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Generalized standard linear solid model (GSIS)
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Approximation constant-Q for GSLS model

Frequency-dependent phase velocity: v,(w) = (Re[y/p/M@)])

Quality factor: Q(w) = Re[M(w)]/Im[M (w)]
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Viscoacoustic wave equation in VTl media

General linear stress-strain relationship (Hooke’s law) reads: Oij = Cijki€ki

Acoustic Tl approximation in Hooke’s law (setting Vs = 0)

11 €11 (13 0O 0 O C11= pVPz(l + 28)
i €11 3 0 00 c1a= pVE VI T 28
Ciin, = C13 Ci3 C33 0O 0 O 2
Ejke 0O O O 0 0 O 33 = pVp
0 0 0 0 0 O Can =0
0 0 0 0 0 0 Coe = 0

Hooke’s law simplified and reduced to two independent equations linking stresses and
strains
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(Alkhalifah. 1998, and Duveneck et al. 2011)
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Viscoacoustic wave equation in VTl media

For one relaxation mechanism (L = 1), the split-field PML formulation in VTI
media can be written as

u: Particle velocity
Oty = EaxO-H — d(x)uy 0:Stress component

Oru, = ;azgv — d(2)u, : Memory variable

(14 2¢)

(29) o (s + an?)] - | + ¥ T 25 o e + d(x)u;n)]]

o

O0roy = pVp
—(d(x) + d(2))oy — d(x)d(2)a”
d,0y = pVZ [\/1 26 |0, (ue + V)| + C—S> |0, (u, + d(ou)| - rV]

~(d(x) + d(@))oy — d(x)d(z)a,”
Split-field PML formulation in TTI media:

ax/ ax
Spatial derivative in a rotated coordinate systen@,’ |=R | 9y 0, = cos 8 cos 90, —sin6d,
0, d, 0, =cos¢@sinf d, + cosb 9,
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2D wavefield snapshots in a viscoacoustic VTI medium
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2D wavefield snapshots in a viscoacoustic VTI medium
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2D wavefield snapshots in a viscoacoustic VTI medium
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2D wavefield snapshots in a viscoacoustic TTI medium
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Viscoacoustic RTM (theory and method)

e Source normalized cross-correlation imaging
condition is more suitable. Only backward = v
receiver wavefield is needed to compensate.

e Postulate: the wavelets of forward and
backward wavefields will match well at the
reflection point; better-resolved images, with no
regularization in the forward wavefield.

The backward receiver wavefield
gR(X, Z, t) = R(x’ Z, t)e_“Xdowne_“Xup

[ e=®XdownS(x, z, t)eT *ur g =X downe~*Xur R(x, z, t)dt

[(x,2z) =
. . ) —2aX 2
Source normalized cross-correlation fe A%down§4(x, z,t)

imaging condition: — J R(x,z, t)dt
S(x,z,t)

= UNIVERSITY OF CALGARY

N\
W FACULTY OF SCIENCE
Department of Geoscience




Viscoacoustic RTM (Construct a regularized equation)

* In seismic wave simulation, high-frequencies lead to instability.

* To avoid high-frequency effects in RTM, regularization must be considered.

* We add a regularization term epVp, ,0, Uy , eaularization
egularization term

(1+ 2¢) [C—S> |0, (ux + d@uV)| - | + VI 25 2 ﬂé - d(x)u§1>)]]

@m lgt'(ux i d(z)uil)@ (d(x) + d(2))oy — d(x)d(2)o5”

3,0y = pV2 [\/1 26 |0, (uy + d@ul )| + C—E) |0, (u, + d(0u”)| - rV]

‘| [EPVP lat (uz + d(X)Ugl))” (d(x) + d(Z))o‘V — d(x)d(z)o"gl)
B Regularization term

Oroy = pV§
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Viscoacoustic RTM with regularization term

Viscoacoustic RTM

1
200

1
400

1
600

Q-RTM with filtering

] 1 |
800 1000 1200

Distance (m)

1
1400

|
1600

1
1800

Viscoacoustic RTM

200

400

600

~— B800F

"5_ 1000 F

(O]

O 1200}
1400
1600

1800 |

1 1 | 1 | | 1 | 1
0 200 400 600 800 1000 1200 1400 1600 1800

Distance (m)

Q-RTM with regularization term

'l..}' UNIVERSITY OF CALGARY

W FACULTY OF SCIENCE
Department of Geoscience




Numerical example

Velocity model

e Velocity model: a salt dome
and dipping anisotropic
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e Rapid variation of the tilt )

angle around the salt
presents challenges to TTI
RTM (Duveneck et al. 2011, 4000
Zhang et al. 2011)
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Numerical example
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Numerical example

Variation of the tilt angle around the salt flank causes instability in the simulatec
wavefield. 0

500

1000
€ 1500
= 2000
S 2500
2 3000

3500

4000

0 1000 2000 3000 4000 5000 6000 7000
Distance (m)

NSERC UNIVERSITY OF CALGARY
CRSNG FACULTY OF SCIENCE

Department of Geoscience




Numerical example

 Regions of large gradients excite these instabilities.
* We first identify high gradient points with a threshold
 Then equate € = ¢ in a region around the selected high gradient points.
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Numerical example

Stable snapshot after parameter equating is employed
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Numerical example

500 S S e : S 500 SRR -
1000} . 1000}
= 1500¢ 1500
S
g ———— 000 |
c = =
a 2500
- 2500
O 3500f 3000F
3500 == 300 S—————
4000 F 4000
1000 2000 3000 4000 5000 6000 7000 1000 2000 3000 4000 5000 6000 7000
Distance (m) Distance (m)

'l..}' UNIVERSITY OF CALGARY

W FACULTY OF SCIENCE
Department of Geoscience




Conclusions and future work

Time-domain approximate constant-Q / SLS wave propagation is investigated. One SLS element is
sufficient.

e Viscoacoustic VTl and TTI wave equation are solved numerically; a regularization operator is introduced
to eliminate high-frequency instability problem:s.

 Astable TTI RTM is achieved by suppressing anisotropy in areas of rapid changes in the symmetry axes.

 TTIRTM has the ability to produce a more highly resolved, accurate image than VTI RTM, especially in
the areas with strong variations of dip angle along the tilted symmetry-axis.

e Application of anisotropic equations to 3D RTM, field data; reducing computation time remains a
challenge
e Applicable to time-domain viscoacoustic FWI
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