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Overview

• Least squares inversion

• LSRTM: differences between finite differences and reflector modeling

• LS Kirchhoff: the accumulation of noise because of mismatches.

• Mapping operators deficiencies into the residuals and model 

• Controlling the gradient by adaptive data and model weights

• Data and model space mappings

• Conclusions
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Least squares formulation: modeling vs migration
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Least Squares inversion

W
mLmd λ+−= 2J

L  the operator (L modeling, LH adjoint).
d  acquired data
m  model

Data residuals
in a particular 
norm choice

W weights to inforce
a particular solution

Undesired features = discrepancy between prediction and data + size of model 

dLWWLLm HH H1)( −+=

Inverse of Hessian mapping

Model size
in a particular 
norm choice

Iteratively solve…

mLWWd md=

Wd data space weights
Wm model space weights

Nx Nz

Nx Nz

m10

m10m5

Cross-talk (mi with mj)

Hessian= LHL 



Kirchhoff forward and adjoint operators

Adjoint Operator 

Forward Operator 



RTM Forward and adjoint operators

Forward time propagate source wavefield

Reverse time propagate data

cross-correlation IC in time

Adjoint Operator Forward Operator 

Born modeling 

Smooth model
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Predicted from smooth model from one shot (1 iteration)



Velocity



RTM (25 shots)



LSRTM (9 iterations)



LSRTM of data with surface multiples
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RTM with smooth model
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LSRTM from smooth model
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RTM with wrong operator
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LSRTM with wrong operator
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Kirchhoff Migration Marmousi
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LS Kirchhoff Migration Marmousi
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Traveltime tables Marmousi: multipathing and shadow zones



We assume that R contains the data produced by the missing parts of the model, and use a mapping from R to the model.

Improving data fitting
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In general we solve expressions like 2Lmd −=J

Lm
mLd

∆−=
∆−=

2

1

R
R

21 RRR +=

Lmd −=Rthrough iterative methods that use residuals

This is the part we want for inversion

This is the part we don’t want because it represents the error in our operator.

The “inverse crime” is helpful because it eliminates R2, but it does not work in real life. Two possible ways to deal with this:

a) To figure out ways to either decrease R2 (make our operator better), by full-physics operators (an-elastic, anisotropic)
b) To eliminate R2 from R, by distinguishing R2 from R, for example by using filtering techniques. 

Currently, we try to limit the effect of R2 by stopping inversion to prevent over fitting, using global measures of error. 
We need to know when to stop inversion using localized measure of error. 
This requires to detect, selectively for different parts of the data space, what we can invert and what not! 

However, R contains two components.



Model and Data Spaces
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mn

data 
space

model
space

Nullspace
(requires model
Regularization)

Cross-talk

Unpredictable data
but not damaging model

Is it possible for 
unpredictable data 
to damage model?



Model and Data Spaces
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U

VT

model singular vectors
data singular vectors

singular values 
(mapping strength)

=

Inversion: delicate balance between data-U cross-correlation and mapping. 
Adjoint: robust  balance with wrong amplitude. 
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input shot

predicted shot difference

image after 9 iterations

Many parts of the data
are not yet predicted
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with Wd

with Wm

input shot

predicted shot difference

image after 9 iterations

zeroed parts have 
increasing residuals



Kirchhoff Migration Marmousi
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LS Kirchhoff Migration Marmousi
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Conclusions
• Noise accumulates because inconsistencies between operator and physics

• In Kirchhoff algorithm inversion noise is more obvious than in RTM 

• Often this is hidden if the data fit the operator, instead of the reverse

• Noise control can be achieved by:

• designing better approximations to physics, either by design and/or optimization

• filtering mapping errors from model space and data space. 

• eliminating from residuals components we can’t predict.
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