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Motivation

Started deep learning using Tensorflow with 12 lines of code!

Functions and mechanics behind?
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Agenda

• Introduction
• Prior knowledge
• Database & Problem
• Artificial Neural Networks
• Computation Graphs & Derivatives
• Logistic Regression cost function

• Shallow Learning
• Parameter Initialization
• Forward Propagation
• Compute Loss
• Backward Propagation
• Update Parameters

• Deep Learning
• Similar to shallow learning…

• Prediction and Visualization
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*The framework and majority of codes of this work comes from Andrew Ng's Deep Learning course.



To be comfortable with this work: 

Fundamental knowledge of:

• Linear Algebra (Matrix multiplication) 

• Multivariate Calculus (Derivation & Chain rule)

• Python 3 & Numpy

• Neural Networks terminology

4 of 41



Dataset & Problem

For simplicity, binary 
classification problem 
(shale/sand) prediction from 
well logs (FORCE2020 
completion data)

• 3 Wells for Training

• 1 Well for Testing
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Artificial Neural Networks

• Info (X) receive

• Some operation (W,b) (Sum, Activation)

• Output( ො𝑦) Vs. Target(y)

• Minimize error ( ො𝑦, y) adjusting (W,b)

• Learning from Loop 

Forward Propagation Backward Propagation
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True value

y



Computation Graphs & Derivatives
Suppose we have a function J:

𝑱 𝑎, 𝑏, 𝑐 = 2(𝑎 + 𝑏𝑐)
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u = 𝑏𝑐

v = a + u J = 2v

a=3

𝑏=2

𝑐=5

M𝑖𝑛𝑖𝑚𝑖𝑧𝑖𝑛𝑔 𝐽 (𝑏𝑎𝑐𝑘 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛) 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜:

𝑑𝐽

𝑑𝑣
= 2

𝑑𝐽

𝑑𝑎
=

𝑑𝐽

𝑑𝑣
×
𝑑𝑣

𝑑𝑎
= 2 ∗ 1 = 2

In NN we usually try to minimize loss function with respect to (W, b) parameters 

and for convention we will write 𝑑𝑤, instead of 
𝑑𝐽

𝑑𝑤

3 steps to compute:
u = 𝑏𝑐
v = a + u
J = 2v



Logistic Regression cost function

For this binary problem(shale:0, Sand:1) the most convenient algorithm 
is logistic regression for classification 
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𝜎 𝑧 =
1

1 + 𝑒−𝑧
Loss Function in theory:  𝐿 ෝ𝑦, 𝑦 =

1

2
ො𝑦 − 𝑦 2

Cross Entropy Loss Function:  𝑳 ෝ𝒚, 𝒚 = −(𝒚𝒍𝒐𝒈ෝ𝒚 + 𝟏 − 𝒚 𝐥𝐨𝐠 𝟏 − ෝ𝒚 )

• If y =1 ,        𝐿 ෝ𝑦, 𝑦 = −𝑙𝑜𝑔 ො𝑦 and want 𝑙𝑜𝑔 ො𝑦 large, ො𝑦 must be large (1)

for entire training example:                Cost Function:  𝑱 𝒘, 𝒃 = −
𝟏

𝒎
σ𝒊=𝟏
𝒎 𝒚 𝒊 𝒍𝒐𝒈 ෝ𝒚 𝒊 + 𝟏 − 𝒚 𝒊 𝐥𝐨𝐠 𝟏 − ෝ𝒚 𝒊

• If y =0 ,        𝐿 ෝ𝑦, 𝑦 = −log(1 − ො𝑦) and want large, , ො𝑦 must be samll (0)



Gradient Descent
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1 iteration, 1 step

𝑤 ≔ 𝑤 −∝
𝜕𝐽(𝑤, 𝑏)

𝜕𝑤

𝑏 ≔ 𝑏 −∝
𝜕𝐽(𝑤, 𝑏)

𝜕𝑏

Cost Function:  𝑱 𝒘, 𝒃 = −
𝟏

𝒎
σ𝒊=𝟏
𝒎 𝒚 𝒊 𝒍𝒐𝒈 ෝ𝒚 𝒊 + 𝟏 − 𝒚 𝒊 𝐥𝐨𝐠 𝟏 − ෝ𝒚 𝒊

Ref: https://lnkd.in/eyVzZgR

https://lnkd.in/eyVzZgR


Shallow Learning
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Mainly, shallow network consists of a single hidden layer

(1 × 1)

⋯
⋮ ⋱ ⋮

⋯

(5 × 3)

𝑊 1

⋮

(3 × 1)

𝑋

⋮

(5 × 1)

𝑏 1

(1 × 5)

𝑊 2

⋮

(5 × 1)

𝑎 1 𝑏 2

[ ⋯ ]

