
Neural Networks (Shallow/Deep Learning)
from Scratch in Python with a Geoscience

Example

Ryan (Ali) Mardani
Ryan.Mardani@dataenergy.ca

July 2021

mailto:Ryan.Mardani@dataenergy.ca

Motivation

Started deep learning using Tensorflow with 12 lines of code!

Functions and mechanics behind?

2 of 41

Agenda

• Introduction
• Prior knowledge
• Database & Problem
• Artificial Neural Networks
• Computation Graphs & Derivatives
• Logistic Regression cost function

• Shallow Learning
• Parameter Initialization
• Forward Propagation
• Compute Loss
• Backward Propagation
• Update Parameters

• Deep Learning
• Similar to shallow learning…

• Prediction and Visualization

3 of 41
*The framework and majority of codes of this work comes from Andrew Ng's Deep Learning course.

To be comfortable with this work:

Fundamental knowledge of:

• Linear Algebra (Matrix multiplication)

• Multivariate Calculus (Derivation & Chain rule)

• Python 3 & Numpy

• Neural Networks terminology

4 of 41

Dataset & Problem

For simplicity, binary
classification problem
(shale/sand) prediction from
well logs (FORCE2020
completion data)

• 3 Wells for Training

• 1 Well for Testing

5 of 41

Artificial Neural Networks

• Info (X) receive

• Some operation (W,b) (Sum, Activation)

• Output(ො𝑦) Vs. Target(y)

• Minimize error (ො𝑦, y) adjusting (W,b)

• Learning from Loop

Forward Propagation Backward Propagation

6 of 41

True value

y

Computation Graphs & Derivatives
Suppose we have a function J:

𝑱 𝑎, 𝑏, 𝑐 = 2(𝑎 + 𝑏𝑐)

7 of 41

u = 𝑏𝑐

v = a + u J = 2v

a=3

𝑏=2

𝑐=5

M𝑖𝑛𝑖𝑚𝑖𝑧𝑖𝑛𝑔 𝐽 (𝑏𝑎𝑐𝑘 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛) 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜:

𝑑𝐽

𝑑𝑣
= 2

𝑑𝐽

𝑑𝑎
=

𝑑𝐽

𝑑𝑣
×
𝑑𝑣

𝑑𝑎
= 2 ∗ 1 = 2

In NN we usually try to minimize loss function with respect to (W, b) parameters

and for convention we will write 𝑑𝑤, instead of
𝑑𝐽

𝑑𝑤

3 steps to compute:
u = 𝑏𝑐
v = a + u
J = 2v

Logistic Regression cost function

For this binary problem(shale:0, Sand:1) the most convenient algorithm
is logistic regression for classification

8 of 41

𝜎 𝑧 =
1

1 + 𝑒−𝑧
Loss Function in theory: 𝐿 ෝ𝑦, 𝑦 =

1

2
ො𝑦 − 𝑦 2

Cross Entropy Loss Function: 𝑳 ෝ𝒚, 𝒚 = −(𝒚𝒍𝒐𝒈ෝ𝒚 + 𝟏 − 𝒚 𝐥𝐨𝐠 𝟏 − ෝ𝒚)

• If y =1 , 𝐿 ෝ𝑦, 𝑦 = −𝑙𝑜𝑔 ො𝑦 and want 𝑙𝑜𝑔 ො𝑦 large, ො𝑦 must be large (1)

for entire training example: Cost Function: 𝑱 𝒘, 𝒃 = −
𝟏

𝒎
σ𝒊=𝟏
𝒎 𝒚 𝒊 𝒍𝒐𝒈 ෝ𝒚 𝒊 + 𝟏 − 𝒚 𝒊 𝐥𝐨𝐠 𝟏 − ෝ𝒚 𝒊

• If y =0 , 𝐿 ෝ𝑦, 𝑦 = −log(1 − ො𝑦) and want large, , ො𝑦 must be samll (0)

Gradient Descent

9 of 41

1 iteration, 1 step

𝑤 ≔ 𝑤 −∝
𝜕𝐽(𝑤, 𝑏)

𝜕𝑤

𝑏 ≔ 𝑏 −∝
𝜕𝐽(𝑤, 𝑏)

𝜕𝑏

Cost Function: 𝑱 𝒘, 𝒃 = −
𝟏

𝒎
σ𝒊=𝟏
𝒎 𝒚 𝒊 𝒍𝒐𝒈 ෝ𝒚 𝒊 + 𝟏 − 𝒚 𝒊 𝐥𝐨𝐠 𝟏 − ෝ𝒚 𝒊

Ref: https://lnkd.in/eyVzZgR

https://lnkd.in/eyVzZgR

Shallow Learning

10 of 41

Mainly, shallow network consists of a single hidden layer

(1 × 1)

⋯
⋮ ⋱ ⋮

⋯

(5 × 3)

𝑊 1

⋮

(3 × 1)

𝑋

⋮

(5 × 1)

𝑏 1

(1 × 5)

𝑊 2

⋮

(5 × 1)

𝑎 1 𝑏 2

[⋯]

