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Introduction

• Coléou et al. (2003), in a TLE article, were 
the first to apply unsupervised clustering 
techniques to seismic facies classification.

• The left two panels show the Self 
Organizing Map (SOM) technique with 6 
classes (top) and 12 classes (bottom).

• The right two panels show the K-means 
technique with 6 classes (top) and 12 
classes (bottom).

• I will not discuss the SOM technique today, 
but  will focus on the K-means technique as 
well as Gaussian Mixture Modelling (GMM), 
another clustering method. 
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GMM Example

• Wallet and Hardisty (2019), in an article in 
Interpretation, applied the GMM 
technique to seismic facies classification.

• The four panels on the right show the 
application of GMM to a set of amplitude 
slices through a seismic volume.

• The upper left shows two clusters, the 
upper right shows three clusters, the 
lower left shows five clusters, and the 
lower right shows six clusters.

• Let’s now look at the theory of both K-
means and GMM clustering.
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The K-means algorithm

• If we start with N M-dimensional data points (e.g., M attributes) the K-means algorithm 
divides these points into K clusters.

• The K-means algorithm is implemented as follow:

• Pick the number of clusters, K, and divide the input data points randomly into these 
K clusters, each with approximately N/K points. 

• Compute the M-dimensional means of the clusters.

• Compute the distances between each point and each cluster and assign each point 
to the cluster for which this distance is a minimum. 

• Re-compute the means based on the new cluster assignments.

• Iterate through the above three steps until convergence.

• The key assumption is that we know how many clusters are present in the data, so in a 
typical application you may want to try different values of K.
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A simple example of K-means clustering

• After the 3rd iteration, the means have “locked in” to the cluster centres, and 
we can clearly identify the four clusters by drawing circles around the means.
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 To understand K-means, the left figure shows eighteen points that are to be grouped into 
four clusters, with initial means computed from the data (blue crosses).

 The next three cross-plots shows the updates after the 1st, 2nd and 3rd iterations:



Elliptical clusters

• Here is a dataset with three elliptical 
clusters, based on an AVO cross-plot:
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 Now K-means fails, because it uses 
Euclidean, not statistical, distance.



The 2-D Gaussian (or Normal) Distribution

8

 The term after the -1/2 inside the brackets is the square of the Mahalanobis, or statistical, 
distance, which is written:
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 To interpret the elliptical shape of these clusters, we need to understand the Gaussian 
distribution, which in two dimensions is written:



The Mahalanobis Distance
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 Using zero means and the terms a, b and c, we can expand the square of the 
Mahalanobis distance as follows:
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 Note that the Mahalanobis, or statistical, distance is differs from the Euclidean 
distance by the inclusion of the inverse covariance matrix, given by:
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 Thus, using the Mahalanobis distance squared creates elliptical contours of variance.



Three special cases
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 There are three special cases of the Mahalanobis distance:

If b ≠ 0, we get tilted ellipses 
(negative slope if b < 0 and 
vice versa).

If b = 0 and a ≠ c, we get 
vertical ( a < c) or horizontal 
(a > c) elliptical curves: 

If b = 0 and a = c , the 
Mahalanobis distance equals 
the Euclidean distance: 
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The Mahalanobis K-means algorithm

• This suggests a modification of the K-means algorithm as follows:

• Pick the number of clusters, K, and divide the input data points randomly into 
these K clusters. 

• Compute the M-dimensional means, k, of the clusters, as well as the 
covariance matrices k within each cluster, where k = 1, 2, … , K.

• Compute the Mahalanobis distances between each point and cluster and 
assign each point to the cluster for which this distance is a minimum. 

• Re-compute the means and covariances based on the new cluster 
assignments.

• Iterate through the above three steps until convergence.

• Now, let’s see how well this algorithm works on our dataset.
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Applying the Mahalanobis distance algortihm

• Here is the result of K-means with 
Mahalanobis distance, and it has worked 
very well on this dataset.

• Although K-means can be modified to 
search based on statistical distance, the 
scikit-learn option, which we will be using 
in the lab today, has not implemented this.

• A more recent clustering method, called 
Gaussian Mixture Modelling, or GMM, 
achieves the same result in a different way. 

• GMM uses the expectation-maximization 
(EM) algorithm, which starts with a 
random guess of the statistics and iterates 
to a solution.
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The Gaussian Mixture Model (GMM)

• To illustrate the Gaussian Mixture Model, or 
GMM, I will use the example shown on the 
right.

