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‘1',7 Introduction to Machine Learning

Machine learning Is a field of computer science that
glves computer systems the ability to "learn” (i.e.
progressively improve performance on a specific

task) with data, without being explicitly programmed.
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Introduction to Machine Learning

ARTIFICIAL INTELLIGENCE

Programs with the ability to
learn and reason like humans

MACHINE LEARNING
Algorithms with the ability to learn
without being explicitly programmed
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https://www.argility.com/argility-ecosystem-solutions/industry-4-0/machine-learning-deep-learning/
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Group and interpret
data based Dnly
on input data
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Develop predictive
model based on both
input and output data
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https://www.mathworks.com/help/stats/machine-learning-in-matlab.html
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 Supervised Learning

* Regression
* Linear model, nonlinear model, regularization,
stepwise regression, boosted and bagged
regression trees, neural networks, and adaptive
neuro-fuzzy learning
« Classification
» Support vector machine (SVM), boosted and
bagged decision trees, k-nearest neighbor, Naive
Bayes, discriminant analysis, logistic regression,
and neural networks
* Unsupervised Learning
* Clustering
» k-means and k-medoids, hierarchical clustering,
Gaussian mixture models, hidden Markov
models, self-organizing maps, fuzzy c-means
clustering, and subtractive clustering
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https://www.mathworks.com/help/stats/machine-learning-in-matlab.html
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Facies Classification with Gradient Boosting
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Facies Classification with Gradient Boosting

One of the proposed solutions of a Machine Learning Contest in
2016:

https://qgithub.com/seg/2016-ml-contest

It was a contest to classify facies using the given well logs. The
author's solution can be downloaded from:

https://bitbucket.org/polimi-ispl/



https://github.com/seg/2016-ml-contest
https://bitbucket.org/polimi-ispl/
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Provided Data
1. Gamma Ray (GR) Facies Description Label Adjacent Facies
- 1 Nonmarine Sandstone SS 2
2. Resistivity (ILD_log10) 2 Nonmarine coarse siltstone | CSiS 1,3
3. Photoelectric effect (PE) 3 Nonmarine fine siltstone FSiS 2
_ _ _ 4 Marine siltstone and shale | SiSh 5
4. Neutron-density porosity difference (DeltaPHI) 3 Mudstone NS 10
5. Average neutron-density porosity (PHIND) 6 Wackestone WS 5,7,8
6 N ine/ ine indi NM M 7 Dolomite DPhi 6.8
. Non-marine/marine indicator (NM_M) 8 Packstone-grainstone PS 6,7.9
7. Relative position (RELPOS) 9 Phylloid-algal bafflestone | BS 7.8

10 different wells
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Ys Facies Classification with Gradient Boosting
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Y3 Facies Classification with Gradient Boosting

Classification > Gradient boosting classifier (an ensemble of decision trees)
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Salt Identification with Deep Learning
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Salt Identification with Deep Learning

TGS Salt Identification Challenge on Kaggle:

https://www.kaggle.com/c/tgs-salt-identification-challenge

The goal is to use batches of seismic images to train a ML model
that can predict salt bodies on not interpreted images
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https://www.kaggle.com/c/tgs-salt-identification-challenge
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| Validation | | Training |
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Augmented data

Helps on the model training
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Conclusions

Different applications

Facies classification is 5 to 6 times more accurate than random guess
Salt identification model has high accuracy

Data limitation:

o Quantity

e Quality
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Thank you!!!
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