org

www.crewes.org

www.crewes.org

Spatial distribution of the error

www.crewes.org

UNIVERSITY OF CALGARY FACULTY OF SCIENCE Department of Geoscience

m/s 5000 4500

> 4000 3500

3000

2500

2000

Model 3

www.crewes.org

FACULTY OF SCIENCE Department of Geoscience

www.crewes.org

UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

Department of Geoscience

www.crewes.org

www.crewes.org

UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

Department of Geoscience

www.crewes.org

www.crewes.org

www.crewes.org

www.crewes.org

www.crewes.org

www.crewes.org

REWES

www.crewes.org

www.crewes.org

Spatial distribution of the error

www.crewes.org

UNIVERSITY OF CALGARY FACULTY OF SCIENCE Department of Geoscience

m/s 5000

> 4500 4000

> 3500

3000

2500

2000

Comparison of horizontal error

UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

Department of Geoscience

- We found a consistently low error in the well location even for the most complex model.
- Well calibration satisfactorily performs in the presence of moderate lateral velocity changes (Model 1 and 2).
- The error increases in the presence of high velocity contrasts.

www.crewes.org

What if the calibration well is in another location? Model 3

Spatial distribution of the error

Calibration well at 4000 m

www.crewes.org

What if the calibration well is in another location? Model 3

Spatial distribution of the error

Calibration well at 5800 m

www.crewes.org

UNIVERSITY OF CALGARY FACULTY OF SCIENCE Department of Geoscience

m/s 5000

> 4500 4000

> 3500 3000

2500 2000

What if the calibration well is in another location? Model 3

Spatial distribution of the error

Calibration well at 6800 m

www.crewes.org

FACULTY OF SCIENCE Department of Geoscience

m/s 5000

> 4500 4000

3500

2500 2000

Using the three wells to obtain one match filter

Spatial distribution of the error

Average match filter

www.crewes.org

UNIVERSITY OF CALGARY FACULTY OF SCIENCE Department of Geoscience

m/s 5000

> 4500 4000

> 3500 3000

2500 2000

Using the three wells to obtain one match filter

www.crewes.org

UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

Department of Geoscience

From 0 to 3000 m

www.crewes.org

From 500 to 1800 m

www.crewes.org

UNIVERSITY OF CALGARY FACULTY OF SCIENCE Department of Geoscience

m/s 5000

> 4500 4000

3500

2500 2000

From 1000 to 2300 m

www.crewes.org

UNIVERSITY OF CALGARY FACULTY OF SCIENCE Department of Geoscience

m/s 5000

> 4500 4000

3500

2500 2000

1500

www.crewes.org

www.crewes.org

UNIVERSITY OF CALGARY FACULTY OF SCIENCE Department of Geoscience

m/s 5000

> 4500 4000

3500

2500 2000

Conclusions

- The gradient, calculated with a one-way wave migration method (PSPI) with a deconvolution imaging condition, points to the right direction in order to minimize the objective function in the FWI scheme.
- A scalar, estimated with well information, calibrates the gradient and produces suitable velocity perturbations to update the model. This was confirmed by consistently low errors in the well location even for the most complex model.
- Well calibration satisfactorily performs in the presence of moderate lateral velocity changes, such as in Model 1 and 2.
- Well calibration works in strong lateral velocity contexts, providing that the well is representative of the geology of the zone of interest.
- A match filter that varies both laterally and vertically may be a worthy option if we have multiple wells available and wide vertical coverage.

Future work

- We will address the elastic case. The goal will be, following IMMI's philosophy, to incorporate the knowledge and experience in AVO analysis and inversion into the FWI process.
- We will investigate how the integration of AVO information into the process of FWI can help finding a better scalar in a multi-parameter context.

Sponsors of CREWES for their support

NSERC through the grant CRDPJ 461179-13

PEMEX and the government of Mexico for funding this research

Acknowledgements

Thank you

www.crewes.org

UNIVERSITY OF CALGARY FACULTY OF SCIENCE Department of Geoscience