

Viscoelastic full waveform inversion based on recurrent neural network

Tianze Zhang, Kristopher Innanen, Jian Sun, Daniel Trad

2019 December 11th CREWES Sponsor meeting Banff, AB

(2) The recurrent neural network (RNN)

- (3) Viscoelastic full waveform inversion based on RNN
- (4) Inversion with various of objective functions

(2) The recurrent neural network (RNN)

(3) Viscoelastic full waveform inversion based on RNN

(4) Inversion with various of objective functions

(2) The recurrent neural network (RNN)

(3) Viscoelastic full waveform inversion based on RNN

(4) Inversion with various of objective functions

(2) The recurrent neural network (RNN)

(3) Viscoelastic full waveform inversion based on RNN

(4) Inversion with various of objective functions

(2) The recurrent neural network (RNN)

(3) Viscoelastic full waveform inversion based on RNN

(4) Inversion with various of objective function

Part One: Introduction to neural network

Part one: Introduction to basic neural network

Part one: Introduction to basic neural network

Part one: Introduction to basic neural network

Fully connected network

Part TWO: The recurrent neural network

Part two: The recurrent neural network

Part two: The recurrent neural network

$$\begin{pmatrix} \frac{\partial v_x}{\partial t} = \frac{1}{\rho} \left(\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} \right) & \text{Viscoelastic wave equation}_{\text{Robertson et al. (1994)}} \\ \frac{\partial v_y}{\partial t} = \frac{1}{\rho} \left(\frac{\partial \sigma_{xy}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} \right) \\ \frac{\partial \sigma_{xy}}{\partial t} = \mu \frac{\tau_{\varepsilon}^{\varepsilon}}{\tau_{\sigma}} \left(\frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x} \right) + r_{xy} \\ \frac{\partial \sigma_{xx}}{\partial t} = \pi \frac{\tau_{\varepsilon}^{p}}{\tau_{\sigma}} \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} \right) - 2\mu \frac{\tau_{\varepsilon}^{s}}{\tau_{\sigma}} \frac{\partial v_y}{\partial y} + r_{xx} \\ \frac{\partial \sigma_{yy}}{\partial t} = \pi \frac{\tau_{\varepsilon}^{p}}{\tau_{\sigma}} \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} \right) - 2\mu \frac{\tau_{\varepsilon}^{s}}{\tau_{\sigma}} \frac{\partial v_x}{\partial x} + r_{yy} \\ \frac{\partial r_{xy}}{\partial t} = -\frac{1}{\tau_{\sigma}} \left(r_{xy} + \mu \left(\frac{\tau_{\varepsilon}^{s}}{\tau_{\sigma}} - 1 \right) \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} \right) - 2\mu \left(\frac{\tau_{\varepsilon}^{s}}{\tau_{\sigma}} - 1 \right) \frac{\partial v_y}{\partial y} \right) \\ \frac{\partial r_{yy}}{\partial t} = -\frac{1}{\tau_{\sigma}} \left(r_{yy} + \pi \left(\frac{\tau_{\varepsilon}^{p}}{\tau_{\sigma}} - 1 \right) \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} \right) - 2\mu \left(\frac{\tau_{\varepsilon}^{s}}{\tau_{\sigma}} - 1 \right) \frac{\partial v_y}{\partial y} \right)$$

15

Fm=35Hz Nshot = 7 Receiver: top Tmax = 0.3s

Part four: Viscoelastic FWI based on RNN with different objective functions

The loss function for l_1 is:

$$loss_{l_1} = |x - y|$$

The loss function for l_2 is:

$$loss_{l_2} = \frac{1}{2}(x-y)^2$$

The loss function for Huber function is:

$$loss_{Huber} = \begin{cases} 0.5(x-y)^2, & if |x-y| < 1\\ |x-y| - 0.5, & otherwise \end{cases}$$

Part four: Viscoelastic FWI

25

Shot records data residual

- Viscoelastic RNN FWI can give promising inversion results
- RNN is a powerful tool for seismic inversion problem
- The use of different misfits help improve inversion results

- CREWES sponsors, staff and students
- CSC (China Scholarship Council)

THANK YOU