𝑏 1

𝑋

𝑏 2

𝑍 1 = 𝑊 1 𝑥 + 𝑏 1 𝑎 1 = 𝜎(𝑧 1) 𝑍 2 = 𝑊 2 𝑎 1 + 𝑏 2 𝑎 2 = 𝜎(𝑧 2) 𝐿(𝑎 2 , 𝑦)
𝑊 1

𝑊 2
𝑑𝑎 2

𝑑𝑧 2𝑑𝑎 1𝑑𝑧 1

Implementation in Python

• Defining the neural network structure
• layer_sizes

11 of 41

Initialize the model's parameters

12 of 41

Forward propagation

• Define and use the function sigmoid()

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 𝑧 =
1

1 + 𝑒−𝑧

• Use the function tanh() from Numpy

tanh 𝑧 =
𝑒𝑧−𝑒−𝑧

𝑒𝑧+𝑒−𝑧

13 of 41

Forward propagation

• Retrieve each parameter from the dictionary
"parameters" (output of initialize_parameters())

• Implement Forward Propagation. Compute 𝑍1,
𝐴1, 𝑍2 and 𝐴2

• Values needed in the backpropagation are stored
in "cache". The cache will be given as an input to
the backpropagation function.

14 of 41

Compute the Cost

• You can use np.squeeze() to
remove redundant
dimensions (in the case of
single float, this will be
reduced to a zero-
dimension array).

15 of 41

Cost Function: 𝑱 𝒘, 𝒃 = −
𝟏

𝒎
σ𝒊=𝟏
𝒎 𝒚 𝒊 𝒍𝒐𝒈 (𝒂[𝟐] 𝒊) + 𝟏 − 𝒚 𝒊 𝐥𝐨𝐠 𝟏 − (𝒂[𝟐] 𝒊

Implement Backpropagation

16 of 41

𝑑𝑏 1

𝑋

𝑑𝑏 2

𝑍 1 = 𝑊 1 𝑥 + 𝑏 1 𝑎 1 = 𝜎(𝑧 1) 𝑍 2 = 𝑊 2 𝑎 1 + 𝑏 2 𝑎 2 = 𝜎(𝑧 2) 𝐿(𝑎 2 , 𝑦)
𝑑𝑊 1

𝑑𝑊 2
𝑑𝑎 2

𝑑𝑧 2𝑑𝑎 1𝑑𝑧 1

𝑑𝑎 =
𝑦

𝑎
−
1 − 𝑦

1 − 𝑎

Backpropagation

17 of 41

Update Parameters

18 of 41

𝑤 ≔ 𝑤 −∝
𝜕𝐽(𝑤, 𝑏)

𝜕𝑤

𝑏 ≔ 𝑏 −∝
𝜕𝐽(𝑤, 𝑏)

𝜕𝑏

NN Model
Function

• The neural network model
has to use the previous
functions in the right order.

19 of 41

Shallow Learning Progress

20 of 41

It seems shallow network
model cannot capture
complexity of dataset.

Test the Shallow Model

21 of 41

22 of 41

Deep Learning

𝑊[𝑙] ≔ 𝑊[𝑙] −∝ 𝑑𝑊[𝑙]

𝑏[𝑙] ≔ 𝑏[𝑙] −∝ 𝑑𝑏[𝑙]

𝑊[1] , 𝑏[1] 𝑊[2] , 𝑏[2] 𝑊[3] , 𝑏[3] 𝑊[𝐿] , 𝑏[𝐿]…

𝑊[1] , 𝑏[1]

𝑑𝑧[1]

𝑊[2] , 𝑏[2]

𝑑𝑧[2]

𝑊[3] , 𝑏[3]

𝑑𝑧[3]

𝑊[𝐿] , 𝑏[𝐿]

𝑑𝑧[𝐿]

𝑎[1] 𝑎[2] 𝑎[3] 𝑎[𝐿]

ො𝑦

𝑑𝑎[𝐿]𝑑𝑎[𝐿−1]𝑑𝑎[2]𝑑𝑎[1]

𝑐𝑎𝑐ℎ𝑒 𝑍[1] 𝑐𝑎𝑐ℎ𝑒 𝑍[2] 𝑐𝑎𝑐ℎ𝑒 𝑍[3] 𝑐𝑎𝑐ℎ𝑒 𝑍[𝐿]

𝑑𝑤[𝐿]

𝑑𝑏[𝐿]
𝑑𝑤[3]

𝑑𝑏[3]
𝑑𝑤[2]

𝑑𝑏[2]
𝑑𝑤[1]

𝑑𝑏[1]

…

𝑋

Deep Learning

• Initialize the parameters for an 𝐿-layer neural network

• Forward Propagation

• Complete linear part (Resulting 𝑍[1]])

• Activation function(ReLU/Sigmoid)

• Combine two previous into LINEAR->ACTIVATION forward function

• Stack the forward function L-1 time and add a LINEAR-> SIGMOID at the end

• Compute the loss

• Backward propagation

• Complete linear part

• The gradient of the ACTIVATE function (relu_backward/sigmoid_backward)

