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Abstract

One approach to local least-squares polynomial approximation of data in two

independent variables consists of centring a square subarea on each point in a data set

and computing the coefficients that define the best-fit polynomial over the subset

defined by this window. Replacing the input sample at the centre of the window with

the value of the best-fit polynomial enables formulation of an expression for the

impulse responses of low-pass filters. This is simplified if the approximating function

is written in terms of orthogonal polynomials. Cutoff frequencies of these filters are

inversely proportional to the size of the subarea and proportional to the polynomial

order. Polynomial order has been defined as the highest power either of any term in

the polynomial or of any independent variable in the polynomial. The latter definition

results in polynomials that consist of all of the terms that comprise polynomials arising

from the former definition, as well as higher-order cross terms. Including these extra

terms lessens the directional bias of the transfer functions. However, some distortion

persists, with lowest frequencies passed in the direction of the coordinate axes and

highest frequencies passed at 45° to the axes. The dependency of cutoff frequency on

polynomial order and window size has been empirically quantified. These results,

coupled with the expressions for the impulse responses, make possible the design of

convolution operators without transformation to the frequency domain. Application of

these local least-squares operators to a Bouguer gravity data set from northern Alberta

indicates that these produce regional anomaly fields that are generally similar to those

obtained from wavelength filtering.

in



Approximating an entire data set with one polynomial is commonly done to

compute long-wavelength constituents of the Bouguer gravity field. When this

technique is formulated in terms of convolution, a unique weight function operates on

each data point. The operators for the central portion of the data set have amplitude

responses that are similar to those of the local least-squares operators. This implies

that polynomial approximation of the long-wavelength components of the gravity field

should incorporate the higher-order cross terms in order to diminish directional bias.

This is demonstrated by applying this method to the aforementioned Bouguer gravity

data.

The local least-squares filters have been transformed to operators that output

the components of the horizontal-gradient vector. This combines the high-frequency

amplification property of differentiation with the low-pass nature of local least-squares

approximation. This generates operators with both variable passbands and a likeness to

the ideal response in this passband. These gradient-component operators have been

used to compile a suite of maps of the magnitude of the horizontal-gradient vector of

the Bouguer gravity field, featuring different bandwidths of crustal anomalies. Because

the procedure is formulated in terms of convolution, the frequency content of each

magnitude map is known. This facilitates the generation of complementary pairs of

gradient-magnitude and wavelength-filtered maps. The gradient-magnitude maps

enhance the interpretation by highlighting density boundaries. This is useful for

mapping the edges of source bodies, identifying subtle characteristics, and determining

spatial relationships between trends.

IV
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2

approximating polynomial is computed for each data point. While the concept is not

original, a comprehensive investigation of the nature and applications of this method

does not exist to my knowledge for data in two independent variables. Hence, the

present study was initiated.

It is found that this approach to least-squares polynomial approximation is

well-suited to the formulation of two types of digital filters: low-pass phase-invariant

filters with predictable and reliable amplitude spectra, and horizontal-gradient-

component filters, with variable and measurable passbands. The weights of the

operators for the low-pass filters are computed using analytic expressions in the space

domain, and hence the impulse responses can be generated without transformation to

the frequency domain. A significant portion of the analysis of these weight functions

addresses the form that the approximating polynomial should adopt. This is

incorporated into an investigation of the frequency-domain properties of the ensuing

impulse responses. Further, while the approach in which a single approximating

polynomial is used differs fundamentally from the local approximation technique, the

results of the discussion of the local least-squares method, in particular the analysis

pertaining to the form of the approximating polynomial, is applicable. Thus some

implications for the conventional technique are discussed and illustrated. This

illuminates some subtle yet important details of geophysical applications of least-

squares polynomial approximation. The transfer functions of the horizontal-gradient-

component filters adhere closely to the ideal gradient-component filter responses.

The thesis is structured in the following way: the impulse responses describing
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Chapter 1 • Introduction

There are two main objectives of this thesis. The first is to use least-squares

polynomial approximation methods to develop analytic expressions for the impulse

responses of digital filters for data in two independent variables. The second is to

apply these weight functions to a Bouguer gravity data set from north-central Alberta

in order to compare the processed data with those obtained from standard digital

filters.

This body of work evolved from an algorithm devised by Dr. RJ. Brown in

conjunction with a group of geologists at Home Oil Company Ltd. They were

incorporating potential-field data into a regional study of the crystalline basement

underlying the Western Canada Sedimentary Basin. The algorithm was designed to

compute horizontal-gradient vector components for application to gravity and magnetic

data. While the details of the procedure are described in chapter 3, at present it

suffices to say that the method is based on approximating unique best-fit polynomials,

in a least-squares sense, to local windows of the data.

Least-squares polynomial approximation is widely applied for the processing of

potential-field data, and a review of the pertinent literature is presented in chapter 2.

The usual approach is to compute the regional field, which is the contribution to the

anomalous field that is thought to arise from deep-seated large-scale features, by

approximation of an entire data set with a single low-order polynomial. The particular

adaptation of this method that is the focus of this thesis, namely local least-squares

polynomial approximation, deviates from the typical approach in that a unique
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the local least-squares polynomial approach are first derived and studied; implications

for the more conventional method of approximating an entire data set with a single

polynomial are discussed; the local operators are transformed to gradient-component

operators, whose frequency-domain characteristics are in turn studied; conventional

wavelength filtering is applied to a Bouguer gravity data set, the results of which are

interpreted; and the polynomial approximation techniques are applied to the same

Bouguer data set for comparison with the results of the wavelength filtering.



