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Introduction
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Goal: to understand the impact of multicomponent land data conditioning on the FWI output.

Strong elastic effects Surface-waves

Highly heterogeneous near-surface 
velocities and irregular topography P and S-wave Statics

Varying source and receiver spectral 
responses

Deconvolution operators

Varying source and receiver coupling 
conditions to the ground

Amplitude balancing

In general, how do we condition the data to account for the missing physics/acquisition effects 
in the FWI? 
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Multicomponent land data challenges:



FD modelling
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Hussar 2D-3C elevation change: 83.9 m
CMP distance 5 m
Air layer: Vp=310 m/s, Vs=0 m/s, ρ=1.25 Kg/m3

Grid dispersion

CFL (Courant–Friedrichs–Lewy) condition

For a 12-th order space FD algorithm n=4 and h=1.34
Algorithm is 2nd order in time
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FD Modelling: cell size 2.5m 
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Air layer

Very large lateral parameter contrasts result in distorted amplitudes 
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FD Modelling: cell size 2.5m + 5m smoothing
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Air layer
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FD Modelling: cell size 1m + 5m smoothing
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Air layer

• Numerical statics have been reduced 
• Fewer backscattered surface-wave energy is present
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Spectral Element Modelling
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SEMPACK2D (Ampuero, 2012)

• High order spatial differentiation 
scheme

• Grid boundaries coincide with major 
interfaces

• Each element is subdivided onto a 
non-regular grid of N2 nodes 
clustered near the edges of the 
elements

• Max element size: 10 m

• Minimum node distance: 0.51 m

• Maximum node distance: 3.42 m
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Spectral Elements Modelling
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• The adaptive mesh allows for more accurate vertical placement of receivers.
• No significant numerical statics are introduced.
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Finite difference modelling Spectral element modelling

Vertical component

Horizontal component
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Model used for FD
• Cell size: 1 m
• Smoothing: 5 m



Surface-waves spectral analysis
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Vs Model z component x component Disp. Spectrum

11

SE
M

 M
od

el
lin

g
FD

 M
od

el
lin

g



Computational cost

www.crewes.org

1200000

192000 225081

Number of cells/nodes

FD 1 m FD 2.5 m SEM < 10 m

1140

110 119

Cost/shot (s)

FD 1 m FD 2.5 m SEM < 10 m

10000

5000
4167

Number of time steps

FD 1 m FD 2.5 m SEM < 10 m

The spectral element modelling provided cleaner results at a cost 9.6 times cheaper (per shot) 
than our “best” FD modelling
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Hussar 2D-3C dataset
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Survey map Well log data

In wells 14-27 and 14-35

(according to data from well 12-27)

• Total length 4400 m
• Receiver spacing 10 m
• Source spacing 20 m
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Near-surface models
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P-wave first arrivals tomography 

Constant density at the near-surface
(2000 Kg/m3)

Near surface S-wave velocity model
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FD models
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Vp model Vs model

Density model

• Horizon-guided interpolation

• Horizons were created from formation tops

• Model extended from 1600 m to 2000 m using 
logs from a well at 7.8 Km from the line
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Field data corrections
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Surface-consistent amplitude scalars

Short-wavelength surface-consistent statics
Surface-consistent decon operators amplitude spectrum
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Data comparison
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Fully synthetic data “Field-like” synthetic data

Field data

• A more accurate near-surface S-wave velocity model 
is needed to properly reproduce surface-wave data

• Physics are still incomplete but the “field-like” data 
now contains some of the features observed on the 
actual multicomponent field data
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Remarks
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• When modelling data from the topography, the spectral element method provided 
“cleaner” and more accurate data than FD at a reasonable computational cost.

• A controlled dataset that resembles multicomponent land data has been produced.

• These data can be used as a benchmark not only for inversion algorithms but also for 
designing conditioning workflows and inversion strategies that account for acquisition-
related problems present on multicomponent land data.

• Ultimately, we seek to provide a robust framework for FWI than can be used for reservoir 
characterization and monitoring projects using multicomponent land data.
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Surface-waves spectral analysis
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Vs Model z component x component Disp. Spectrum

No smoothing

5m smoothing

10m smoothing
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Computational cost
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1200000

192000 225081

Number of cells/nodes

FD 1 m FD 2.5 m SEM < 10 m

1140

110 119

Cost/shot (s)

FD 1 m FD 2.5 m SEM < 10 m
0.114

0.022
0.029

Cost/time step (s)

FD 1 m FD 2.5 m SEM < 10 m

10000

5000
4167

Number of time steps

FD 1 m FD 2.5 m SEM < 10 m

The spectral element modelling provided cleaner results at a cost 9.6 times cheaper (per shot) 
than our “best” FD modelling
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