
Data Science Initiative

Learning Lab 7: Unsupervised seismic
facies classification using Python

Brian Russell

• Introduction

• Theory of unsupervised
learning using K-means and
Gaussian Mixture Modeling

• Introduction to the three
Python exercises.

• Running the Python code

• Conclusions

Q&A

Agenda

Regular
Hosts

Marcelo Guarido

Data Scientist with PhD in

Geophysics Head of the

CREWES Data Science
Initiative.

Daniel Trad

Associate Professor and

Chair in Exploration

Geophysics at University of
Calgary.

Guest Host

Brian Russell

Vice President, CGG GeoSoftware

and

Adjunct Professor

Geoscience Department and
CREWES, University of Calgary

Introduction

• Coléou et al. (2003), in a TLE article, were
the first to apply unsupervised clustering
techniques to seismic facies classification.

• The left two panels show the Self
Organizing Map (SOM) technique with 6
classes (top) and 12 classes (bottom).

• The right two panels show the K-means
technique with 6 classes (top) and 12
classes (bottom).

• I will not discuss the SOM technique today,
but will focus on the K-means technique as
well as Gaussian Mixture Modelling (GMM),
another clustering method.

3
Coléou et al, 2003

GMM Example

• Wallet and Hardisty (2019), in an article in
Interpretation, applied the GMM
technique to seismic facies classification.

• The four panels on the right show the
application of GMM to a set of amplitude
slices through a seismic volume.

• The upper left shows two clusters, the
upper right shows three clusters, the
lower left shows five clusters, and the
lower right shows six clusters.

• Let’s now look at the theory of both K-
means and GMM clustering.

4Wallet and Hardisty (2019),

The K-means algorithm

• If we start with N M-dimensional data points (e.g., M attributes) the K-means algorithm
divides these points into K clusters.

• The K-means algorithm is implemented as follow:

• Pick the number of clusters, K, and divide the input data points randomly into these
K clusters, each with approximately N/K points.

• Compute the M-dimensional means of the clusters.

• Compute the distances between each point and each cluster and assign each point
to the cluster for which this distance is a minimum.

• Re-compute the means based on the new cluster assignments.

• Iterate through the above three steps until convergence.

• The key assumption is that we know how many clusters are present in the data, so in a
typical application you may want to try different values of K.

5

A simple example of K-means clustering

• After the 3rd iteration, the means have “locked in” to the cluster centres, and
we can clearly identify the four clusters by drawing circles around the means.

6

 To understand K-means, the left figure shows eighteen points that are to be grouped into
four clusters, with initial means computed from the data (blue crosses).

 The next three cross-plots shows the updates after the 1st, 2nd and 3rd iterations:

Elliptical clusters

• Here is a dataset with three elliptical
clusters, based on an AVO cross-plot:

7

 Now K-means fails, because it uses
Euclidean, not statistical, distance.

The 2-D Gaussian (or Normal) Distribution

8

 The term after the -1/2 inside the brackets is the square of the Mahalanobis, or statistical,
distance, which is written:

1

1/2

1 1
 () exp () () , where

22

Tf


 
     

 
x x x 

1() ()T     x x 

2
1 1 1 12

1 22
2 2 12 2

2 2

1 2 12

, , , where and are the two means,

 is the covariance matrix with variances and , and covariance .

x

x

  
 

  

  

    
        
     



x 

 To interpret the elliptical shape of these clusters, we need to understand the Gaussian
distribution, which in two dimensions is written:

The Mahalanobis Distance

9

 Using zero means and the terms a, b and c, we can expand the square of the
Mahalanobis distance as follows:

  12 1 2 2

1 2 1 1 2 2

2

() () 2T
xa b

x x x x ax bx x cx
xb c

 
   

             

 Note that the Mahalanobis, or statistical, distance is differs from the Euclidean
distance by the inclusion of the inverse covariance matrix, given by:

1
2 2

1 1 12 2 12

2 2 22 2
1 2 1212 2 12 1

1 a b

b c

   

     




     

              

 Thus, using the Mahalanobis distance squared creates elliptical contours of variance.

