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Data Science

Data Science is a growing field with different tasks and applications. Everyday mo
career course and moving to this relatively new and exciting area. Here at the CRE
engaged on research and dissemination of what is new in the data science world.

With the CREWES Data Science Learning Labs, we focus on the learning steps to
can bring business value to your organization. The labs will focus on how a data sc
reading, through data cleaning and pre-processing, visualization, data transformatic
finishing with app development/deployment. Join us for bi-weekly webinars begins
announced) to get access to codes and "cookbooks."

Lab 0: July 2, 2020, Noon (MST): Introduction to R and Shiny

In our first lab we will set out our goals, define a learning path, and introduce both
building of apps with the Shiny library.
Data Science Lab 0 (video),

Lab 1: July 16, 2020, Noon (MST): WTI crude oil price forecasting
algorithm

In this lab, we will present a workflow in R to predict the WTTI crude oil price that -
from the Quandl database, as well as the univariate forecast algorithm Facebook Pr
demonstration of an app built in Shiny.
Register for the live Zoom presentation
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ENERGY CONSUMPTION AND PRICE

Machine learning techniques to analyze and
forecast energy consumption and price

OIL & GAS

Machine learning as a tool to help interpretation and
decision making

RENEWABLE ENERGY

How machine learning is used to optimize the use
of renewable resources

LEARNING SESSIONS 2021
What expect for this year




“Just as electricity transformed almost
everything 100 years ago, today | actually have
a hard time thinking of an industry that | don't
think artificial intelligence will transform in
the next several years.”

— Andrew NG
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ENERGY CONSUMPTION
AND PRICE

Examples of energy consumption and price
forecasting (plus other things)




MACHINE LEARNING-BASED APPROACH TO PREDICT ENERGY
CONSUMPTION OF RENEWABLE AND NONRENEWABLE POWER
SOURCES by Khan, P.W.; Byun, Y.-C.; Lee, S.-J.; Kang, D.-H.; Kang, J.-Y.; Park, H.-S, 2020

o o
: ogg}gvag
225
5] JEC
Incheor]
QI T
¢ | |
CHUNG
Son KPX KEPCO

nnnnn
ok

rT

Non-renewable
Energy

T_\

Renewable
Energy

JEJU ISLAND is used as a test
lab

REPLACE non-renewable

energy by renewable energy by
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FORECAST energy consumption
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Non-renewable energy sources
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A MACHINE LEARNING APPROACH ON THE RELATIONSHIP AMONG
SOLAR AND WIND ENERGY PRODUCTION, COAL CONSUMPTION, GDP,
AND C02 EMISSIONS by Magazzino, C.; Mele, M.; Schneider, N., 2021
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DISCUSSION

Relationships found on the paper:

1. There is apparent unilateral causality between GDP and CO, emissions. Higher GDP causes higher
CO, emissions, but the opposite is not true (do you agree with that information?).

2. Bi-directional causality between GDP and coal consumption.

3. No apparent cause effect of wind and solar energies with CO, emissions. Only India showed some
correlation, but due to equipment construction and drying peat bogs.

4. Strong causal effect of coal consumption with CO, emissions.

5. Possibility to forecast CO, emissions.




. TEXT-BASED CRUDE OIL PRICE FORECASTING: A DEEP LEARNING APPROACH
= by Li, X.; Shang, W.; Wang, S., 2019

CRUDE OIL FORECAST is a
complex task that involves supply
and demand variables, as well
unpredictable factors

CRUDE OIL NEWS column from
Investing.com

“ FORECAST brent crude oil price




METHODOLOGY

Topic words in each of the topics.

System Design Topic proportion  Top 20 topic words with the largest weights
Data Retrieval Data Preprocessing Topic 1 20.50% natural, gas, futures, weather, U.S, supply, forecasts, data, low, prices, high, gains, rally, focus, report, storage, mild,
outlook, warm, off
Topic2  68.80% crude, oil, U.S, stocks, data, futures, low, supply, dollar, Asia, gains, up, ahead, euro, NYNEX, high, China, fall, rise, fed
Topic3  3.92% oil, white, house, Iran, Russia, state, energy, export, China, inflation, new, bank, ban, rates, exclusive, U.S,
manufacturing, index, fuel, Mexico
Tokenization, Topic4  6.76% stocks, trade, close, down, low, up, high, composite, FTSE, Dax, S&P, Dow, Jones, industrial, China, U.S, Malaysia,
Crude oil news stop-words mixed, Russia, shares
. T . T ’ ’
headlines filtering, and S - - - - - - - - -
term weighting | [, Note: Topic words with the largest weights in each of the topics evaluated by the LDA model. The words in bold are those with specific meanings.
—_— g selection criteria . .
Forecasting performances of the random forest, SVR and linear regression models.
Crude oil price 7 cla Text features (1) Financial features (2) Combination: (1) + (2) Percentage improvement from (2) to (1) + (2)
data 1
MAE
Normalization,
HP filtering Random forest 0.0785 0.0082 0.0073 12.32%
Financial SVR 0.0252 0.0032 0.0030 6.67%
fnancia t Linear regression 0.0854 0.0035 0.0045 —22.22%
market data
RMSE
Random forest 0.0883 0.0092 0.0088 4.55%
SVR 0.0325 0.0041 0.0040 2.50%
Linear regression 0.0953 0.0044 0.0056 —21.42%