𝑏 1

𝑋

𝑏 2

𝑍 1 = 𝑊 1 𝑥 + 𝑏 1 𝑎 1 = 𝜎(𝑧 1 ) 𝑍 2 = 𝑊 2 𝑎 1 + 𝑏 2 𝑎 2 = 𝜎(𝑧 2 ) 𝐿(𝑎 2 , 𝑦)
𝑊 1

𝑊 2
𝑑𝑎 2

𝑑𝑧 2𝑑𝑎 1𝑑𝑧 1



Implementation in Python 

• Defining the neural network structure
• layer_sizes
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Initialize the model's parameters
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Forward propagation

• Define and use the function sigmoid()

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 𝑧 =
1

1 + 𝑒−𝑧

• Use the function tanh() from Numpy

tanh 𝑧 =
𝑒𝑧−𝑒−𝑧

𝑒𝑧+𝑒−𝑧
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Forward propagation

• Retrieve each parameter from the dictionary 
"parameters" (output of initialize_parameters() )

• Implement Forward Propagation. Compute  𝑍1, 
𝐴1, 𝑍2  and  𝐴2

• Values needed in the backpropagation are stored 
in "cache". The cache will be given as an input to 
the backpropagation function.
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Compute the Cost

• You can use np.squeeze() to 
remove redundant 
dimensions (in the case of 
single float, this will be 
reduced to a zero-
dimension array). 
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Cost Function:  𝑱 𝒘, 𝒃 = −
𝟏

𝒎
σ𝒊=𝟏
𝒎 𝒚 𝒊 𝒍𝒐𝒈 (𝒂[𝟐] 𝒊 ) + 𝟏 − 𝒚 𝒊 𝐥𝐨𝐠 𝟏 − (𝒂[𝟐] 𝒊



Implement Backpropagation
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𝑑𝑏 1

𝑋

𝑑𝑏 2

𝑍 1 = 𝑊 1 𝑥 + 𝑏 1 𝑎 1 = 𝜎(𝑧 1 ) 𝑍 2 = 𝑊 2 𝑎 1 + 𝑏 2 𝑎 2 = 𝜎(𝑧 2 ) 𝐿(𝑎 2 , 𝑦)
𝑑𝑊 1

𝑑𝑊 2
𝑑𝑎 2

𝑑𝑧 2𝑑𝑎 1𝑑𝑧 1

𝑑𝑎 =
𝑦

𝑎
−
1 − 𝑦

1 − 𝑎



Backpropagation
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Update Parameters
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𝑤 ≔ 𝑤 −∝
𝜕𝐽(𝑤, 𝑏)

𝜕𝑤

𝑏 ≔ 𝑏 −∝
𝜕𝐽(𝑤, 𝑏)

𝜕𝑏



NN Model
Function

• The neural network model 
has to use the previous 
functions in the right order.
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Shallow Learning Progress
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It seems shallow network 
model cannot capture 
complexity of dataset.



Test the Shallow Model
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Deep Learning

𝑊[𝑙] ≔ 𝑊[𝑙] −∝ 𝑑𝑊[𝑙]

𝑏[𝑙] ≔ 𝑏[𝑙] −∝ 𝑑𝑏[𝑙]

𝑊[1] , 𝑏[1] 𝑊[2] , 𝑏[2] 𝑊[3] , 𝑏[3] 𝑊[𝐿] , 𝑏[𝐿]…

𝑊[1] , 𝑏[1]

𝑑𝑧[1]

𝑊[2] , 𝑏[2]

𝑑𝑧[2]

𝑊[3] , 𝑏[3]

𝑑𝑧[3]

𝑊[𝐿] , 𝑏[𝐿]

𝑑𝑧[𝐿]

𝑎[1] 𝑎[2] 𝑎[3] 𝑎[𝐿]

ො𝑦

𝑑𝑎[𝐿]𝑑𝑎[𝐿−1]𝑑𝑎[2]𝑑𝑎[1]

𝑐𝑎𝑐ℎ𝑒 𝑍[1] 𝑐𝑎𝑐ℎ𝑒 𝑍[2] 𝑐𝑎𝑐ℎ𝑒 𝑍[3] 𝑐𝑎𝑐ℎ𝑒 𝑍[𝐿]

𝑑𝑤[𝐿]

𝑑𝑏[𝐿]
𝑑𝑤[3]

𝑑𝑏[3]
𝑑𝑤[2]

𝑑𝑏[2]
𝑑𝑤[1]

𝑑𝑏[1]

…

𝑋



Deep Learning

• Initialize the parameters for an 𝐿-layer neural network

• Forward Propagation

• Complete linear part (Resulting 𝑍[1]])

• Activation function(ReLU/Sigmoid)

• Combine two previous into LINEAR->ACTIVATION forward function

• Stack the forward function L-1 time and add a LINEAR-> SIGMOID at the end

• Compute the loss

• Backward propagation

• Complete linear part

• The gradient of the ACTIVATE function (relu_backward/sigmoid_backward)