Chapter 2 • Least-Squares Polynomial Approximation Filters

Introduction

Originally, the focus of the present investigation was to develop an algorithm

for computing the magnitude of the horizontal gradient for the purpose of highlighting

trends on areal Bouguer gravity data. The mathematical details of the approach are

given in the following chapter, however the method can be summarized as: obtain a

best-fit least-squares polynomial in a local window of the data and; analytically

differentiate this polynomial with respect to the position variables to obtain the

components of the horizontal gradient. The gradient components are then assigned to

the centre of the window. The gradient data are compiled by centring the window at

each grid point.

The original algorithm was based on obtaining the regression coefficients by

the method outlined by Davis (1986). The foundation of this technique is the inversion

of a Hilbert matrix. This procedure was later supplanted by a technique developed

from concepts originated by Wood and Hockens (1970) and Chan and Leong (1972).

For data in one independent variable these authors formulated local least-squares

polynomial smoothing as convolution. This technique entails replacing each input

datum at the centre of a moving window with the value at that point of the best-fit

polynomial. The derivative theorem of convolution makes it possible to convert these

smoothing filters to gradient filters; however, it is first necessary to extend the local

least-squares polynomial operators to two independent variables. It is this task that is
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addressed in this chapter.

The chapter began as a brief introduction for the following chapters. However,

in the course of this work several questions arose that have not been addressed

elsewhere, and consequently warrant further investigation. Thus this chapter explores

several aspects of polynomial approximation of gravity data. The result is a study that

fulfils its original objective, and provides an enhanced understanding of geophysical

applications of polynomial approximation.

This study begins with a justification of polynomials as the approximating

function. This is followed by the formulation of the expression for two-dimensional

local least-squares polynomial impulse responses, which in turn facilitates a frequency-

domain analysis of these weight functions. The chapter concludes with a discussion of

the utility of these impulse responses.

Approximating gravity data by polynomials

The purpose of the following discussion is to verify that local least-squares

fitting of a function to areal gravity data should be performed with a polynomial of

order n and either of the form:

r+szn
(2.Ia)

or of the form:

r=0



r=0 5=0

The difference between these two forms is demonstrated by table 2.1, which contains

the terms in the polynomial for n equal to 4. The form specified by equation 2.1a

contains the terms that are above the solid line, whereas the form specified by

equation 2.1b contains all the terms in table 2.1

1
y
f
y3

y4

X

xy

xy2

xy3

xy4

x2

x2y

X2V2

x2y3

x2y4

x3

x3y

x3y2

x3v3

x3y4

x4

x4y

x4y2

xV

xV

Table 2.1
Terms included in approximating polynomials.

At this point it is not clear which is the preferable form. This will, however, become

obvious in the course of the forthcoming frequency-domain analysis. Because this

argument applies equally for both polynomial types, the upper limits of the

summations will be omitted for the sake of generality, with the understanding that

these limits are specified in equations 2.1.

This discussion is founded on a theorem fundamental to approximation theory

given by Weierstrass (Achieser, 1956). For data in two independent variables this

theorem can be stated as: for a function f(x,y) which is continuous over a finite

interval, to each e>0 there corresponds a polynomial of the form of equations 2.1 such

that the inequality:



0» -My)I < e (2.2)

is satisfied over the interval defined by x and y. In addition, if f(x,y) is 2-n periodic,

continuous everywhere, and differentiable at x and y, then its trigonometric sum

(Fourier series), given by

W=On=O
+C111n sin(mx)cos(/iy)

converges to f(x,y) at x and y.

There are numerous accounts of approximating gravity data with polynomials

of the form of equations 2.1. A brief review of these is given in the following section.

In addition, Henderson and Cordell (1971) have reported accurate representations usinj

Fourier series expansion. Thus, for most applications, approximations to gravity data

may be performed with either polynomial or Fourier series expansion. The focus of

this study is the computation of approximating functions over relatively small subsets

of the data. The limited areal size of the window impedes the use of Fourier series

expansion. This is because the record length, N, determines the fundamental

frequency, 1/N, and the increment between consecutive harmonics (i.e. the spectral

resolution), 2/N, 3/N, ..., present in the Fourier series expansion. Because of this,

selection of the record length, which in this case is the spatial dimensions of the

window, is tied to the spectral content of the data. In practice, windows should be

sufficiently large so as to include several wavelengths of the lowest frequencies

present in the data (Bath, 1974). On the other hand, polynomial approximation is not



inhibited by this restriction. That is, polynomials of the form of equations 2.1 can

approximate data with infinitely many wavelengths regardless of window size, the

inherent difference being that polynomial approximation requires no assumptions

regarding the periodicity of the signal. Thus Fourier series expansion does not lend

itself to local approximations over subsets of the entire data set.

Applications of polynomial approximation

Potential-field data are generally subjected to a separation procedure before a

quantitative interpretation is undertaken. The goal of this operation is to separate the

long-wavelength anomalies, attributed to deep sources and often termed the regional

field, from shorter wavelength features which are assumed to arise from shallower

sources and often said to constitute the residual field. There are a great many studies

in the literature that describe methods for performing this separation. These techniques

can be divided into three general categories: manual smoothing; approximating the

long-wavelength component of the field with a low-order polynomial; and linear

digital filtering.

Approximating a data set by the method of least squares can be approached in

two ways: the entire data set can be replaced by repeatedly evaluating the same

polynomial (herein called global least-squares polynomial fitting); or a unique set of

polynomial coefficients, based only on neighbouring points, can be generated for each

observation (herein called local least-squares polynomial fitting). Application of either

method results in a smoothed version of the field, which for an appropriate choice of
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coefficients can be considered to be the regional. This regional can either be subtracted

from the original data to produce a residual, or retained as a smoothed version of the

input.

