Multiantenna GPR data acquisition design

Raul Cova^{*}, Matthew Yedlin¹, Dave Henley, Jean-Yves Dauvignac², Nicolas Fortino², Kevin Hall, Christian Pichot³ and Stéphane Gaffet³

¹Department of Electrical and Computer Engineering University of British Columbia

²Laboratoire d'Electronique, Antennes et Télécommunications (LEAT) Université Nice-Sophia Antipolis

³Low Background Noise Inter-disciplinary Underground Science and Technology LSBB Underground Research Laboratory

UNIVERSITY OF CALGARY

Department of Geoscience

www.crewes.org

Université

Sophia Antipolis

nice

- Introduction
 - MIGA Project
 - LSBB Site
- Electromagnetic vs seismic waves
- Acquisition modelling
- Conclusions
- Acknowledgements

Matter wave - laser based Interferometer Gravitation Antenna (MIGA) project

• "The applications of MIGA extend from monitoring the evolution of the gravitational field to providing a new tool for detecting gravitational waves" (Bouyer, 2011).

www.crewes.org

UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

Department of Geoscience

LSBB (Laboratoire Souterrain à Bas Bruit, Rustrel, France)

Goal: to monitor water saturated sediments beneath the LSBB tunnel

maps.google.com

From Senechal (2013)

www.crewes.org

Seismic and electromagnetic waves

 Despite having different polarizations, TE mode electromagnetic waves can be modelled as an acoustic wave (Laurain and Lecomte, 2001)

$$\nabla^2 \Phi - \frac{1}{v^2} \frac{\partial \Phi}{\partial t^2} = 0 \qquad \qquad \nabla^2 E - \mu \epsilon \frac{\partial E}{\partial t^2} = 0 \qquad \qquad \mu = \text{magnetic permeability}$$

$$\epsilon = \text{dielectric permittivity}$$

Acoustic wave reflection coefficient

 $R_{AW} = \frac{Z_2 \cos \theta_i - Z_1 \cos \theta_t}{Z_2 \cos \theta_i + Z_1 \cos \theta_t}$

TE mode reflection coefficient

$$R_{TE} = \frac{\eta_2 \cos \theta_i - \eta_1 \cos \theta_t}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_t}$$

www.crewes.org

OF CALGARY

Department of Geoscience

Antenna Array

Operation frequencies: 100MHz – 1.5GHz

Assuming v=10cm/ns, $\lambda/4 = 0.1m @ 250MHz$

Original Design: Max Offset 3.8m

www.crewes.org

UNIVERSITY OF CALGARY

FACULTY OF SCIENCE Department of Geoscience

Acquisition sequence

- The first antenna in the array sends a signal which is recorded by all the other antennas and itself
- At each antenna array position eight "source" gathers are recorded, each one of them consisting of eight radargrams
- The antenna array is displaced 10cm and each antenna is fired again.

www.crewes.org

Acquisition sequence

- The first antenna in the array sends a signal which is recorded by all the other antennas and itself
- At each antenna array position eight "source" gathers are recorded, each one of them consisting of eight radargrams
- The antenna array is displaced 10cm and each antenna is fired again.

www.crewes.org

Offsets redundancy

• Midpoints will be sampled several times with the same source-receiver distance, but using different source-receiver pairs.

www.crewes.org

Fold profile and offset distribution: Original setup

www.crewes.org

Fold profile and offset distribution: Extended setup

www.crewes.org

Velocity model building

Semblance spectrum from Senechal (2013)

www.crewes.org

CMP data and velocity analysis: original setup

• Poor velocity resolution

www.crewes.org

FACULTY OF SCIENCE Department of Geoscience

CMP data and velocity analysis: extended setup

Improved velocity resolution

www.crewes.org

Stacked section: 3.8m setup (added random noise, S/R = 1)

CREWES

www.crewes.org

Stacked section: 6.8m setup (added random noise, S/R = 1)

Kirchhoff time migration: 3.8m setup

Kirchhoff time migration: 6.8m setup

Conclusions

- Extending the separation between the two carts carrying the antennas provides larger offsets at the expense of an irregular offset sampling.
- By doubling the distance between the antennas and the cart, a maximum offset of 7.6m is possible. This configuration would provide a regular offset sampling in increments of 0.4m instead of the 0.2m given by the original design.
- Depth imaging should be considered for dealing with lateral velocity changes. Data recorded at large offsets is essential for this type of processing.
- Collecting data over a wide range of offsets will provide enough AVO (Amplitude Versus Offset) information to be used in future permitivity inversion algorithms.

www.crewes.org

Acknowledgements

- CREWES sponsors
- NSERC (Grant CRDPJ 461179-13)
- ANR (Agence Nationale de la Recherche, France)
- NORSAR
- CREWES faculty, staff and students.