• Combine two previous into LINEAR->ACTIVATION backward function

• Stack the backward function L-1 time and add a LINEAR-> SIGMOID at the
end

• Update the Parameters

23 of 41

Initialize the parameters for an 𝐿-layer NN

• Initialization for a deeper L-layer NN is more complicated because
there are many more weight matrices and bias vectors

𝑛[𝑙]: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑢𝑛𝑖𝑡𝑠 𝑖𝑛 𝑙𝑎𝑦𝑒𝑟 𝑙 𝑚 ∶ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (3 ℎ𝑒𝑟𝑒)

24 of 41

3

Initialize the parameters for an 𝐿-layer NN

For 3 input features, 5 nodes in first
hidden layer, 3 nodes in second layer,
and 1 output

25 of 41

Linear Forward

Now, we'll complete three functions in this order:

• LINEAR

• LINEAR -> ACTIVATION where ACTIVATION will be either ReLU or Sigmoid.

• [LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID (whole model)

26 of 41

Activation Functions

27 of 41

Linear-Activation Forward

28 of 41

Now, we'll complete three functions in this order:

• LINEAR

• LINEAR -> ACTIVATION where ACTIVATION will be either ReLU or Sigmoid.

• [LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID (whole model)

L-Layer Model

29 of 41

Now, we'll complete three functions in this order:

• LINEAR

• LINEAR -> ACTIVATION where ACTIVATION will be either ReLU or Sigmoid.

• [LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID (whole model)

For even more convenience when
implementing the 𝐿 -layer Neural Net, we
will need a function that replicates the
previous one (linear_activation_forward
with RELU) 𝐿−1 times, then follows that
with one linear_activation_forward with
SIGMOID.

Cost Function
Compute the cross-entropy cost 𝐽,

using the following formula:

30 of 41

Cost Function: 𝑱 𝒘, 𝒃 = −
𝟏

𝒎
σ𝒊=𝟏
𝒎 𝒚 𝒊 𝒍𝒐𝒈 (𝒂[𝑳] 𝒊) + 𝟏 − 𝒚 𝒊 𝐥𝐨𝐠 𝟏 − (𝒂[𝑳] 𝒊

31 of 41

Backward Propagation Module

𝑊[1] , 𝑏[1] 𝑊[2] , 𝑏[2] 𝑊[3] , 𝑏[3] 𝑊[𝐿] , 𝑏[𝐿]…

𝑊[1] , 𝑏[1]

𝑑𝑧[1]

𝑊[2] , 𝑏[2]

𝑑𝑧[2]

𝑊[3] , 𝑏[3]

𝑑𝑧[3]

𝑊[𝐿] , 𝑏[𝐿]

𝑑𝑧[𝐿]

𝑎[1] 𝑎[2] 𝑎[3] 𝑎[𝐿]

ො𝑦

𝑑𝑎[𝐿]𝑑𝑎[𝐿−1]𝑑𝑎[2]𝑑𝑎[1]

𝑐𝑎𝑐ℎ𝑒 𝑍[1] 𝑐𝑎𝑐ℎ𝑒 𝑍[2] 𝑐𝑎𝑐ℎ𝑒 𝑍[3] 𝑐𝑎𝑐ℎ𝑒 𝑍[𝐿]

𝑑𝑤[𝐿]

𝑑𝑏[𝐿]
𝑑𝑤[3]

𝑑𝑏[3]
𝑑𝑤[2]

𝑑𝑏[2]
𝑑𝑤[1]

𝑑𝑏[1]

…

𝑋

In backpropagation,
we will calculate
gradient of the loss
function with respect
to parameters(W,b)

Linear Backward

Now, we'll complete three functions in this order:

• LINEAR backward

• LINEAR -> ACTIVATION backward where ACTIVATION will be either
ReLU or Sigmoid.

• [LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID backward (whole
model)

32 of 41

Linear-Activation Backward

33 of 41

• LINEAR backward

• LINEAR -> ACTIVATION backward where ACTIVATION will be either
ReLU or Sigmoid.

• [LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID backward (whole
model)

L-Model Backward

• Now we will implement the backward function for the whole
network!

34 of 41

L_model_backward

35 of 41

• LINEAR backward

• LINEAR -> ACTIVATION backward where
ACTIVATION will be either ReLU or Sigmoid.

• [LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID
backward (whole model)

Update Parameters

36 of 41

𝑊[𝑙] ≔ 𝑊[𝑙] −∝ 𝑑𝑊[𝑙]

𝑏[𝑙] ≔ 𝑏[𝑙] −∝ 𝑑𝑏[𝑙]

L_layer_model

• Combine helper
functions in order

37 of 41

Deep Learning Progress

38 of 41

predict

39 of 41

Final Thoughts

40 of 41

• In this work, the procedure and implementation to establish and run
a neural network model considered as a first importance.

• This is just the simplest form of NN models. Some important hyper-
parameters such as L1, L2 regularization can be added.

• Building a NN model from scratch in Python/Numpy can help us to
understands the mechanics and fundamentals of this approach.

Reference

• www.deeplearning.ai

• https://zenodo.org/record/4351156#.YLfBH6hKjUr

41 of 41

http://www.deeplearning.ai/
https://zenodo.org/record/4351156#.YLfBH6hKjUr