Early applications of this technique to potential-field measurements favoured

global least-squares polynomial fitting in order to compute residuals (Agocs, 1951;

Simpson, 1954; Swarz, 1954). This may have been due to the then prohibitive number

of computations required to repeatedly perform a local least-squares fit. Some more

recent studies still adopt this approach (Abdelrahman et al., 1985; 1989; Zeng, 1989).

On the other hand, there are a number of applications that rely on the local least-

squares approximation method for residual/regional separation (Wood and Hockens,

1970; Chan and Leong, 1972; Ku, 1990). As well, this approach is used to compute

the 'interference term' in Werner deconvolution (Hartman et al., 1971; Kilty, 1982).

Finally, Chandler et al. (1981), and von Frese et al. (1982) integrated local least-

squares polynomial fitting into a scheme for quantitatively correlating gravity and

magnetic anomalies. For large-scale surveys, one might expect this to be a more

reasonable approach, because the character of the field, with its diverse influences, will

vary considerably, and it is likely inappropriate to approximate the long-wavelength

components with a single polynomial.

Three studies detailing the filtering characteristics of global and local

polynomial approximation techniques have been encountered. In all of these, the

formulation as convolution is accomplished by writing the best-fit polynomial in terms

of orthogonal polynomials. For data in one independent variable it has been shown
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that removing residual features via local least-squares approximation is equivalent to

linear digital filtering (Wood and Hockens, 1970; Chan and Leong, 1972). These

authors also investigated the wavenumber-domain characteristics of these filters. In

addition, Lance (1982) presented formulations for global one- and two-dimensional

least-squares polynomial convolution operators and investigated the filtering

characteristics of the one-dimensional operators. The purpose of the present frequency-

domain investigation is to extend the analysis of one-dimensional local least-squares

operators, presented by Wood and Hockens (1970) and Chan and Leong (1972), to the

two-dimensional local least-squares convolution operators, derived in this study.

Obtaining the Fourier transform of the impulse response facilitates examination

of the transfer functions of these filters and makes it possible to evaluate their

effectiveness and reliability in performing regional and residual separation of potential-

field data. Knowledge of the behaviour of the transfer functions of these operators

provides a quantitative criterion for selecting the parameters that determine the

passband of the filter. As well, this enables reliable estimates of the wavenumber

content of the filtered maps.

Local least-squares separation filters

The method of nonorthogonal polynomials

The use of nonorthogonal polynomials in least-squares approximation for

highlighting trends in potential-field data is well known (Agocs, 1951; Fajklewicz,

1959; Coons et al., 1967; Abdelrahman et al., 1985). Further, a detailed summary has
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been given by Davis (1986). Hence only a cursory discussion is presented here. It is

important to note that the following discussion is tailored to the case in which a

polynomial fit is performed at each grid node over a local subset of the entire data.

Then the best-fit polynomial at the centre point of the subset is back-calculated to give

the regional. Chandler et al. (1981) have used the term 'moving window' to describe

this technique.

It is assumed that the data, denoted z(xi9 ^), have been acquired on a

rectangular grid with spatial dimension mAx by pky where Ax and Ay are the grid

intervals in the x and y directions. In addition, the task is simplified if the moving

window is defined by the interval {jc,.w, y^} through (xi+w, yj+w], where / = 1,2,...,/«, j

= 1,2,.../?, w = 1,2,...,2*+1, k < (m-l)/2 and k < (p-l)/2.

If Z(x,y) represents the polynomial that best fits the data in the window, then it

has the form of equation 2.1a or b. The distinction between equations 2.1a and 2.1b is

not important for this derivation because it applies equally to both polynomials, and

again the limits of summation will be omitted.

The coefficients ars can be determined by minimization of the mean square

error, E, of the best-fit polynomial, Z(x,y), relative to the observed data z(x,y),

t+W ^+W

E = £ £ IZ(̂ )-Z(V11)P. (2'4)

t-i-w u=j-\v

Setting («+l)(rt+2)/2 partial derivatives equal to O (for polynomials of the form of

equation 2.Ia) or (n+l)(n+2)/2 + n(n+l)/2 (=(n+l)2) partial derivatives equal to O (for

polynomials of the form of equation 2.Ib) invokes the least-squares condition, i.e.,
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as = O, (2.5)

for all r+s=0,l,2,...H

or r=0,l,2,...rt and 5=0,1,2,...«.

This generates either a system of (n+l)(«+2)/2 normal equations that can be used to

solve for the unknown coefficients of equation 2.1a; or a system of (n+1)2 normal

equations that can be used to solve for the unknown coefficients of equation 2.1b.

For both regional and residual calculations, this procedure must be performed

at each grid node. If this method is being used to compute a regional, then the output

at each grid node is Z(X1Jj); and, if it is being used to compute a residual, the output is

The method of orthogonal polynomials

When using the method of nonorthogonal polynomials one encounters

numerical difficulties that arise from inverting a Hilbert matrix (Lapidus, 1962, p.

329). These include: (1) a loss of accuracy due to rounding errors, and (2)

computationally intensive algorithms. Because these complications can be avoided by

using orthogonal polynomials this, is the preferred approach. Of added importance for

this study is the fact that orthogonal polynomials allow local least-squares polynomial

separation calculations to be formulated as two-dimensional convolution, thus allowing

wavenumber-domain analysis of the filters.

An excellent review of the use of orthogonal polynomials in removing residual
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features from data in two independent variables has been given by Hayes (1970).