• Combine two previous into LINEAR->ACTIVATION backward function

• Stack the backward function L-1 time and add a LINEAR-> SIGMOID at the 
end

• Update the Parameters
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Initialize the parameters for an 𝐿-layer NN

• Initialization for a deeper L-layer NN is more complicated because 
there are many more weight matrices and bias vectors

𝑛[𝑙]: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑢𝑛𝑖𝑡𝑠 𝑖𝑛 𝑙𝑎𝑦𝑒𝑟 𝑙 𝑚 ∶ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (3 ℎ𝑒𝑟𝑒)

24 of 41

3



Initialize the parameters for an 𝐿-layer NN

For 3 input features, 5 nodes in first 
hidden layer, 3 nodes in second layer, 
and 1 output
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Linear Forward

Now, we'll complete three functions in this order:

• LINEAR

• LINEAR -> ACTIVATION where ACTIVATION will be either ReLU or Sigmoid.

• [LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID (whole model)
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Activation Functions
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Linear-Activation Forward
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Now, we'll complete three functions in this order:

• LINEAR

• LINEAR -> ACTIVATION where ACTIVATION will be either ReLU or Sigmoid.

• [LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID (whole model)



L-Layer Model
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Now, we'll complete three functions in this order:

• LINEAR

• LINEAR -> ACTIVATION where ACTIVATION will be either ReLU or Sigmoid.

• [LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID (whole model)

For even more convenience when 
implementing the  𝐿 -layer Neural Net, we 
will need a function that replicates the 
previous one (linear_activation_forward
with RELU)  𝐿−1  times, then follows that 
with one linear_activation_forward with 
SIGMOID.



Cost Function
Compute the cross-entropy cost 𝐽, 

using the following formula:
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Cost Function:  𝑱 𝒘, 𝒃 = −
𝟏

𝒎
σ𝒊=𝟏
𝒎 𝒚 𝒊 𝒍𝒐𝒈 (𝒂[𝑳] 𝒊 ) + 𝟏 − 𝒚 𝒊 𝐥𝐨𝐠 𝟏 − (𝒂[𝑳] 𝒊
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Backward Propagation Module

𝑊[1] , 𝑏[1] 𝑊[2] , 𝑏[2] 𝑊[3] , 𝑏[3] 𝑊[𝐿] , 𝑏[𝐿]…

𝑊[1] , 𝑏[1]

𝑑𝑧[1]

𝑊[2] , 𝑏[2]

𝑑𝑧[2]

𝑊[3] , 𝑏[3]

𝑑𝑧[3]

𝑊[𝐿] , 𝑏[𝐿]

𝑑𝑧[𝐿]

𝑎[1] 𝑎[2] 𝑎[3] 𝑎[𝐿]

ො𝑦

𝑑𝑎[𝐿]𝑑𝑎[𝐿−1]𝑑𝑎[2]𝑑𝑎[1]

𝑐𝑎𝑐ℎ𝑒 𝑍[1] 𝑐𝑎𝑐ℎ𝑒 𝑍[2] 𝑐𝑎𝑐ℎ𝑒 𝑍[3] 𝑐𝑎𝑐ℎ𝑒 𝑍[𝐿]

𝑑𝑤[𝐿]

𝑑𝑏[𝐿]
𝑑𝑤[3]

𝑑𝑏[3]
𝑑𝑤[2]

𝑑𝑏[2]
𝑑𝑤[1]

𝑑𝑏[1]

…

𝑋

In backpropagation, 
we will calculate 
gradient of the loss 
function with respect 
to parameters(W,b)



Linear Backward

Now, we'll complete three functions in this order:

• LINEAR backward

• LINEAR -> ACTIVATION backward where ACTIVATION will be either 
ReLU or Sigmoid.

• [LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID backward (whole 
model)
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Linear-Activation Backward
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• LINEAR backward

• LINEAR -> ACTIVATION backward where ACTIVATION will be either 
ReLU or Sigmoid.

• [LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID backward (whole 
model)



L-Model Backward

• Now we will implement the backward function for the whole 
network!
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L_model_backward
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• LINEAR backward

• LINEAR -> ACTIVATION backward where 
ACTIVATION will be either ReLU or Sigmoid.

• [LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID 
backward (whole model)



Update Parameters
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𝑊[𝑙] ≔ 𝑊[𝑙] −∝ 𝑑𝑊[𝑙]

𝑏[𝑙] ≔ 𝑏[𝑙] −∝ 𝑑𝑏[𝑙]



L_layer_model

• Combine helper 
functions in order
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Deep Learning Progress
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predict
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Final Thoughts
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• In this work, the procedure and implementation to establish and run 
a neural network model considered as a first importance.

• This is just the simplest form of NN models. Some important hyper-
parameters such as L1, L2 regularization can be added.

• Building a NN model from scratch in Python/Numpy can help us to 
understands the mechanics and fundamentals of this approach.



Reference

• www.deeplearning.ai

• https://zenodo.org/record/4351156#.YLfBH6hKjUr
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