• Geologically, the upper set of points represent 
a shale, the lower points a gas sand, and the 
rightmost points a carbonate.

• The points in this dataset were extracted from 
the pre-stack inversion of a Gulf Coast 
dataset.

• Notice that we are cross-plotting inverted 
Vp/Vs ratio against inverted P-impedance (Ip).

• The points are presented to the algorithm in 
random order.
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The Gaussian Mixture Model (GMM) 
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 The Gaussian Mixture Model (GMM) is a mixture pdf of N M-dimensional feature 

vectors xn, which are grouped into K classes CK .

 Each feature vector has a conditional probability given by:
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 GMM starts with an initial guess of the means and covariance matrices of each class, 
and determines the correct values by iterating to a solution.

 Unlike K-means, the data is never physically re-ordered during the process.



Training the GMM via Expectation-Maximization (EM) 
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 The GMM is trained using the Expectation-
Maximization, or EM, algorithm.

 The Gaussian functions can have full, diagonal 
or spherical covariance matrices.

 We will initialize the GMM with three means 
and covariances given by:
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Training the GMM via Expectation-Maximization (EM) 
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 The expectation, or E, step involves first determining the “responsibility” for each 
training point and in each class using Bayes’ Theorem: 
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 This step is repeated until convergence.



Clustered result

• This figure shows our clustered result, 
with their Gaussian contours shown. 

• The colours can be thought of as “labels”, 
which will tell us how to classify the 
points.

• The final statistics are:
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The three Python examples

• Next, I will illustrate how to implement K-means and GMM in Python with scikit-learn.

• I will use the following three examples:

• The classic “blobs” dataset, which is an 2D example found in every Python machine 
learning book using a built-in scikit-learn option (all the authors shamelessly copy 
their examples from the scikit-learn tutorials!) .

• A more realistic set of three elliptical 2D clusters.

• A multi-dimensional seismic example that comes from the Blackfoot dataset and 
involves performing facies classification. 

• Before looking at the Python code, let me explain each of the examples in a little more 
detail.
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Example 1: Making “blobs”

• The classic “blobs” dataset is a 2D example 
found in every Python machine learning book 
using a built-in scikit-learn option.

• It is initialized as follows, producing the result 
shown on the right:
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• Note that I have used the “make_blobs” option to create four clusters of points with 
a total number of 150 samples, each with a standard deviation of 0.5.

• Since there is no covariance term, the blobs will all be circular.



Example 2: Three elliptical clusters
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• To create clusters with elliptical shapes I used 
mvnrnd (multivariate random) in Matlab and 
then randomized their order.

• Each cluster had 50 points and their final form 
is shown in the plot on the right.

• The three means are different but the 
covariance matrix is the same for all three:

• I saved the X and Y coordinates of the points and their labels in the separate files: 
Three_Clusters.txt and Three_Clusters_Labels, to be read into Python.



Example 3: The Blackfoot dataset

• In our third example, we will apply 
the K-means and GMM algorithms to 
the Blackfoot dataset from Alberta, 
shown on the right.

• The algorithms will be applied to a 10 
ms (5 sample) window below the 
Lower Mannville event.
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Lower Mannville:

20 ms window

 This means that we are doing the clustering in 5-dimensional space.



Example 3: The Blackfoot dataset

• The Blackfoot dataset therefore consists of 5 
data slices from the seismic volume between 
times of 10 ms and 18 ms below the Lower 
Manville.

• I extracted the data slices the HampsonRussell 
GeoView program using our Python Ecosystem.

• I then saved it as a 5 column ASCII file called 
Blackfoot_data.txt, which will be read into the 
Python program.
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• The figure shown here is one of the data slices after being re-shaped to its correct map 
coordinates, plotted in Python.
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Appendix 1: Results

Blobs example, with std. dev. = 0.5
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Appendix 1: Results

Elliptical clusters example.
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Appendix 1: Results

Blackfoot data map 
slices.
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Appendix 1: Results

Blackfoot data clustering results with 10 clusters.
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Appendix 2: scikit-learn documentation

In this appendix, I have included the documentation for the options used in 
Python from scikit-learn.
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make_blobs in scikit-learn:
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make-blobs in scikit-learn:
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K-means in scikit-learn:
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K-means in scikit-learn:
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K-means in scikit-learn:
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GMM in scikit-learn:
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GMM in scikit-learn:
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GMM in scikit-learn:
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