

A directional DAS sensor and multi-component geophone comparison

Kevin W. Hall, Kris Innanen and Don Lawton

CREWES Annual Meeting, Banff, Dec 10, 2019

Objective and Outline

- In 2018 a star-shaped fibre loop was buried to investigate the practicalities of multicomponent DAS sensing; 3C surface phones were included for calibration
- Today: convert accelerometer or geophone data to strain rate in order to make better data comparisons to fibre data
- DAS Trace positioning in space, with corrections for:
 - Helical fibre pitch
 - Index of refraction (IR)
- Proposed method to convert seismic data to strain rate
- Vertical component example (VSP)
- Horizontal component example (Directional DAS sensor)

Method: Trace spacing corrections for helical fibre pitch and IR

Example: Effect of trace spacing corrections

400 600 800 1000 1200 Trace

Method: Geophone data conversion to strain rate

2018 VSP (Snowflake) example

- Inova UniVib
 - 1-160 Hz linear sweep
 - 2 sweeps per VP
- Oyo Geospace 10 Hz 3C geophones
 - 5 m spacing
 - Vertical Component
- Inova VectorSeis 3C Accelerometers
 - 1 m spacing (2m at bottom well)
 - Vertical Component
- Straight Fibre (Fotech Interrogator)
 - 0.67 m spacing
- Helical Fibre (Fotech Interrogator)
 - 0.59 m spacing after correction

Newell County 2018 VSP Map

Newell County 2018 TL

Field Data

Accelerometer data converted to velocity

Geophone and accelerometer data converted to strain rate

Directional DAS (Pretzel) example

IVI EnviroVibe 10-160 Hz linear sweep • 10 sweeps per VP Inova SM7 10 Hz 3C geophones • 11 m spacing Horizontal Components Straight Fibre (Halliburton Interrogator) 1.02 m spacing Helical Fibre (Halliburton Interrogator) 0.91 m spacing after correction

VSP and Directional DAS Sensor Map

Example component rotations to inline for fibre segments

VP4

VP1, square 1, straight fibre, amplitude spectra

- Trace spacing corrections for helical wind and index of refraction
- Method to convert Accelerometer and Geophone data to strain rate for comparison to fibre data
- Strain rate conversion method tested on:
 - Vertical component VSP data
 - Horizontal component directional DAS sensor data
- Encouraging results

- Fotech
- Halliburton
- High Definition Seismic Corporation
- Laurence Berkeley National Laboratory
- Schlumberger (Vista software)
- CREWES sponsors
- CaMI.FRS JPI subscribers
- NSERC through the grant CRDPJ 461179-13
- Canada First Research Excellence Fund