However in Hayes's discussion, the computational procedure is not stated in terms of a

convolution. Hence, after summarizing the relevant elements of Hayes's review, this

procedure, as well as high-pass filtering, will be shown to be equivalent to

convolution. The derivation is similar to the derivation given by Chan and Leong

(1972) for data in one independent variable.

It is possible to rewrite equations 2.1 in terms of the polynomials prf(x,y), that

correspond to the terms tfy* in equations 2.1, and which are orthogonal over

summation in the interval defined by the moving window (i.e. in the interval {XM, Vj.,}

through {xi+w> yj+w,}. This can be stated as,

E E MVXA*,) • o (Z6)
f=i-M> u*j-w

for

Because the data are arranged on a regular rectangular grid, orthogonal polynomials in

two independent variables are equivalent to the product of two orthogonal polynomials

in one variable. That is, Hayes (1970) has shown that,

for r<n, s<n

r+s<n

This is of significant practical importance, because several algorithms have been

developed for rapid generation of orthogonal polynomials in one variable. The most

prevalent method for doing this is the recursive relationship of Forsythe (1957):
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where

t+w

E XtPr

i+w

E PW
t-i-w

t+w

f-i-w

(2.9)

B = f=<-w (2.10)
^7-

Then the best-fit polynomial, from equations 2.1, can be rewritten as:

afcy) • E E c™ pfstojto (2.1D
r s

where the least-squares solution is given by Hayes (1970) as:

t+w j+vv

E E z(
c = *-" **>-* __________ . (2.12)
n t+w j+w

Substituting equation 2.12 into equation 2.11 and rearranging the order of summation

gives:
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t+w j+\v

E EEE-^2^r=i-w u=J-w r s "" **w (2.13)

„-„.£/'
Evaluating equation 2.13 at X=X1 and y=jj gives an expression for the best-fit

polynomial at the centre of the moving window representing the long-wavelength, or

regional, component:

Z (*iOi> = E E b* z(*i & «) (2*14)

where btu is zero, except in the interval i-w < t < i+w andy-vv < u <j+w, within

which:

Wr s
E E PrW

f=-H» K=-W

The calculation described by equation 2.14 is a two-dimensional convolution, and

hence equation 2.15 gives the expression for the space-domain operator for low-pass

filtering of data in two variables.

An expression can be derived for the high-pass filters. The outputs of which

are the short-wavelength or residual component, denoted Z^f*,,^), is zfajj) • ZnJ[xity^.

Then, using the expression for Zreg from equation 2.14 gives:
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Zns(xt*yj) ~ z(*i»)0 ~ J^ 53 ^tn z(*fv
a)- (2-16)

t=-~ «= -•

This can also be formulated in terms of two-dimensional convolution as:

Z fo v) = Y* Y* c z(x v } (2-1?)^r«V-*i»7jL/ Z^ Z^/ tu z\*l-t*yj-it'

where cm is given by

in which 5,, and 6M> are Kronecker deltas, and btu is given by equation 2.15. Equation

2.18 gives the expression for the space-domain operator for high-pass filters in two

independent variables.

Equation 2.14 and 2.17 indicate that these local least-squares weight functions

are non-recursive. Thus these can be classified as finite impulse response filters. The

significance of this will be explored later.

Properties of least-squares filters

At this point it is appropriate to discuss some properties of local least-squares

filters that are revealed by the convolution formulation, as these have implications for

both space-domain and frequency-domain computations. These properties apply to

weight functions derived from polynomials given by both equation 2.1a and 2.1b.

They are:

(1) Filters for polynomial orders n and n+l (where n = 0,2,4,...) are identical

for a given window size. This is because orthogonal polynomials of even orders are
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even functions, and orthogonal polynomials of odd orders are odd functions. That is,

from equation 2.9,

pr(x) = p/-x) if r is even
pj[x) = -pj-x) if r is odd (2> 19)

Thus over the symmetric interval defined by the moving window, odd powers of

and qs(0) are identical to zero, and hence the odd orthogonal polynomials do not

contribute to the operator coefficients. This is consistent with one-dimensional low-

pass filters (Wood and Hockens, 1970). An implication of this is that the convolution

operators are even functions. This is important, because it suggests the filters are

phase-distortionless, a necessary property of separation filters for potential-field data

(Syberg, 1972; Jacobsen, 1987).

(2) The polynomial order may not exceed the size of the window, where

window size is defined as the number of data points along one side of the window.

This is because the sum of the squares of orthogonal polynomials can be written as

(Wylie, 1960),

*>*(,) = » * (2.20)
^ (2r+l)(2w+l)

where the exponents in parenthesis represent factorial polynomials, for example

Thus, the impulse response of local least-squares polynomial filters is undefined if the

polynomial order is equal to or greater than the window size. For nonorthogonal

polynomials this property manifests itself as an under-determined problem. In fact, if
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the window size is equal to, or one less than the polynomial order and the formulation

given by equation 2.1b is used, low-pass filters become all-pass filters, and high-pass

filters become all-reject filters. This implies that the highest polynomial order that may

be used for square windows containing an odd number of grid nodes per side, and

polynomials of the form of equation 2.1b, is two less than the number of nodes of one

side of the window.

(3) Low-pass filtering with a polynomial order of O or 1 is equivalent to

computing an average within the window. This may be accounted for by considering

the following features of orthogonal polynomials: equation 2.9 indicates that zero-order

polynomials are always equal to 1 and equation 2.20 indicates that the sum of the

square of zero-order orthogonal polynomials over the window is equal to the number

of nodes in the window. Thus the filter coefficients become:

(2.22).
* 2w+l

These are typically referred to as mean filters (Claerbout and Muir, 1973; Stewart,

1985). Because these are special cases of local least-squares polynomial filters, it is

possible to design more flexible filters that exhibit the same characteristics.