Three special cases

10

 There are three special cases of the Mahalanobis distance:

If b ≠ 0, we get tilted ellipses
(negative slope if b < 0 and
vice versa).

If b = 0 and a ≠ c, we get
vertical (a < c) or horizontal
(a > c) elliptical curves:

If b = 0 and a = c , the
Mahalanobis distance equals
the Euclidean distance:

1
1 0

0 1

  
     

 

1
2 0 0.5 0

0 0.5 0 2

   
       

   

1
2 1 1 1

1 1 1 2


   

          

The Mahalanobis K-means algorithm

• This suggests a modification of the K-means algorithm as follows:

• Pick the number of clusters, K, and divide the input data points randomly into
these K clusters.

• Compute the M-dimensional means, k, of the clusters, as well as the
covariance matrices k within each cluster, where k = 1, 2, … , K.

• Compute the Mahalanobis distances between each point and cluster and
assign each point to the cluster for which this distance is a minimum.

• Re-compute the means and covariances based on the new cluster
assignments.

• Iterate through the above three steps until convergence.

• Now, let’s see how well this algorithm works on our dataset.

11

Applying the Mahalanobis distance algortihm

• Here is the result of K-means with
Mahalanobis distance, and it has worked
very well on this dataset.

• Although K-means can be modified to
search based on statistical distance, the
scikit-learn option, which we will be using
in the lab today, has not implemented this.

• A more recent clustering method, called
Gaussian Mixture Modelling, or GMM,
achieves the same result in a different way.

• GMM uses the expectation-maximization
(EM) algorithm, which starts with a
random guess of the statistics and iterates
to a solution.

12

The Gaussian Mixture Model (GMM)

• To illustrate the Gaussian Mixture Model, or
GMM, I will use the example shown on the
right.

• Geologically, the upper set of points represent
a shale, the lower points a gas sand, and the
rightmost points a carbonate.

• The points in this dataset were extracted from
the pre-stack inversion of a Gulf Coast
dataset.

• Notice that we are cross-plotting inverted
Vp/Vs ratio against inverted P-impedance (Ip).

• The points are presented to the algorithm in
random order.

13

The Gaussian Mixture Model (GMM)

14

 The Gaussian Mixture Model (GMM) is a mixture pdf of N M-dimensional feature

vectors xn, which are grouped into K classes CK .

 Each feature vector has a conditional probability given by:

1

1/2/2

1 1 11 1

1

1 1
 (|) exp () () , where

2(2)

1, , , 1, , , , and .

T

n k n k k n kM

k

n k M

n k k

Mn Mk M MM

p C

x

k K n N

x



  

  

 
     

 

     
          
     
          

x x x

x

 



 GMM starts with an initial guess of the means and covariance matrices of each class,
and determines the correct values by iterating to a solution.

 Unlike K-means, the data is never physically re-ordered during the process.

Training the GMM via Expectation-Maximization (EM)

15

 The GMM is trained using the Expectation-
Maximization, or EM, algorithm.

 The Gaussian functions can have full, diagonal
or spherical covariance matrices.

 We will initialize the GMM with three means
and covariances given by:

1 2 2

1 2 3

2.25 2 1.75
, , ,

2.25 2 1.75

1 01
.

0 14

  
     

       
     

 
       

 

Training the GMM via Expectation-Maximization (EM)

16

 The expectation, or E, step involves first determining the “responsibility” for each
training point and in each class using Bayes’ Theorem:

 
 

 
   

1

| ()
, where | ().

K
n k k

k n n n k k

kn

p C p C
p C p p C p C

p 

 
x

| x x x
x

 The maximization, or M, step involves re-estimating the component pdfs and
mixture weights as follows:

 
 

 

 

 

1 1

1

1 1

ˆ ˆ() ()
1 ˆˆˆ () , ,and .

N N
T

k n n k n n k n kN
n n

k k n k kN N
n

k n k n

n n

p C p C

p C p C
N

p C p C

 



 

 

   
 


 

| x x | x x x

| x

| x | x

 



 This step is repeated until convergence.

