

Ambient noise correlation study at the CaMI Field Research Station

Marie Macquet and Don Lawton

CREWES Sponsors Meeting December 10th, 2019 Banff, Alberta, Canada

Field Research Station

 \Rightarrow Injection of a small amount of CO₂ (<400/tons per year) at shallow depth (300m) to simulate a leakage

Developed by CMC Research Institutes Inc and University of Calgary

- A site for development and demonstration of MMV technologies for carbon capture and storage (CCS) as well as general containment and conformance monitoring for other applications.
- Undertake controlled CO₂ release at 300 m (Phase 1) & 500 m (Phase 2) depth; up to 400 t/yr.
- Determine CO₂ detection thresholds at shallow to intermediate depths.
- Develop and assess technologies for continuous reservoir, cap rock, overburden, and groundwater monitoring.
- University & industry field training.

Active seismic surface : Known method but heavy to repeat

VSP DAS : fully vertical coverage but uncertainty on channel depth and low SNR

(Semi) continuous seismic source : good repeatability of the measurements but new technology

Remain punctual => how to capture transient changes?

Continuous seismic data

Feb. 2018 112 geophones 25 days

Since October 2015 7 broadband stations

- to study the *possible microseismicity* linked to CO₂ injection
- to study the possibility of using the *ambient noise correlation method* as a tool for CO₂ injection monitoring

Principle : reconstruct the Green's function by correlating the continuous ambient noise recorded between two captors.

For tomography

- Surface waves
- \Rightarrow dispersion curves
- \Rightarrow inversion
- \Rightarrow elastic models

For monitoring

If the medium changes, the result of the Green's function will change

Continuous data

Example of vibe shot recordings (5min)

?? (3min)

6

Data processing

Tomography – Virtual shot gather

MSNoise Python code (Lecocq et al., 2014) Processing : mean and trend removal, filtering, 1-bit normalization, spectral whitening

Tomography – Dispersion curves (FTAN)

FR.1001 FR.9009. d=130m

Selection:

- Signal to noise ratio > 5
- $\lambda > 1$ interstation distance

Tomography – Dispersion curves (FTAN)

FR.1001 FR.9009. d=130m

Selection:

- Signal to noise ratio > 5
- $\lambda > 1$ interstation distance

Tomography – Dispersion curves – Rayleigh wave group velocity

Probability density function - Lambda tri

Tomography – Group velocities regionalization

12

Tomography – Group velocities 2D section

At high frequencies (shallow depth) : lower velocities on the SW part.

At low frequencies (deeper part) : higher velocities on the SW part.

Tomography – Group velocities 2D section

Tomography – Local dispersion curve inversion

Monitoring – Daily correlations

Since October 2015 on 7 broadband stations

Daily correlation between FRS4 and FRS5 - [0.1-40]Hz

bristol.ac.uk

Monitoring – Daily correlations

[1-10]Hz

Monitoring – Velocity variations

- Moving-Window Cross
 Spectrum Analysis, [0.1-1]Hz
 frequency range, from 0.5 to 5s
- good correlation between the smoothed dv/v curve and the average temperature

 CO₂ injection periods seem to correspond to periods of velocity variation decreasing

Tomography

Coherent results with other methods.

Future work includes:

- Process the June 2019 survey to have the 3D near surface image
- Compare Winter (Feb 2018, this study) and Summer time (June 2019 survey)

Monitoring

Clear effect of ambient temperature, possible effect of CO_2 injection

Future work includes:

- Better understand the effect of each variable on the velocity variation
- Add the 24 geophones which are recording since June 2019

At the Field Research Station

- Several datasets for baseline characterization (for near surface tomo and study how environmental changes may affect the Green's function reconstruction)
- High quality of daily correlations (we should consider trying hourly correlation)
- Very challenging field as the expected changes in velocity are small

In general – Using ambient noise for CCS monitoring

- All the theory/tools are already developed
- Fully continuous monitoring
- The data can be easily acquired, especially with the study of microseismicity, but can quickly reach very large volume
- Quality of body waves is still not here (yet) but others applications are already here
- Low cost, easy to deploy, easily repeatable and environmentally friendly

Acknowledgments

- This research was undertaken thanks in part to funding from the Canada First Research Excellence Fund;
- CaMi.FRS JIP subscribers ;
- CREWES sponsors ;
- Bristol University (A. Storke and M. Kendall for access to the broadband data);
- NSERC -grant CRDPJ 461179-13;
- Cenovus Energy and Torxen Energy for providing access to the site;
- Fieldwork help.

Monitoring Institute