Some important considerations which are not obvious when nonorthogonal

polynomials are used are unveiled by reformulating this technique as a convolution. To

understand fully the nature of these filters, the wavenumber-domain responses for

selected values of the window size and polynomial order will be examined.
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Wavenumber-domain response of local least-squares filters

The objectives of the study of the filtering characteristics of local least-squares

filters are fourfold. These are: to determine which of the two polynomial types

specified by equations 2.1 generates a superior amplitude spectrum; to demonstrate the

low-pass, and high-pass nature of the transfer functions and comment on the relevant

features; to illustrate the dependence of passband on window size and polynomial

order, and to quantify the filtering characteristics.

Transfer functions have been obtained by computing discrete Fourier

transforms of the impulse responses. Because the impulse responses are real and even,

their Fourier transforms are in turn real and even. Thus it is necessary to compute only

the real part of the Fourier transform and to display only the first quadrant of the

spectra. Because these are phase-invariant filters, phase spectra are not shown.

Amplitude spectra are computed using a unit sampling interval for frequencies from

zero to the Nyquist frequency.

Shown in figure 2.1 are the amplitude responses of low-pass filters computed

using a 5x5 window and second-order polynomials specified respectively by equations

2.1a and b. Examination of spectra computed using several window sizes and

polynomial orders indicates that these are representative examples. The transfer

function generated when the approximating function is given by 2.1b is more reliable

than the transfer function given by 2.1a. This is based on the fact that both filters pass

the same frequencies parallel to the axes; however, figure 2.1b more closely resembles

an ideal low-pass filter. On the other hand, the spectrum shown in figure 2.1a does not
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0.3 =

window size =* 5x5
polynomial order = 2/3

0.2 -

0.1 -

0.0
0.0 0.2 0.3

kx(cycles/grid interval)
0.4 0.5

(a)

Figure 2.1 Transfer function of a low-pass filter computed using a 5x5 window and
a second- or third-order polynomial of the form of equation 2.1a (a) and b (b).
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exhibit reliable filtering characteristics. Of significance is the prevalent directional

distortion. That is, the passband is considerably narrower along kx = ky than it is along

kx or ky = O. This would cause considerable spatial dependence in the frequency

content of the filtered data. In figure 2.1b the directional dependence is much less

severe, and will be addressed later. The conclusion that can be drawn from this is that

for local least-squares polynomial filters, the approximating function should conform

to the type described by equation 2.1b. Hence, all further discussion is restricted to

weight functions based on these polynomials.

Figure 2.1b exhibits the general properties of these filters. This weight function

passes virtually all frequencies; however, outside the passband the signal is effectively

removed. The low-pass filters display a gentle decrease in amplitude with increasing

wavenumber in the passband. This rate of attenuation increases in the roll-off region

and decreases in the reject region. In the reject region there are a number of side lobes

of negligible magnitude.

As mentioned previously, figure 2.1b indicates that there is some directional

distortion induced by these filters. That is, along kx = ky the axis defined by passband

is widest; and in the directions of the coordinate axes the passband is narrowest.

Because the Fourier transform preserves signal directivity (Fuller, 1967) for a

coordinate system in which y is positive to the north and x is positive to the east, the

high-frequency content will be reduced in the north-south and east-west directions

compared to the northwest-southeast and northeast-southwest directions. It would be

possible to alter the orientation of this directional dependence by rotating the space-
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domain coordinate axes.

The spectrum in figure 2.1b shows that the amplitude spectrum is symmetric

about the axis defined by Icx = 1̂, and thus these filters do not bias signal

corresponding to either one of the coordinate axes. This is because orders of x and y

are equally represented by the approximating polynomial. If this were not the case

then the frequency content would be increased along the frequency axis corresponding

to the spatial variable with the higher order. For example, figure 2.2 shows a filter for

a 7x7 window, and an approximating function given by:

2 4
(2.23)

That is, the terms containing orders of x higher than two have been omitted. In some

cases a priori information justifies enhancement of signal in a specified orientation

(Fuller, 1967; Peeples et al., 1986; Thorarinsson et al., 1988); however, in general,

introducing artifacts of this nature should be avoided.

From equations 2.14,2.17, and 2.18 it can be seen that the amplitude responses

of high-pass filters are similar to those of the corresponding low-pass filters, with the

exception that the values of the amplitude spectrum are obtained by subtracting from

1. Thus the discussion of the transfer functions of low-pass filters is equally applicable

to high-pass filters.

For low-pass filters, one would expect the width of the passband to be

proportional to polynomial order and inversely proportional to window size (Thurston

et al., 1990). Computation of the amplitude responses confirms this result. Shown in
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0.0 0.1 0.2 0,3 0.4 0.5

0.4 -

0.3

TJ 0-2
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0.1 -

0.0
0.0

window size = 7x7
polynomial order in x = 2/3
polynomial order in y = 4/5

0.1 0.2 0.3

kx(cycles/grid interval)
0.4

0.5

0.4

0.3

0.2

0.1

0.5
0.0

Figure 2.2. Orientation-dependent low-pass filter. Signal in the ky direction is biased.
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figures 2.3 is the suite of all possible filters that may be generated for a 9x9 window.

Increasing the polynomial order increases the cutoff wavenumber of the filter. As well,

these spectra demonstrate that the directional distortion increases for increasing

polynomial order. That is, in figure 2.3a the passband is very nearly circular, while in

figure 2.3c the passband is considerably more rectangular. Figures 2.1b, 2.3b, and 2.4

demonstrate the influence of window size on passband. These confirm that increasing

the window size decreases the passband. In addition, increasing the passband increases

the slope of the roll-off region. It is also important to note that the directional

dependence increases with decreasing window size, although the effect is less

significant than was observed for comparable changes in polynomial order.

