

Direct elastic FWI updating of rock physics properties

Qi Hu, Kris Innanen, Scott Keating

2019/12/11

Sponsors Meeting

Quantitative seismic reservoir characterization

Quantitative seismic reservoir characterization

	Forward engine/Data source	Workflow	Inversion method
Current	AVO, Convolution/ Amplitudes	Direct or Indirect	Deterministic (Optimization) Or Stochastic (Sampling)
Our approach	Wave equation/ Waveforms	Direct	Deterministic

Linearized approximations to the Zoeppritz equations:

Aki & Richards (1980)

$$R_{\rm PP}(\theta) = \left(\frac{1}{2}sec^2\theta\right)\frac{\Delta V_{\rm P}}{V_{\rm P}} + \left(-\frac{4sin^2\theta}{\gamma^2}\right)\frac{\Delta V_{\rm S}}{V_{\rm S}} + \left(\frac{1}{2} - \frac{2sin^2\theta}{\gamma^2}\right)\frac{\Delta\rho}{\rho}$$

Gray et al. (1999)

$$R_{\rm PP}(\theta) = \left[\left(\frac{1}{4} - \frac{1}{2\gamma^2} \right) \sec^2 \theta \right] \frac{\Delta \lambda}{\lambda} + \left[\frac{1}{\gamma^2} \left(\frac{1}{2} \sec^2 \theta - 2\sin^2 \theta \right) \right] \frac{\Delta \mu}{\mu} + \left(\frac{1}{2} - \frac{1}{4} \sec^2 \theta \right) \frac{\Delta \mu}{\rho}$$

Russell et al. (2011)
$$R_{\rm PP}(\theta) = \left[\left(\frac{1}{4} - \frac{\gamma_{\rm dry}^2}{4\gamma_{\rm sat}^2} \right) \sec^2 \theta \right] \frac{\Delta f}{f} + \left(\frac{\gamma_{\rm dry}^2 \sec^2 \theta - 8\sin^2 \theta}{4\gamma_{\rm sat}^2} \right) \frac{\Delta \mu}{\mu} + \left(\frac{1}{2} - \frac{1}{4} \sec^2 \theta \right) \frac{\Delta \rho}{\rho}$$
Fluid term

Reparameterization: From elastic to rock physics

Frequency-domain elastic wave equations:

$$\omega^{2}\rho u + \frac{\partial}{\partial x} \left[(\lambda + 2\mu) \frac{\partial u}{\partial x} + \lambda \frac{\partial v}{\partial z} \right] + \frac{\partial}{\partial z} \left[\mu \left(\frac{\partial u}{\partial z} + \frac{\partial v}{\partial x} \right) \right] + f = 0,$$

$$\omega^{2}\rho v + \frac{\partial}{\partial z} \left[(\lambda + 2\mu) \frac{\partial v}{\partial z} + \lambda \frac{\partial u}{\partial x} \right] + \frac{\partial}{\partial x} \left[\mu \left(\frac{\partial u}{\partial z} + \frac{\partial v}{\partial x} \right) \right] + g = 0,$$

Au = f,

$$\nabla_{m_{i}} E = \Re \left\{ \mathbf{u}^{t} \left[\frac{\partial \mathbf{A}}{\partial m_{i}} \right]^{t} \mathbf{A}^{-1} \Delta \mathbf{d}^{*} \right\}.$$

Object function: $E(\mathbf{m}) = \frac{1}{2} \Delta \mathbf{d}^{t} \Delta \mathbf{d}^{*},$

$$\nabla_{m_{i}} E = \Re \left\{ \mathbf{u}^{t} \left[\frac{\partial \mathbf{A}}{\partial m_{i}} \right]^{t} \mathbf{A}^{-1} \Delta \mathbf{d}^{*} \right\}.$$

where parameterization matters
(radiation pattern)

Reparameterization in FWI

Traditional parameterization: **p** $(p_1 - p_2 - p_3)$

New parameterization: **Q** $(q_1 - q_2 - q_3)$

Reparameterization in FWI

Traditional parameterization: **p** $(p_1 - p_2 - p_3)$ **w** New parameterization: **q** $(q_1 - q_2 - q_3)$

