

AN OVERVIEW OF MACHINE LEARNING APPLICATIONS ON THE ENERGY SECTOR

Marcelo Guarido

Daniel Trad

HOSTS

Marcelo Guarido

Data Scientist with PhD in Geophysics Head of the CREWES Data Science Initiative.

Daniel Trad

Associate Professor and Chair in Exploration Geophysics at University of Calgary.

CREWES Data Science Initiative

FCR	Home About CREWES Research Links For Our Sponsors					
Data Science	Data Science					
Full Waveform Inversion	Data Science is a growing field with different tasks and applications. Everyday mo career course and moving to this relatively new and exciting area. Here at the CRE engaged on research and dissemination of what is new in the data science world.					
Converted Waves	With the CREWES Data Science Learning Labs, we focus on the learning steps to					
Joint Inversion	can bring business value to your organization. The labs will focus on how a data se reading, through data cleaning and pre-processing, visualization, data transformation finishing with app development/deployment. Join us for bi-weekly webinars begin					
Graduate Theses	announced) to get access to codes and "cookbooks."					
Explorer Programs	Lab 0: July 2, 2020, Noon (MST): Introduction to R and Shiny					
Free Seismology	In our first lab we will set out our goals, define a learning path, and introduce both building of apps with the Shiny library. Data Science Lab 0 (video)					
Textbook & Software	Lab 1: July 16, 2020, Noon (MST): WTI crude oil price forecasting					
Online Papers	algorithm					
Publications	In this lab, we will present a workflow in R to predict the WTI crude oil price that from the Quandl database, as well as the univariate forecast algorithm Facebook Pr demonstration of an app built in Shiny.					
Errata	Register for the live Zoom presentation					

01

02

03

04

ENERGY CONSUMPTION AND PRICE

Machine learning techniques to analyze and forecast energy consumption and price

OIL & GAS

Machine learning as a tool to help interpretation and decision making

RENEWABLE ENERGY

How machine learning is used to optimize the use of renewable resources

> LEARNING SESSIONS 2021 What expect for this year

"Just as electricity transformed almost everything 100 years ago, today I actually have a hard time thinking of an industry that I don't think artificial intelligence will transform in the next several years."

Andrew NG

01

ENERGY CONSUMPTION AND PRICE

Examples of energy consumption and price forecasting (plus other things)

MACHINE LEARNING-BASED APPROACH TO PREDICT ENERGY CONSUMPTION OF RENEWABLE AND NONRENEWABLE POWER SOURCES by Khan, P.W.; Byun, Y.-C.; Lee, S.-J.; Kang, D.-H.; Kang, J.-Y.; Park, H.-S, 2020

ENERGY MW

Total consumption (renewable + nonrenewable)

MODEL

Hybrid model

COMPARE

Against other models

FORECASTING

. . . .

A MACHINE LEARNING APPROACH ON THE RELATIONSHIP AMONG SOLAR AND WIND ENERGY PRODUCTION, COAL CONSUMPTION, GDP, AND CO₂ EMISSIONS by Magazzino, C.; Mele, M.; Schneider, N., 2021

among solar and wind energy production, coal consumption, economic growth, and CO₂ emissions

USA, CHINA, AND INDIA are studied in this paper

COUNTRIES with the larger investments on renewable energy, but also the highest CO₂ emissions.

Relationships found on the paper:

- 1. There is apparent unilateral causality between **GDP** and **CO**₂ emissions. Higher GDP causes higher CO_2 emissions, but the opposite is not true (do you agree with that information?).
- 2. Bi-directional causality between **GDP** and **coal consumption**.
- 3. No apparent cause effect of **wind and solar energies** with **CO**₂ **emissions**. Only India showed some correlation, but due to equipment construction and drying peat bogs.
- 4. Strong causal effect of **coal consumption** with **CO**₂ **emissions**.
- 5. Possibility to forecast **CO₂ emissions**.

