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Matter wave - laser based Interferometer Gravitation Antenna (MIGA) project

• “The applications of MIGA extend from monitoring the evolution of the gravitational 
field to providing a new tool for detecting gravitational waves” (Bouyer, 2011).
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MIGA                                    ≠                                          LIGO                          
(Laser Interferometer Gravitational-wave Observatory)

http://scienceblogs.com/principles/2013/10/22/quantum-erasure/
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LSBB (Laboratoire Souterrain à Bas Bruit, Rustrel, France)
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Goal: to monitor water saturated sediments beneath the LSBB tunnel

From Senechal (2013)
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Seismic and electromagnetic waves

• Despite having different polarizations, TE mode electromagnetic 
waves can be modelled as an acoustic wave (Laurain and Lecomte, 
2001)
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𝜇 = magnetic permeability
𝜖 = dielectric permittivity

𝜂 = Electromagnetic impedance

Acoustic wave reflection coefficient TE mode reflection coefficient



Antenna Array
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Operation frequencies: 100MHz – 1.5GHz

Assuming v=10cm/ns, 𝜆/4 = 0.1m @ 250MHz 

Original Design: Max Offset 3.8m

Extended Design: 
Max Offset 6.8m



Acquisition sequence
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• The first antenna in the array sends a 
signal which is recorded by all the other 
antennas and itself

• At each antenna array position eight 
“source” gathers are recorded, each 
one of them consisting of eight 
radargrams

• The antenna array is displaced 10cm 
and each antenna is fired again.



Acquisition sequence

www.crewes.org

• The first antenna in the array sends a 
signal which is recorded by all the other 
antennas and itself

• At each antenna array position eight 
“source” gathers are recorded, each 
one of them consisting of eight 
radargrams

• The antenna array is displaced 10cm 
and each antenna is fired again.



Offsets redundancy
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• Midpoints will be sampled several 
times with the same source-receiver 
distance, but using different source-
receiver pairs.



Fold profile and offset distribution: Original setup
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Redundancy

• 64 radargrams per CMP

• 39 unique offsets, 
uniformly sampled (0.2m)



Fold profile and offset distribution: Extended setup
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Gaps

• Fold taper length 
increased

• Irregular offset 
sampling



Velocity model building
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Semblance spectrum from Senechal (2013)



CMP data and velocity analysis: original setup
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• Poor velocity resolution



CMP data and velocity analysis: extended setup
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• Improved velocity resolution



Stacked section: 3.8m setup (added random noise, S/R = 1)
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Kirchhoff time migration: 3.8m setup
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Conclusions

• Extending the separation between the two carts carrying the antennas provides 
larger offsets at the expense of an irregular offset sampling. 

• By doubling the distance between the antennas and the cart, a maximum offset 
of 7.6m is possible. This configuration would provide a regular offset sampling in 
increments of 0.4m instead of the 0.2m given by the original design.

• Depth imaging should be considered for dealing with lateral velocity changes. 
Data recorded at large offsets is essential for this type of processing.

• Collecting data over a wide range of offsets will provide enough AVO (Amplitude 
Versus Offset) information to be used in future permitivity inversion algorithms. 
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