RESOURCES — PART 01

« Khan, P.W_; Byun, Y.-C.; Lee, S.-J.; Kang, D.-H.; Kang, J.-Y.; Park, H.-S. Machine Learning-based Approach
To Predict Energy Consumption Of Renewable And Nonrenewable Power Sources. Energies, 2020, 13,
4870.

« Magazzino, C.; Mele, M.; Schneider, N. A Machine Learning Approach On The Relationship Among Solar
And Wind Energy Production, Coal Consumption, GDP, And CO, Emissions. Renewable Energy, 2021, 167,
99-167.

« Li, X.; Shang, W.; Wang, S. Text-based Crude Oil Price Forecasting: A Deep Learning Approach.
International Journal of Forecasting, 2019, 4, 1548-1560.


https://doi.org/10.3390/en13184870
https://doi.org/10.1016/j.renene.2020.11.050
https://doi.org/10.1016/j.ijforecast.2018.07.006

02

OIL & GAS

Machine learning as a tool to help
interpretation and decision making




B0 MACHINE LEARNING METHODS IN GEOSCIENCE by Maniar, H; Ryali, S Kulkarni, ..
=M. S.; Abubakar, A., 2018
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https://www.researchgate.net/publication/337335508_Variability_of_Geologic_Properties_of_Shale_Gas_and_Tight_Oil_Plays
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e FIAA

MACHINE LEARNING ASSISTED VELOCITY AUTO-PICKING by Kenneth Smith, 2017
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DATA DRIVEN PRODUCTION FORECASTING USING MACHINE LEARNING
= by Q.; Banerjee, R.; Gupta, S.; Li, J.; Zhou, W.; Jeyachandra, B., 2018

m Data Preparation Normalized feature Machine Learning

e FIAA
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FORECASTING FOR EXISTING WELLS
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FORECASTING FOR NEW WELLS
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APPLICATION OF ARTIFICIAL INTELLIGENCE TO FORECAST

‘"HYDROCARBON PRODUCTION FROM SHALES by Panja, P; Velasco, R.; Pathak, M.;
Deo, M., 2018
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METHODOLOGY
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44 coefficients
LSSVM 1 Regularization parameter () 100 2 2 0.6 1000
1 Kernel parameter (o)
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FORECASTING

/ Table A1
Coefficient of determination (R?) of RSM, LSSVM and ANN for all models.
3.0 4000 —
Oil Recovery (%) at 90 days Output Model Training Data Test Data
° Test Data os
3 24 Test Data . 3 3000 . ° RSM ISSYM ANN RSM LSSVM ANN
§ 1.8 a8 : g . o ¢ Oil Recovery 90 days 099 099 096 0.69 052 0.51
) () 2 1 year 098 099 098 0.78 069 0.53
L . > L .
S, - § 2000 5 years 099 099 099 063 081 060
g § 10years 099 099 098 091 09 0.72
@ Py 3 1000 o RSM 15years 099 099 099 097 093 084
06 o AN o AN Rate 098 098 099 057 054 048
® LSSVM ® LSSVM Based
0.0 3 0 Gas Oil Ratio 90 days 098 099 095 092 084 0.80
0.0 0.6 1.2 1.8 2.4 3.0 0 1000 2000 3000 4000 1 year 098 098 096 093 091 0.90
Simulation Simulation 5 years 098 098 097 041 073 0.30
(a) (d) 10 years 088 092 093 076 073 0.46
25 5000 15 years 083 077 084 079 075 0.32
. Rate 084 088 092 068 045 0.43
3 20 Test Data o e . 4000 Based
3 .. *: 3
S 15 P— s < 3000
2 * . o
3 . H §‘, 2000 1anle AZ
§1° P . § Normalized Root Mean Square Error (NRMSE) of RSM, LSSVM and ANN for all
3 % RoM @« | < RSM models.
5 ® ANN 1000 i ® ANN
. s © LSSVM Output Model  Training Data Test Data
0 ° o 1000 2000 3000 4000 5000 RSm M _ANN RSM LSSVM ANN
0 5 10 15 20 25 "
Simulation Simulation Oil Recovery 90 days 19 19 35 165 203 20.7
(e) 1 year 24 23 25 124 147 18.1
45 ; 8000 5 years 20 19 21 161 115 16.7
Ol Recovery (%) Gas Oil Rello (SCFISTB) | * 10 years 19 17 26 79 85 14
36 at oil rate 5STB/day/frac. at ol rate 5STB/day/frac. . 15 years 27 24 21 4.9 73 108
g Test Data . % 6000 Test Data 3 Rate 35 33 24 207 212 226
S 27 o3 S 2o . o Based
) R §. 2 4000 c Gas Oil Ratio 90 days 26 20 46 8.7 118 133
S e c s . g b SE I 1 year 33 33 42 79 93 9.7
§ 18 ¢ . ° §’ P R 5 years 30 31 37 240 161 262
a f: s Yy . . Py @ 2000 o g =T 10years 57 46 43 161 172 243
9 |8g0 o ® ANN “..p; . ® ANN 15 years 58 6.8 56 144 155 257
. b ® LSSVM i ° LssvM Rate 52 45 38 141 184 188
o - 0 Based
0 9 18 27 36 45 0 2000 4000 6000 8000
Simulation Simulation [ ] [ ) [ ) [ ] [ )
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. POROSITY PREDICTION USING MACHINE LEARNING by Jiang, L.; Castagna, J. P.;
s Russell, B., 2020
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« Maniar, H.; Ryali, S.; Kulkarni, M. S.; Abubakar, A. Machine Learning Methods In Geoscience. SEG
Technical Program Expanded Abstracts, 2018, 4638-4642.