The dependence of passband width on polynomial order and window size has

been quantified. This was accomplished by measuring the passband for varying values

of order and window size. This entailed determining the frequency corresponding to an

amplitude decrease of 3dB. Because high-pass filters are derived from low-pass filters,

it is necessary to do this only for low-pass filters. This was done by computing the

discrete Fourier transform at increments of 0.001 cycles per grid interval, and

determining the frequency at which the amplitude spectrum is 0.707 of the value at

zero wavenumber. This method determines the passband to within ±0.0005 cycles per

grid interval. In order to account for the directional dependence, the passbands were

determined for their narrowest orientations (along the kx or ky axis), and along their

widest orientations (along kx equal to ky).
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0.5
o.o

0.4

0.3

0.1

0.0
0.0

0.1 0.2 0.3 0.4 0.5

window size = 9x9
polynomial order = 0/1

0.1 0.2 0.3

kx(cycles/grid interval)
0.4

0.5

0.4

0.3

0.2

0.1

0.5
0.0

(a)

Figure 2.3a-d. Amplitude spectra of low-pass filters for a 9x9 window and polynomial
orders ranging from O to 6. These are all the polynomial orders that may be used for
a 9x9 window.



ky
 (c

yc
les

/g
rid

 i
nt

er
va

l)

to



k y
 (c

yc
les

/g
rid

 i
nt

er
va

l)
P b

a 
S

O

O

P b

p
 
p

 p
p

p
p

p
p

bo
 

ki
 b

> 
In

 >
• G

ih
o^

/""
^*

 
f 

—.
'

* 
<°

 *
£ 

S

P
 

P
k>

 
-̂

^
l

1
 8

-
§.

«
e. 

^
^g

-
H 

•
u 

5?
^

*
tT

l

p b

\ o
p N> p O

4

to O
O



ky
 (c

yc
les

/g
rid

 I
nt

er
va

l)

K
)



30
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0.0 0.1

0.4

0.3

TJ 0.2

0.1

0.0

0.2

0.0

0,3 0.4 0.5

window size = 7x7
polynomial order = 2/3

0.1 0.2 0.3

kx(cycles/grid interval)
0,4
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0.4

0.3

0.2

0.1

0.5
0.0

Figure 2.4. Amplitude spectrum of a filter computed using a 7x7 window and a second-
order polynomial.
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The Fourier transform along the kx axis (that is for ky = O) is given by:

r =- /«=- /

Substituting the expression for bm into equation 2.24, and separating the summation

yields:

(2.25)
EE Wl

(I=-W J=O

The second double summation in equation 2.25 is equal to 1, and thus the discrete

Fourier transform along the kx axis is identical to the one-dimensional transform given

by Chan and Leong (1972). Hence the results of the passband measurements along the

kx axis are identical to the results given in Chan and Leong's paper. The same

argument could have been made for the ̂  axis. Shown in figures 2.5 are the results of

the quantitative study of the passband. Besides giving numerical results of the

maximum and minimum frequency content to be expected, figure 2.5 also illustrates

some important properties of these filters. First of all, it is difficult to change the

passband significantly when the window size is large. Conversely, when the window

size is small, the passband is sensitive to changes in window size. In addition,

comparison of figures 2.5a and 2.5b quantifies the previously observed phenomena of

increase in directional dependence for increasing polynomial order and decreasing
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ee

f
order = 9

0.1 0.2 0.3 0.4
wavenumber (cycles/grid interval)

0.5

(a)

Figure 2.5. Bandwidth of low-pass filters as a function of polynomial order and
window size measured along the frequency-domain axes (a), and at 45° to the axes (b).
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window size. This is an important criterion for selecting window size and polynomial

order for obtaining the desired filtering effects. For instance, from figure 2.5a it is

clear that a weight function based on an 11x11 window and a fifth-order polynomial,

and a 7x7 window and a third-order polynomial have very nearly the same passband.

However figure 2.5b indicates that the 7x7 filter is superior because there is less

directional distortion. In general, directional distortion increases with increasing

window sizes, and thus these should be kept as small as possible.

Because wavelength may be more intuitively meaningful than wavenumber, it

often is used when specifying filtering parameters. For this reason these data have

been replotted versus wavelength. This is shown in figures 2.6. A first-order least-

squares best-fit line for each order has been calculated. It is interesting to note the

linear relationship between cutoff wavelength and window size. It is straightforward to

use figures 2.6 as a guide for designing low-pass and high-pass filters.

Implications for global polynomial approximation

Lance (1982) derived a space-dependent convolution form for global least-

squares polynomial fitting in order to study the filtering characteristics of this

regional/residual separation technique. The formula given for the coefficients of the

weight function is:
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19-i 9 7 5 order = 3 order

20 40
wavelength (grid intervals)

(a)

Figure 2.6a. Cutoff wavelengths (a) along the frequency axes, and (b) along kx=kr A
first-order best-fit line has been computed for each polynomial order.
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r=0 (2.26)

where the convolution is described by:

z-^wi> = E E *. *wjjj- (Z27)
r=-- U=-

Lance (1982) describes this as a shift-variant operation, with each sample in the output

filtered by a unique operator. When i and j are equal to zero, the impulse response

given by equation 2.26 is identical to the impulse response given by equation 2.15.

Thus, the global least-squares weight function that operates on the centre value is a

local least-squares filter, whose window size is equal to the size of the data set.

