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About CREWES

Research Links || For Our Sponsors

Data Science

Data Science is a growing field with different tasks and applications. Everyday mo
career course and moving to this relatively new and exciting area. Here at the CRE
engaged on research and dissemination of what is new in the data science world.

With the CREWES Data Science Learning Labs, we focus on the learning steps to
can bring business value to your organization. The labs will focus on how a data sc
reading, through data cleaning and pre-processing, visualization, data transformatic
finishing with app development/deployment. Join us for bi-weekly webinars begins
announced) to get access to codes and "cookbooks."

Lab 0: July 2, 2020, Noon (MST): Introduction to R and Shiny

In our first lab we will set out our goals, define a learning path, and introduce both
building of apps with the Shiny library.
Data Science Lab 0 (video),

Lab 1: July 16, 2020, Noon (MST): WTI crude oil price forecasting
algorithm

In this lab, we will present a workflow in R to predict the WTTI crude oil price that -
from the Quandl database, as well as the univariate forecast algorithm Facebook Pr
demonstration of an app built in Shiny.
Register for the live Zoom presentation




PAPER OVERVIEW
Presenting the proposed solution

HYBRID MODELS

How to create a hybrid model using the package
mixtend

REGRESSION
Coding: how to stack regression models

CLASSIFICATION

Coding: ensemble voting system for trained
classifiers




MACHINE LEARNING-BASED APPROACH TO PREDICT ENERGY
CONSUMPTION OF RENEWABLE AND NONRENEWABLE POWER
SOURCES by Khan, P.W.; Byun, Y.-C.; Lee, S.-J.; Kang, D.-H.; Kang, J.-Y.; Park, H.-S, 2020
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JEJU ISLAND is used as a test
lab

REPLACE non-renewable

energy by renewable energy by
2030

FORECAST energy consumption
(MW) from all sources



Non-renewable energy sources

5
8 8
s S

2012 2013 2014 2015 2016 2017 2018 2019
Date

2020

N
(v

Renewable energy sources

| Training Data |
v

| Input features |

____________________ [ 2

Catboost Multilayer perceptron

| Preliminary calculation of splits |

| Features transformation |

| Choosingthe tree structure

| Forecasting | | Forecasting | | Forecasting |

[
v

| Hybrid Forecasting |

ENERGY MW

Total consumption
(renewable + non-
renewable)

MODEL

Hybrid model

COMPARE

Against other models



FORECASTING

700

500

Jun
2019

03

Error Value

120

~— Actual
= Predicted

~ o ™™

Ai

Ridge GradientBoost MLPRegressor

u MAE

XGBoost Proposed

B RMSE

Jul



RESOURCE

« Khan, P.W_; Byun, Y.-C.; Lee, S.-J.; Kang, D.-H.; Kang, J.-Y.; Park, H.-S. Machine Learning-based Approach
To Predict Energy Consumption Of Renewable And Nonrenewable Power Sources. Energies, 2020, 13,
4870.


https://doi.org/10.3390/en13184870
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