Clustered result

• This figure shows our clustered result,
with their Gaussian contours shown.

• The colours can be thought of as “labels”,
which will tell us how to classify the
points.

• The final statistics are:

17

2 2

1.9529 0.0012 0.0006
, .

2.4503 0.0006 0.0012


   
     

   

1 1

2.1375 0.0119 0.0096
, .

1.5840 0.0096 0.0110


   
     
   

3 2

2.3571 0.0011 0.001
, .

2.1248 0.001 0.0029


   
     

   

The three Python examples

• Next, I will illustrate how to implement K-means and GMM in Python with scikit-learn.

• I will use the following three examples:

• The classic “blobs” dataset, which is an 2D example found in every Python machine
learning book using a built-in scikit-learn option (all the authors shamelessly copy
their examples from the scikit-learn tutorials!) .

• A more realistic set of three elliptical 2D clusters.

• A multi-dimensional seismic example that comes from the Blackfoot dataset and
involves performing facies classification.

• Before looking at the Python code, let me explain each of the examples in a little more
detail.

18

Example 1: Making “blobs”

• The classic “blobs” dataset is a 2D example
found in every Python machine learning book
using a built-in scikit-learn option.

• It is initialized as follows, producing the result
shown on the right:

19

• Note that I have used the “make_blobs” option to create four clusters of points with
a total number of 150 samples, each with a standard deviation of 0.5.

• Since there is no covariance term, the blobs will all be circular.

Example 2: Three elliptical clusters

20

1 2 3

3 0 3
, , ,

1 0 1

0.5 0.3
and .

0.3 0.5

  
     

       
     

 
   

 

• To create clusters with elliptical shapes I used
mvnrnd (multivariate random) in Matlab and
then randomized their order.

• Each cluster had 50 points and their final form
is shown in the plot on the right.

• The three means are different but the
covariance matrix is the same for all three:

• I saved the X and Y coordinates of the points and their labels in the separate files:
Three_Clusters.txt and Three_Clusters_Labels, to be read into Python.

Example 3: The Blackfoot dataset

• In our third example, we will apply
the K-means and GMM algorithms to
the Blackfoot dataset from Alberta,
shown on the right.

• The algorithms will be applied to a 10
ms (5 sample) window below the
Lower Mannville event.

21

Lower Mannville:

20 ms window

 This means that we are doing the clustering in 5-dimensional space.

Example 3: The Blackfoot dataset

• The Blackfoot dataset therefore consists of 5
data slices from the seismic volume between
times of 10 ms and 18 ms below the Lower
Manville.

• I extracted the data slices the HampsonRussell
GeoView program using our Python Ecosystem.

• I then saved it as a 5 column ASCII file called
Blackfoot_data.txt, which will be read into the
Python program.

22

• The figure shown here is one of the data slices after being re-shaped to its correct map
coordinates, plotted in Python.

References

Coléou, T., Poupon, M., and Azbel, K., 2003, Unsupervised seismic facies
classification: A review and comparison of techniques and implementation: The
Leading Edge, 942-953.

Wallet, B.C. and Hardisty, R., 2019, Unsupervised seismic facies using Gaussian
mixture models: Interpretation, August, 2019, SE93 – SE111.

23

Appendix 1: Results

Blobs example, with std. dev. = 0.5

24

Appendix 1: Results

Elliptical clusters example.

25

Appendix 1: Results

Blackfoot data map
slices.

26

Appendix 1: Results

Blackfoot data clustering results with 10 clusters.
27

Appendix 2: scikit-learn documentation

In this appendix, I have included the documentation for the options used in
Python from scikit-learn.

28

make_blobs in scikit-learn:

29

make-blobs in scikit-learn:

30

K-means in scikit-learn:

31

K-means in scikit-learn:

32

K-means in scikit-learn:

33

GMM in scikit-learn:

34

GMM in scikit-learn:

35

GMM in scikit-learn:

36