Because local least-squares polynomial filtering is a special case of global

least-squares polynomial regional/residual separation, the preceding analysis has

implications concerning the terms that should be included in the approximating

polynomial. The expression presented by Lance (1982) is based on polynomials of the

form of equation 2.1a, and a similar expression can be obtained for polynomials of the

form of equation 2.1b by changing the upper limits of the summation in equation 2.26.

Hence, figures 2.1a and 2.1b represent centre filters for 5x5 data sets approximated by

second-order polynomials that are given by equations 2.1a and b respectively. This

suggests that the centre filter has a more reliable low-pass character if polynomials of

the form of equation 2.1b are used in place of polynomials of the form of equation

2.1a. This assertion can be extended to operators associated with other grid locations.
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Study of such filters is complicated by the fact that they introduce phase distortion.

Hence both amplitude and phase spectra must be studied when evaluating the

performance of these filters. Examples of these spectra are shown in figures 2.7 and

2.8 for 5x5 windows and second-order polynomials. The phase spectra are essentially

equivalent; however, the low-pass filter based on polynomials given by equation 2.1b

has a superior amplitude spectrum.

In the literature review at the beginning of this chapter a number of studies that

incorporate global least-squares polynomial approximation of potential-field data are

described. In these studies, both forms of approximating polynomials are used;

however none of these articles contains a justification for either polynomial type. The

present analysis suggests that more dependable low-pass filtering of the data may be

accomplished by using polynomials given by equation 2.1b. This is not surprising, as

the latter type contains more degrees of freedom, and can thus better approximate the

data. Nevertheless, comparisons between regional fields computed with both

polynomials, is reasonable, as frequency content in the direction of the axes is the

same. This is demonstrated by computing the Fourier transform of dtu, given by

equation 2.26, along the kx axis, and separating the summation as was done for

equation 2.25. This yields:
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0.3 0.4 0.5

window size = 5x5
polynomial order = 2/3
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(a)

Figure 2.7. Amplitude (a) and phase (b) spectra of the filter based on a second-order
polynomial given by equation 2.1a for a 5x5 window and i = j = 1.
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window size = 5x5
polynomial order =* 2/3

o.o
0.1 0.2 0.3 0.4

k ,̂ cycles/grid interval)
0.5

(a)

Figure 2.8. Amplitude (a) and phase (b) spectra of the filter based on a second-order
polynomial given by equation 2.1b, for a 5x5 window and / =j = 1.
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kx(cycles/grid interval)

(b)
(contour units are TC radians, and the interval is 7C/4 radians)
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B=-/ 5=0 l

(2.28)

The limit of the inner summation of the second term has been intentionally omitted. It

is m-r and r for polynomial types 2.1a and b respectively. Regardless, this term equals

1, and the spectra along the axes are identical.

The utility of local least-squares convolution operators

It may be preferable to implement an algorithm for filtering gravity data in

terms of convolution, rather than using a frequency-domain approach, either because

of ease of implementation or for the sake of efficiency when filtering small data sets.

For potential-field data this is done almost exclusively with finite-impulse-response

(FIR) filters. This is probably due to the fact that a linear phase response is not easily

realized with infinite-impulse-response (i.e. recursive) filters. Designing FIR filters

entails determining the coefficients of the impulse response. This task has received

considerable attention. The usual procedure is to approximate the frequency-domain

response of the filter with a windowed (i.e. finite) space-domain representation of the

operator. Because local least-squares polynomial fitting and linear digital filtering are

equivalent operations, coefficients of weight functions for low-pass and high-pass

filters can be obtained without transforming between domains. This circumvents the
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difficulties encountered when the infinite operator is truncated to give a useable

operator. In addition, because obtaining the coefficients of local least-squares impulse

responses does not require performing a Fourier transform, it is possible to obtain

weight functions very rapidly.

Hence, the expressions presented here, accompanied by the analysis of the

filtering characteristics, make possible the efficient and accurate design of shift-

invariant two-dimensional impulse responses, with reliable and predictable amplitude

characteristics. In addition, the low-pass filters form the foundation of a new type of

filter for computing the components of the horizontal-gradient vector. This is the topic

of the next chapter.
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Chapter 3 - Horizontal-Gradient-Vector-Component Filters

The horizontal-gradient vector of gravity

The horizontal gradient of gravity is a vector quantity, with components

determined by partial derivatives with respect to the independent position variables x

and y. Telford et al. (1976) give expressions for the vertical component of the

gravitational acceleration, and the ^-component and y-component of its horizontal

gradient in terms of the gravitational potential, U, at a distance r from the centre of a

three-dimensional body of arbitrary shape and density p. If subscripts denote partial

derivatives (for example U1 denotes differentiation with respect to z, and thus is the

vertical component of acceleration, and Un is the derivative with respect to x of the

vertical component of acceleration), then these expressions are:

(3.Ia)
rz

~ 3-a_ • • / ; « r* dxdz. x y i

x y z

where

r = Jx2 + y2 + z2 (3'ld)

The horizontal-gradient vector will have magnitude,
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~^% (3-2a)

and direction

0 = tan'1-^. (3.2b)
^

The present study focuses on computing and applying the magnitude of the horizontal

gradient.

Equations 3.1 and 3.2a indicate the theoretical differences between acceleration

and gradient magnitudes. The significant differences are: the gradient attenuates more

rapidly with increasing r, and thus for multisource data there will be less interference

from neighbouring bodies; and inflection points of acceleration correspond to maxima

of gradient magnitudes.

