

Full waveform inversion of multimode surface wave data: numerical insights

Raul Cova and Kris Innanen

Banff, December 2019

- The dispersive nature of surface waves enhances FWI cycle skipping problems.
- Hierarchical strategies have shown to be very effective in mitigating cycle skipping.
- In contrast to body waves FWI, to implement a layer stripping strategy higher frequencies must be inverted first.
- We propose a hierarchical multimode surface wave FWI, where:
 - Fundamental mode energy is used in a first FWI pass, exploiting the long wavelength components present in this mode.
 - Higher order modes are used during a second FWI pass, adding extra short wavelength information, particularly at the deeper parts of the model.

Multimode surface wave data

£ 100

2320 2330

Rho (kg/m^3)

Multimode surface-wave decomposition

Multimode surface-wave decomposition

Multimode decomposition in F-K domain

Surface wave F-K spectrum F-K mask Fundamental mode energy - 1.0 0 0 0 - 0.35 0.35 5 -5 -5 -**Fundamental** 0.8 mode - 0.30 0.30 10 -10 -10 -0.25 0.25 15 -15 -15 - 0.6 (Hz) f (Hz) f (Hz) f 0.20 0.20 - 0.4 0.15 0.15 25 25 · 25 - 0.10 0.10 30 · 30 · 30 - 0.2 **Higher order** - 0.05 0.05 35 · 35 -35 · modes - 0.0 40 -0.00 40 -40 -- 0.00 0.02 0.03 0.03 0.02 0.03 0.00 0.01 0.04 0.00 0.01 0.02 0.04 0.00 0.01 0.04 k (1/m) k (1/m) k (1/m)

Unscaled gradients

Fundamental mode

Higher order modes

- Fundamental mode Vs update decays exponentially with depth.
- Update provided by higher order modes reaches larger depths and decays gradually.

Unscaled Vs gradients by displacement component

Ux contribution to model update using higher order modes is larger than Uz

Multimode Surface Wave FWI: True models

Survey details:

- Source spacing: 20 m
- Receiver spacing: 5 m
- Source wavelet: 10 Hz Ricker wavelet

Multimode Surface Wave FWI

Multimode Surface Wave FWI

11

Multimode Surface Wave FWI

12

VS

Fundamental mode FWI

VS

Higher order modes FWI

vs

vs

- Multimode surface-wave FWI provides a robust framework for nearsurface characterization.
- Layer stripping is implicit in the process.
- Frequency increasing multiscale bands can still be used in this case, since layer stripping is achieved by mode separation and not by frequency band selection.
- Horizontal component data is critical for this approach since it provides a more balanced measurement of fundamental and higher order modes energy. This might benefit SW-FWI using DAS data.
- Application of this approach on real data remains to be seen.

- Dr. Wenyong Pan
- Compute Canada
- NSERC (Grant CRDPJ 461179-13)
- Canada First Research Excellence Fund (CFREF)
- CREWES sponsors
- CREWES faculty, staff and students.