TEXT-BASED CRUDE OIL PRICE FORECASTING: A DEEP LEARNING APPROACH by Li, X.; Shang, W.; Wang, S., 2019

CRUDE OIL FORECAST is a

complex task that involves supply and demand variables, as well unpredictable factors

CRUDE OIL NEWS column from Investing.com

FORECAST brent crude oil price

METHODOLOGY

				- Topic words in	each of the topic	s.				
Syster	em Design			Тс	opic proportion	Top 20 topic	words with the largest we	ghts		
	Data Retrieval Data Preprocessing			Topic 1 20	opic 1 20.50% natural, gas , futures, weather , U.S, supply, forecasts, data, low, prices, high, gains, rally, focus, report, storage outlook, warm , off					
	Crude oil news	Tokenization, stop-words		Topic 2 68 Topic 3 3.9 Topic 4 6.7	 68.80% crude, oil, U.S, stocks, data, futures, low, supply, dollar, Asia, gains, up, ahead, euro, NYNEX, high, China, fall, rise, fed 3.92% oil, white, house, Iran, Russia, state, energy, export, China, inflation, new, bank, ban, rates, exclusive, U.S, manufacturing, index, fuel, Mexico 6.76% stocks, trade, close, down, low, up, high, composite, FTSE, Dax, S&P, Dow, Jones, industrial, China, U.S, Malaysia, mixed, Russia, shares 					
	incatinities	term weighting		Vote: Topic wo	rds with the large cause grouping based on LDA	VAR lag o selection cri random fores	each of the topics evaluated rder teria t, SVR and linear regression	l by the LDA model. The word	ds in bold are those with specific meanings.	
	Crude oil price data Financial market data		cl	MAE	Text fe	atures (1)	Financial features (2)	Combination: $(1) + (2)$	Percentage improvement from (2) to $(1) + (2)$	
		Normalization, HP filtering		Random fores SVR Linear regress	st 0.0785 0.0252 sion 0.0854		0.0082 0.0032 0.0035	0.0073 0.0030 0.0045	12.32% 6.67% -22.22%	
				Random fores SVR Linear regress	st 0.0883 0.0325 sion 0.0953		0.0092 0.0041 0.0044	0.0088 0.0040 0.0056	4.55% 2.50% -21.42%	

-
-

RESOURCES – PART 01

- Khan, P.W.; Byun, Y.-C.; Lee, S.-J.; Kang, D.-H.; Kang, J.-Y.; Park, H.-S. Machine Learning-based Approach To Predict Energy Consumption Of Renewable And Nonrenewable Power Sources. *Energies*, 2020, 13, 4870. <u>https://doi.org/10.3390/en13184870</u>
- Magazzino, C.; Mele, M.; Schneider, N. A Machine Learning Approach On The Relationship Among Solar And Wind Energy Production, Coal Consumption, GDP, And CO₂ Emissions. *Renewable Energy*, 2021, 167, 99-167. <u>https://doi.org/10.1016/j.renene.2020.11.050</u>
- Li, X.; Shang, W.; Wang, S. Text-based Crude Oil Price Forecasting: A Deep Learning Approach. International Journal of Forecasting, 2019, 4, 1548-1560. <u>https://doi.org/10.1016/j.ijforecast.2018.07.006</u>

02

OIL & GAS

Machine learning as a tool to help interpretation and decision making

WELL LOG CORRELATION

Using GR and resistivity (triple combo)

FAULT DETECTION

On 2D seismic data

MACHINE LEARNING ASSISTED VELOCITY AUTO-PICKING by Kenneth Smith, 2017

SEMBLANCE auto-picking

UNSUPERVISED learning using k-nearest neighbors

CLUSTER centroid is used as the picking point

EXISTING WELL

NEW WELL

FORECASTING FOR EXISTING WELLS

FORECASTING FOR NEW WELLS

600.000

Produ

0.000 7/10/2012

8/29/2012

10/18/2012

12/7/2012

500.000 400.000 A00.000 (STB/day) 300.000 Actual ANN 200.000 100.000

1/26/2013

3/17/2013

5/6/2013

6/25/2013

8/14/2013

Production Forecasting for a new well

10/3/2013

Surrogate Mo	odel	Particle Swarm Optimization					
Name Parameters Optimized		Number of Particles for a single parameter	C ₁	C ₂	w	Maximum Iteration	
RSM	1 intercept 44 coefficients	100	2	2	0.6	1000	
LSSVM	1 Regularization parameter (γ) 1 Kernel parameter (σ)	100	2	2	0.6	1000	
ANN	15 Biases 126 wt	100	2	2	0.6	1000	

