Source distance and source effort on DAS data

Kevin W. Hall, Don C. Lawton, Tom Daley¹, Barry Freifeld¹ and Paul Cook¹

¹ Lawrence Berkeley National Laboratory

Survey Layout

www.crewes.org

Acquisition (Fibre) Parameters

DAS, straight fibre	Values	Units
Channel spacing	25.0	cm
Gauge length	10.0 ו	m
Geophysics well channel range	3817-6385	chan
Geophysics well total channels	2569 0	chan
Geophysics well fibre length	642.3 i	m
Geochemistry well channel range	6963-9298	chan
Geochemistry well total channels	2336 (chan
Geochemistry well fibre length	584.0 i	m
Trench channel range	12076-9819,19297-17200	chan
Trench total channels	4356 (chan
Trench fibre length	1089.0 ו	m

File Sizes

Line	Correlated	nTraces	nSamples	nFiles	Gather FileSize	Total FileSize
					(Gb)	(Gb)
13	FALSE	20000	20000	114	1.5	170.4
15	FALSE	20000	20000	40	1.5	59.8
21	FALSE	20000	19000	222	1.4	315.3
13	TRUE	20000	1001	38	0.2	8.7
15	TRUE	20000	1001	20	0.2	4.6
21	TRUE	20000	1001	27	0.2	6.2

www.crewes.org

$SNNR = 10 \log 10 \left(\frac{\sum (signal + noise)^2}{\sum noise^2} \right)$

signal+noise = seismic amplitudes noise = trace_n - trace_{n+1}

Method: Example - 3C geophone source gather, SNNR for single traces

CREWES

www.crewes.org

UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

Department of Geoscience

SNNR vs. Distance: All data recorded on straight fibre. Vertical fold = 1

Straight Fibre in Trench and Wells, Single Sweeps

UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

Department of Geoscience

CRSNG

containment &

Monitoring Institute

May source line 15, single fold, geophysics well, 10 ms AGC

July source line 21, single fold, geophysics well, 10 ms AGC

May source line 15, single fold, trench, 500 ms AGC

July source line 21, single fold, trench, 500 ms AGC

SNNR vs. Fold: May, straight fibre in geophysics well

SNNR vs. Fold: July, straight fibre in geophysics well

www.crewes.org

SNNR vs. Fold: July, straight fibre in geophysics well, VP 21132

SNNR vs. Fold: May, straight fibre in trench

www.crewes.org

3

SNNR vs. Fold: July, straight fibre in geochemistry well

SNNR vs. Fold: July, straight fibre in trench, VP 21132

Discussion and Conclusions

SNNR

- Fast to calculate (significantly faster than Vibroseis correlation). Gives one number per trace or per gather
- May be a valuable QC tool

Maximum source distance from DAS (approx.)

- May: 150 m from vertical fibre
- May: 100 m from horizontal fibre
- July: 250 m from vertical fibre
- July: 200 m from horizontal fibre

Maximum vertical fold

• Most visible improvement seen up to 5-fold

Acknowledgements

- CMC Research Institutes Inc. for access to the FRS
- CREWES students and staff who made this field work possible
- Halliburton for providing SeisSpace software

This work was funded by CREWES industrial sponsors and NSERC (Natural Science and Engineering Research Council of Canada) through the grant CRDPJ 461179-13.

