< CREWES WWW.Crewes.org

Viscoacoustic reverse time migration in tilted TI
media with attenuation compensation

All Fathalian, Daniel Trad and Kris Innanen

CREWES Annual Meeting
Banff, AB CA
November 30, 2018




‘i'? Motivation

Anisotropy Viscosity
J J
-
E —— ——,,e—————— -
<
= l
) I
o 11—
¢
1.5¢ | | | | | | | ! |
0 1000 2000 3000 4000 5000 6000 7000 0.2 04 0.6 0.8 1 1.2 14 1.6 18

Distance (m)

Distance (km)

Fathalian and Innanen 2017

In real strata anisotropy and viscosity extensively exits. They degraded
waveform in amplitude, resulting in which reducing of image resolution
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“ts* Viscoacoustic wave equation in TTI media

2D viscoacoustic wave equations in TTI media(Alkhalifah, 2000 )
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vy Viscoacoustic wave equation in TTI media

Fourier transform to the frequency domain

Memory variable -
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After removing memory variable equations and some algebra

manipulation
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Transformed back to the time domain
0,0y = pVg [(1 + 28)[((11 (2/A) +a,(2/AQ))|[cosBcospd, — SinHOZ)ux]] + V1 + 26][(cospsinfd, + cos0d,)u, ]]
9.0y = pVg l\/l + 268[cosBcos@ad, — sinfd,)u,] + (a,(2/A) + a,(2/AQ))[(cosesinb o, + cosH@z)uz]]

2IA: Dispersion — dominated operator 2
2I1AQ: Amplitude attenuation — dominated operator A = ( /1 + é — 1) +1
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s Viscoacoustic reverse time propagation
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e Positive sign of the a, constant refers to the reduction of the amplitude in

extrapolating forward propagation.
« By reversing the sign of the amplitude attenuation term (a, = —1) in the

viscoacoustic wave equation, we can compensate for the amplitude loss.
 To counteract the dispersion effects, we keep the sign of dispersion operator un-

changed (a; = 1).

0,0y = pVg [(1 + 2¢) [((Z/A) — (Z/AQ))[cosecosgoax — Sineaz)ux]] + V1 + 28[(cosesinBd, + cos0d,)u, ]]

0.0y = pV¥# [\/1 + 28[cosOcospd, — sinfd,)u,] + ((2/A) — (2/AQ))[(cospsindd, + cosH@Z)uZ]]

Dispersion — dominated wave equation for back — propagation

Loss — dominated wave equation for back — propagation



%s 2D synthetic example (Layered model)
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vy 2D synthetic example (Layered model)

(a) Source wavefield (b) Receiver wavefield (c) RTM Image
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v’ 2D synthetic example (Layered model)

(a) Source wavefield  (b) Receiver wavefield (c) RTMImage
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vy 2D synthetic example (Layered model)

(a) Source wavefield (b) Receiver wavefield (c) RTMImage
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To improve image resolution, we test
the new approach of Q-RTM on
viscoacoustic data
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crosscorrelated Q-RTM images that have
comparable amplitude to the
corresponding reference images

500 500

1000 1000

1500 1500

500 500

1000 1000

1500 1500
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
Distance (m) Distance (m) Distance (m)



‘7s* 2D synthetic example (Layered model)
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Yr 2D synthetic example (Marmousi model)
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v Velocity and Q models are first smoothed from true models and then
used for migration
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Yr 2D synthetic example (Marmousi model)
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v’ some spots of high symmetry axis

gradient produce large instabilities
and blows up the amplitudes of the
wavefield

In area with instability, the
anisotropy can be taken off around
the selected high gradient points
which set € = § to suppress artifacts
from the source point in an
anisotropic medium
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' 2D synthetic example (Marmousi model)

S spectra of the 240th trace of acoustic and viscoacoustic shot records
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Yr 2D synthetic example (Marmousi model)
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v’ Result indicates improved RTM image with re
covered amplitudes of the reflectors at the dip
depths compared with the reference image

v’ To verify that the reflectors migrated to the
correct position we compare the image traces at
the same offset
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Conclusions

« We have presented a viscoacoustic RTM imaging algorithm based on a
decoupled viscoelastic wave equation that is able to mitigate attenuating and
dispersion effects in the migrated images.

 The phase dispersion and amplitude attenuation operators in Q-RTM approach
are separated, and the compensation operators are constructed by reversing
the sign of the attenuation operator without changing the sign of the dispersion

operator.
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