FORECASTING

Output	Model	Traini	ng Data		Test Data		
		RSM	LSSVM	ANN	RSM	LSSVM	ANN
Oil Recovery	90 days	0.99	0.99	0.96	0.69	0.52	0.51
	1 year	0.98	0.99	0.98	0.78	0.69	0.53
	5 years	0.99	0.99	0.99	0.63	0.81	0.60
	10 years	0.99	0.99	0.98	0.91	0.9	0.72
	15 years	0.99	0.99	0.99	0.97	0.93	0.84
	Rate	0.98	0.98	0.99	0.57	0.54	0.48
	Based						
Gas Oil Ratio	90 days	0.98	0.99	0.95	0.92	0.84	0.80
	1 year	0.98	0.98	0.96	0.93	0.91	0.90
	5 years	0.98	0.98	0.97	0.41	0.73	0.30
	10 years	0.88	0.92	0.93	0.76	0.73	0.46
	15 years	0.83	0.77	0.84	0.79	0.75	0.32
	Rate Based	0.84	0.88	0.92	0.68	0.45	0.43

Table A2 Normalized Root M models.	ean Squar	e Error (NRMSE) of RSM,	LSSVM and ANN for all
Output	Model	Training Data	Test Data

		RSM	LSSVM	ANN	RSM	LSSVM	ANN
Oil Recovery	90 days	1.9	1.9	3.5	16.5	20.3	20.7
	1 year	2.4	2.3	2.5	12.4	14.7	18.1
	5 years	2.0	1.9	2.1	16.1	11.5	16.7
	10 years	1.9	1.7	2.6	7.9	8.5	14
	15 years	2.7	2.4	2.1	4.9	7.3	10.8
	Rate	3.5	3.3	2.4	20.7	21.2	22.6
	Based						
Gas Oil Ratio	90 days	2.6	2.0	4.6	8.7	11.8	13.3
	1 year	3.3	3.3	4.2	7.9	9.3	9.7
	5 years	3.0	3.1	3.7	24.0	16.1	26.2
	10 years	5.7	4.6	4.3	16.1	17.2	24.3
	15 years	5.8	6.8	5.6	14.4	15.5	25.7
	Rate	5.2	4.5	3.8	14.1	18.4	18.8
	Based						

• • •

POROSITY predicted from seismic data

SPECTRAL decomposition

HIGHER correlation then conventional methods

Methods	SVR	RF	MLP	PNN
Conventional seismic attributes	0.88	0.90	0.89	0.74
Conventional seismic attributes and SD attributes	0.91	0.89	0.91	0.82
SD seismic attributes	0.84	0.83	0.89	0.70
SD seismic attributes (narrow frequency bands)	0.86	0.80	0.94	N/A

Methods	SVR	RF	MLP	PNN
Conventional seismic attributes	0.56	0.48	0.66	0.41
Conventional seismic attributes and SD attributes	0.74	0.56	0.64	0.78
SD seismic attributes	0.58	0.50	0.55	0.72
SD seismic attributes (narrow frequency band)	0.81	0.72	0.71	N/A
·	•			

FIELD DATA

SYNTHETIC

RESOURCES – PART 02

- Maniar, H.; Ryali, S.; Kulkarni, M. S.; Abubakar, A. Machine Learning Methods In Geoscience. SEG Technical Program Expanded Abstracts, 2018, 4638-4642. <u>10.1190/segam2018-2997218.1</u>
- Smith, K. Machine Learning Assisted Velocity Autopicking. SEG Technical Program Expanded Abstracts, 2017, 5686-5690. <u>10.1190/segam2017-17684719.1</u>
- Cao, Q.; Banerjee, R.; Gupta, S.; Li, J.; Zhou, W.; Jeyachandra, B. Data Driven Production Forecasting Using Machine Learning. SPE Argentina Exploration and Production of Unconventional Resources Symposium, Buenos Aires, Argentina, June 2016. <u>https://doi.org/10.2118/180984-MS</u>
- Panja, P; Velasco, R.; Pathak, M.; Deo, M. Application Of Artificial Intelligence To Forecast Hydrocarbon Production From Shales. *Petroleum*, **2018**, *4*, 75-89. <u>https://doi.org/10.1016/j.petlm.2017.11.003</u>
- Jiang, L.; Castagna, J. P.; Russell, B. Porosity Prediction Using Machine Learning. *SEG Technical Program Expanded Abstracts*, **2020**, 3862-3866. <u>10.1190/segam2020-w13-04.1</u>

RENEWABLE ENERGY

03

How machine learning is used to optimize the use of renewable resources

WIND POWER FORECASTING BASED ON DAILY WIND SPEED DATA USING MACHINE LEARNING ALGORITHMS by Demolli, H.; Dokuz, A. S.; Ecemis, A.; Gokcek, M., 2019

.