Current Study

Elastic Parameterizations		
$V_{ m P} - V_{ m S} - ho$	$I_{\rm P} - I_{\rm S} - \rho$	
p , q : $K - G - \rho$	$\lambda - \mu - \rho$	
$V_{\rm P} - V_{\rm S} - I_{\rm P}$		

Reparameterization in FWI

Traditional parameterization: $\mathbf{p} (p_1 - p_2 - p_3)$ New parameterization: $\mathbf{q} (q_1 - q_2 - q_3)$

Current Study

Elastic Parameterizations		
$V_{ m P}-V_{ m S}- ho$	$I_{\rm P} - I_{\rm S} - \rho$	
p, q: $K - G - \rho$	$\lambda - \mu - \rho$	
$V_{\rm P} - V_{\rm S} - I_{\rm P}$		

Reservoir-Oriented

Elastic to Rock physics Parameterization		
p:	$V_{ m P}-V_{ m S}- ho$ (D-V)	
q :	$\phi - C - S_w$ (P-C-S)	

f: Rock Physics Model

Empirical: Han's relations (Han)

$$V_{\rm P} = a_1 - a_2 \phi - a_3 C,$$

 $V_{\rm S} = b_1 - b_2 \phi - b_3 C,$

Boundary model: Voigt-Reuss-Hill average (VRH)

$$M_{\rm V} = \sum_{i=1}^{N} f_i M_i, \quad \frac{1}{M_{\rm R}} = \sum_{i=1}^{N} \frac{f_i}{M_i}.$$
$$M_{\rm VRH} = \frac{M_{\rm V} + M_{\rm R}}{2}.$$

Inclusion model: Kuster-Toksoz model (KT)

$$(K_{\text{sat}} - K_m) \frac{K_m + \frac{4}{3}G_m}{K_{\text{sat}} + \frac{4}{3}G_m} = \phi(K_f - K_m)P,$$
$$(G_{\text{sat}} - G_m) \frac{G_m + \xi}{G_{\text{sat}} + \xi} = -\phi G_m Q.$$

Synthetic Experiments

Synthetic Experiments

Rock type assumed:

- Gas-bearing shaly sand
- Solid phase: quartz + clay
- Fluid phase: water + gas

Acquisition Geometry:

Surface Seismic + VSP

Optimization:

- Multiscale: low to high frequencies (2 – 25 Hz)
- Truncated Newton

Inversion experiments with the Han model

Direct: FWI
$$\xrightarrow{\text{P-C-S by Han}} \phi, C, S_w$$

Indirect: FWI $\xrightarrow{\text{D-V}} V_{\text{P}}, V_{\text{S}}, \rho \xrightarrow{\text{Han}} \phi, C, S_w$

Inversion Experiments: Toy model

True models

Inversion Experiments: Toy model

Inverted $V_{\rm P}$

Indirect Inversion

Inversion Experiments: Toy model

Rock physics properties of each layer:

$$\phi = 0.3, \quad C = 0.1, \quad S_w = 0.2$$

 $\phi = 0.2, \quad C = 0.3, \quad S_w = 0.5$
 $\phi = 0.1, \quad C = 0.5, \quad S_w = 0.8$

1 Inversion Experiments: layered model

Direct VS Indirect

Vertical profile of inverted parameters

Vertical profile of inverted parameters

Vertical profile of inverted parameters

1 Inversion Experiments: Modified Marmousi model

True $V_{\rm P}$

Direct inversion

Vertical profiles across the gas sand

Inversion experiments with VRH and KT

Inversion results with Han, VRH, and KT

True ϕ

Inversion results with Han, VRH, and KT

True ϕ

Inversion results with Han, VRH, and KT

True ϕ

History of model error reductions

Comparing the performance of Han, VRH, KT

Sensitivity analysis: radiation patterns

- Direct updating of rock physics properties using FWI shows promise.
- U We demonstrate that the direct inversion is superior to the indirect one.
- Radiation patterns can be used as well for the sensitivity analysis of rock physics properties.

- CREWES sponsors
- NSERC (Grant CRDPJ 461179-13)
- CREWES staff and students