

DAS modeling for hydraulic fracture and caprock monitoring

Matt Eaid* and Kris Innanen

CREWES Sponsors Meeting, Banff, December 10th, 2019

Motivations

Hydraulic Fracturing

Cyclic steam stimulation

Conventionally, microseismic data has been recorded with networks of 1C and 3C geophones in three main array types:

- 1. Surface Arrays
- 2. Shallow Downhole Arrays
- 3. Deep Downhole arrays

Desirable geometries have the properties:

- Close proximity to treatment well
- Sample sufficiently large aperture
- Ideally cover a range of depth intervals
- Cost-effective

Distributed Acoustic Sensing

- DAS uses an optical fibre to make measurements of seismic strain
- Fibres are only sensitive to strain along the tangent of the fibre
- Measurements are spatially averaged over the gauge length to improve SNR

Advantages

- Non-invasive: can be placed in frack well or nearby monitoring well, allowing for dual purpose wells.
- Dense spatial sampling ~ 3ft sample interval.
- Large aperture recording with 1000's of receivers.
- Ultra low frequency (near-DC) strain measurements.

Disadvantages

- Low signal-to-noise ratio, and generally lower sensitivity.
- Single component recording.
- Expensive to deploy

Moment Tensor Sources

Moment tensors provide a mathematical representation of the slip on a fault (fracture) during an earthquake (hydraulic fracture).

 $M_{11} \xrightarrow{3} M_{12} \xrightarrow{M_{13}} M_{13}$ $M_{21} \xrightarrow{M_{22}} M_{23}$ $M_{21} \xrightarrow{M_{22}} M_{23}$ $M_{31} \xrightarrow{M_{32}} M_{32}$ $M_{31} \xrightarrow{M_{32}} M_{33}$

$$M = \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{bmatrix}$$

$$M = M_{ISO} + M_{DC} + M_{CLVD}$$

Modeling displacement from moment tensor sources

8

Modeling strain from moment tensor sources

$$\epsilon_{ij}^{FF} = \epsilon_{ij}^{P} + \epsilon_{ij}^{S} = \frac{1}{2} \left(\frac{\partial u_{i}^{P}}{\partial x_{j}} + \frac{\partial u_{j}^{P}}{\partial x_{i}} \right) + \frac{1}{2} \left(\frac{\partial u_{i}^{S}}{\partial x_{j}} + \frac{\partial u_{j}^{S}}{\partial x_{i}} \right)$$
P-wave strain
S-wave strain

Analytic displacement:

$$u_i^{FF} = u_i^P + u_i^S = \frac{c_P^u}{\alpha^3 r} \psi_p(M) \dot{s} \left(t - \frac{r}{\alpha} \right) + \frac{c_S^u}{\beta^3 r} \psi_s(M) \dot{s} \left(t - \frac{r}{\beta} \right)$$

$$\epsilon_{ij}^{FF} = \epsilon_{ij}^{P} + \epsilon_{ij}^{S} = \frac{c_{P}^{\epsilon}}{\alpha^{4}r} \psi_{p}'(M) \ddot{s} \left(t - \frac{r}{\alpha}\right) + \frac{c_{S}^{\epsilon}}{\beta^{4}r} \psi_{s}'(M) \ddot{s} \left(t - \frac{r}{\beta}\right)$$

Analytic displacement:

$$u_i^{FF} = u_i^P + u_i^S = \frac{c_P^u}{\alpha^3 r} \psi_p(M) \dot{s} \left(t - \frac{r}{\alpha} \right) + \frac{c_S^u}{\beta^3 r} \psi_s(M) \dot{s} \left(t - \frac{r}{\beta} \right)$$

$$\epsilon_{ij}^{FF} = \epsilon_{ij}^{P} + \epsilon_{ij}^{S} = \frac{c_{P}^{\epsilon}}{\alpha^{4}r} \psi_{p}'(M) \ddot{s} \left(t - \frac{r}{\alpha}\right) + \frac{c_{S}^{\epsilon}}{\beta^{4}r} \psi_{s}'(M) \ddot{s} \left(t - \frac{r}{\beta}\right)$$

Analytic displacement:

$$u_i^{FF} = u_i^P + u_i^S = \frac{c_P^u}{\alpha^3 r} \psi_p(M) \dot{s} \left(t - \frac{r}{\alpha} \right) + \frac{c_S^u}{\beta^3 r} \psi_s(M) \dot{s} \left(t - \frac{r}{\beta} \right)$$

$$\epsilon_{ij}^{FF} = \epsilon_{ij}^{P} + \epsilon_{ij}^{S} = \frac{c_{P}^{\epsilon}}{\alpha^{4}r} \psi_{p}'(M) \ddot{s} \left(t - \frac{r}{\alpha}\right) + \frac{c_{S}^{\epsilon}}{\beta^{4}r} \psi_{s}'(M) \ddot{s} \left(t - \frac{r}{\beta}\right)$$

Analytic displacement:

$$u_i^{FF} = u_i^P + u_i^S = \frac{c_P^u}{\alpha^3 r} \psi_p(M) \dot{s} \left(t - \frac{r}{\alpha} \right) + \frac{c_S^u}{\beta^3 r} \psi_s(M) \dot{s} \left(t - \frac{r}{\beta} \right)$$

$$\epsilon_{ij}^{FF} = \epsilon_{ij}^{P} + \epsilon_{ij}^{S} = \frac{c_{P}^{\epsilon}}{\alpha^{4}r} \psi_{p}'(M) \ddot{s} \left(t - \frac{r}{\alpha}\right) + \frac{c_{S}^{\epsilon}}{\beta^{4}r} \psi_{s}'(M) \ddot{s} \left(t - \frac{r}{\beta}\right)$$

Radiation patterns

- Distinct differences in strain radiation patterns offer insight into source mechanics
- Shaping fibre can improve the sensitivity to the radiation patterns from more strain components

Experiment Geometry

Analytic strain from 4 source types

Explosive sources

- Characterized by strong, symmetric P-wave and no S-wave
- Provides benchmark to test validity of this approach.

 $\epsilon_{\mathbf{x}\mathbf{x}}^{\mathbf{P}}$

 $\epsilon_{\rm xx}^{\rm S}$

Double couple sources

- Strong S/P wave amplitude ratio
- Polarity reversal in P-wave
- Distinct polarity pattern in S-wave

Compensated linear vector dipole sources

- Strong S/P wave amplitude ratio
- Near offset polarity reversal in P-wave
- Symmetric S-wave, same polarity as P-wave at long offset

 ϵ_{xx}^{P}

 $\epsilon_{\rm xx}^{\rm S}$

Tensile crack sources

- Balanced S/P wave amplitude ratio
- Symmetric P-wave
- Symmetric S-wave with same polarity as P-wave

- DAS provides a complementary dataset to geophones.
- Large sampling of solid angle, and close proximity to events makes DAS attractive.
- Developed a tool for the efficient appraisal of DAS and investigation of field data.
- Future work will look at using DAS data for moment tensor inversion.

- CREWES Industrial Sponsors
- NSERC (CRDPJ 461179-13)
- SEG Foundation
- CREWES Staff and Students