QUANTIFYING ROOFTOP PHOTOVOLTAIC SOLAR ENERGY POTENTIAL: A MACHINE LEARNING APPROACH by Assouline, D.; Mohajeri, N.; Scartezzini, J. L., 2017

PHOTOVOLTAIC (PV) potential on rooftops in Switzerland using SVM and GIS

RESULTS show that 81% of rooftops (328 km²) could be used for solar energy

TOTAL energy generated could be of around 17.86 TW h, or 28% of energy consumption in 2015

• • • • •

Fig. 3. Schematic presentation of different steps to estimate available roof area using ArcGIS. (a) Building polygon (e.g. chimney, dormers, staircase), (b) removing the superstructures from roof surfaces, (c) creating 1 m² buffer ar for PV (A_R) to the average available roof area for PV (A_R) to the average ground floor area (A_y) for each commune, percentage (b) total available roof area in each commune, km².

Fig. 6. Annual tilted solar radiation for one specific slope and azimuth configuration (slope = 35° and azimuth = 10°) out 63 configuration.

Fig. 7. Technical potential of rooftop PV electricity production for each commune in Switzerland, GW h/month.

SIGNIFICANT WAVE HEIGHT AND ENERGY FLUX PREDICTION FOR MARINE ENERGY APPLICATIONS: A GROUPING GENETIC ALGORITHM – EXTREME LEARNING MACHINE APPROACH by Cornejo-Bueno, L.; Nieto-Borge, J. C.; García-Díaz, P.; Rodríguez, G.; Salcedo-Sanz, S., 2016

KINNECT ENERGY is converted to electric energy from windgenerated waves with the Wave Energy Converter (WEC)

 $\begin{array}{l} \textbf{MEASURING 2 important} \\ \text{parameters: wave height } (H_{m_0}) \\ \text{and wave energy flux } (P) \end{array}$

FEATURE SELECTION with GGA and predictions with <u>ELM</u>

RESOURCES – PART 03

- Demolli, H.; Dokuz, A. S.; Ecemis, A.; Gokcek, M. Wind Power Forecasting Based On Daily Wind Speed Data Using Machine Learning Algorithms. *Energy Conversion and Management*, **2019**, *198*. <u>https://doi.org/10.1016/j.enconman.2019.111823</u>
- Assouline, D.; Mohajeri, N.; Scartezzini, J. L. Quantifying Rooftop Photovoltaic Solar Energy Potential: A Machine Learning Approach. *Solar Energy*, **2017**, *141*, 278-296. <u>https://doi.org/10.1016/j.solener.2016.11.045</u>
- Cornejo-Bueno, L.; Nieto-Borge, J. C.; García-Díaz, P.; Rodríguez, G.; Salcedo-Sanz, S. Significant Wave Height And Energy Flux Prediction For Marine Energy Applications: A Grouping Genetic Algorithm – Extreme Learning Machine Approach. *Renewable Energy*, **2016**, *97*, 380-389. https://doi.org/10.1016/j.renene.2016.05.094

04

LEARNING SESSIONS 2021

What expect for this year

31 der ____ self.file 32 self.fingerprimts 33 self, logdupes 34 self.debug 35 self.logger 36 path: if 37 self.file 38 self.file. 39 self.fingerprints 40 41 classmethod 42 def from_settings(cls. 43 44 45 46 47 48 49 50 51 52 53 settings.ge debug = return cls(job_dir() def request_seen(self, = self.request_t fp fp in self.fing return True self.fingerprints. if self.file: self.file.wri def request_fingerpri return request_f:

PLANS FOR 2021

CODES and all the material will be available at the <u>CREWES</u> website (1-2 days after the lab)

Still bi-weekly

"Reproduce" the methodology of a paper (hands-on)

Focus in Python