« Smith, K. Machine Learning Assisted Velocity Autopicking. SEG Technical Program Expanded Abstracts,
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Symposium, Buenos Aires, Argentina, June 2016.
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Production From Shales. Petroleum, 2018, 4, 75-89.

- Jiang, L.; Castagna, J. P.; Russell, B. Porosity Prediction Using Machine Learning. SEG Technical Program
Expanded Abstracts, 2020, 3862-3866.
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WIND POWER FORECASTING BASED ON DAILY WIND SPEED DATA USING ..
MACHINE LEARNING ALGORITHMS by Demolli, H.; Dokuz, A. S.; Ecemis, A.; Gokcek, M.,

2019
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. Forecasting accuracy of the algorithms for daily wind speed and standard de-

viation.
Algorithm/Metric R2 RMSE MAE
LASSO 0.8619 164.61 88.85
kNN 0.9852 53.82 7.197
xGBoost 0.9939 34.40 6.528
SVR 0.992 38.52 5.430
RF 0.995 30.224 7.048
Forecasting accuracy of the algorithms using only daily wind speed.
Algorithm/Metric R2 RMSE MAE
LASSO 0.823 186.10 94.67
kNN 0.943 105.76 42.47
XGBoost 0.932 115.47 41.58
SVR 0.955 93.13 32.63
RF 0.921 123.88 42.76
[ ] [ J
[} [



QUANTIFYING ROOFTOP PHOTOVOLTAIC SOLAR ENERGY POTENTIAL: A £%%
MACHINE LEARNING APPROACH by Assouline, D.; Mohajeri, N.; Scartezzini, J. L., 2017 y

PHOTOVOLTAIC (PV) potential
on rooftops in Switzerland using
SVM and GIS

RESULTS show that 81% of
rooftops (328 km?) could be used
for solar energy

TOTAL energy generated could
be of around 17.86 TW h, or 28%
of energy consumption in 2015
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Fig. 3. Schematic presentation of different steps to estimate available roof area using ArcGIS. (a) Building polygon
(e.g. chimney, dormers, staircase), (b) removing the superstructures from roof surfaces, (c) creating 1 m? buffer ari

roof area for PV installation after removing the areas smaller than 28 m?.
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SIGNIFICANT WAVE HEIGHT AND ENERGY FLUX PREDICTION FOR
MARINE ENERGY APPLICATIONS: A GROUPING GENETIC ALGORITHM -

EXTREME LEARNING MACHINE APPROACH by cornejo-Bueno, L.; Nieto-Borge, J. C.;
Garcia-Diaz, P.; Rodriguez, G.; Salcedo-Sanz, S., 2016

KINNECT ENERGY is converted
to electric energy from wind-
generated waves with the Wave
Energy Converter (WEC)

MEASURING 2 important
parameters: wave height (Hm )
and wave energy flux (P)

FEATURE SELECTION with
GGA and predictions with



https://erdem.pl/2020/05/introduction-to-extreme-learning-machines
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« Demolli, H.; Dokuz, A. S.; Ecemis, A.; Gokcek, M. Wind Power Forecasting Based On Daily Wind Speed
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Machine Learning Approach. Solar Energy, 2017, 141, 278-296.
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PLANS FOR 2021

Still bi-weekly
“Reproduce” the methodology of a ™ CODES and all the material will
paper (hands-on) be available at the

website (1-2 days after the lab)

Focus in Python



https://www.crewes.org/ResearchLinks/DataScience/
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