These properties imply that the gradient magnitude is useful for delineating

source-body geometry. This has been recognized by a number of researchers, and it

has been demonstrated that for two- and three-dimensional rectangular parallelepipeds

the maxima of the horizontal gradient corresponds spatially to the edges of the source

body (for example see Heiland, 1943; Cordell and Grauch, 1985; Blakely and

Simpson, 1986). It should be noted that for two-dimensional parallelepipeds that are

not rectangular, and extend to infinity in either the horizonal or vertical direction, the

offset of the gradient maximum from the edge is predictable (Grauch and Cordell,

1987).
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A review of computational methods and applications of gradient magnitude data

The purpose of this section is to review the techniques that have been

developed for computation of the components of the horizontal-gradient vector, and to

describe briefly some typical applications. These can be classified as one of three

methods: finite differences (Cordell, 1979; Cordell and Grauch, 1982; 1985), least-

squares polynomial fitting (Sharpton et al., 1987), and wavenumber-domain digital

filter design (Dole and Jordan, 1978; Kis, 1983).

The simplest and most commonly applied method is that of finite differences.

According to this approach, the x- and ^-components of the horizontal gradient for

data g(x,y), whose digital grid representation is denoted g,v, are respectively,

dx 2A*
(3.3a)

(3.3b)

Equations 3.3 can be rewritten in terms of convolution. The impulse responses are:

J_
AJC

(Q O O ^
0.5 O -0.5
,0 O O J

and

fO 0.5 Ol
0 0 0
O -0.5 OJ
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Gradient-magnitude data have been computed by this technique for several

published studies. For example, Cordell (1979) inferred that the maxima of such data

located graben-bounding faults in the Espanola Basin, New Mexico. In addition,

Cordell and Grauch (1985) mapped boundaries of basement magnetization zones from

so-called pseudogravity data (Cordell and Grauch, 1985) in the San Juan basin, New

Mexico. Further, Grauch and Sawatzky (1989) developed an algorithm based on

statistical analysis of these kinds of data to delineate high-angle normal faults in

Nevada.

It is also possible to design digital gradient filters in the wavenumber domain.

This is possible because the Fourier transform of the derivative of a function with

respect to an independent variable amounts to multiplication by the corresponding

frequency, and reversal of the phase (Erdelyi et al., 1954). That is, if S4x and S1^ are

the transfer functions of differentiation with respect to x and y respectively, then

(3'4a)

and

VMp = i2"ky (3>4b)

Equation 3.4a and 3.4b demonstrate that obtaining the components of the gradient is

equivalent to high-frequency amplification, and elimination of zero-frequency

components. These are desirable properties of an edge-detection filter; however, it is

undesirable to amplify monotonically the spectrum, because the noise that resides at

the high frequencies will obscure the lower-frequency signal. Thus, design of gradient
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operators as digital filters entails tapering the high-frequency band of the ideal transfer

function of differentiation, given by equation 3.4, and inverse-Fourier transforming this

function to generate the impulse response of the filter.

Dole and Jordan (1978) published two separate one-dimensional convolution

operators which could be applied in the x- and ^-directions in order to compute

gradient components. One set of weights was intended for use on relatively noise-free

data, while the second set was designed with a lower high-cut wavenumber. These

authors did not describe the method used for tapering the filter. This technique can

also be used to obtain two-dimensional weight functions. Kis (1983) designed

operators based on the two-dimensional inverse discrete Fourier transform, tapered

using a low-pass filter. The transfer function of the low-pass filter is:

where m is an integer that controls the width of the passband of the filter. That is,

increasing m increases the width of the passband. Then weight functions for the

gradient-component operators, denoted sjx,y) and sy(x,y) for the x- and y-component

operators respectively, are found by inverse Fourier transforming the transfer

functions,

Af M
2 2 _ _ _ _ _ _ _ _

SxIx-V) = —^ > > A1. J-s--— IA. i^.— \e. - (3.6a)
p=-_ ,-=-_

and
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M M

4rCv+y)

AB Al,.-_ r=-_

(3.6b)

where S^ and S^ are given by equations 3.4a and b respectively, and M is the number

of points computed in the frequency domain. This technique is essentially a high-

frequency enhancement filter cascaded with a low-pass filter to subdue high-frequency

noise.

Sharpton et al. (1987) introduced local least-squares polynomial fitting as a

technique for computing the horizontal gradient. Their approach is to compute the x-

and j-components of the gradient from the two partial-regression coefficients,

calculated by performing a least-squares polynomial fit of a first-order polynomial

within a 5x5 grid. The magnitude is then assigned to the central grid point in the

window.

A review of published accounts of applications of data computed with this

algorithm indicate that they are used exclusively for studying crustal-scale features.

Sharpton et al. (1987) used gradient trends to locate lateral discontinuities in the upper

crust, and from these delineated sutures and rifts. Thomas et al. (1987) used these data

to delimit Precambrian tectonic boundaries buried beneath the North American central

plains. Thomas et al. (1988) presented a gravity trend map of North America based on

horizontal-gradient magnitudes. This trend map was the framework for defining

gravity-trend domains that were in turn used to deduce boundaries that support the

notion of accretionary continental growth.
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It will be shown that this method is equivalent to two-dimensional convolution,

and an expression for the weights of the impulse response will be derived. Through

wavenumber-domain analysis of the expression for the space-domain convolution

operator, it is possible to show that for the 5 km x 5 km grid used in these three

studies, the x- and ^-components of the gradient each pass wavelengths approximately

between 80 km and 100 km. Thus this approach is limited to applications to relatively

large-scale features. The method that is derived in this investigation generalizes this

technique, and reformulates it so that the passband of the gradient calculation is both

variable and measurable.

Local least-squares polynomial gradient-component operators

The technique that is presented here is founded on local least-squares

polynomial fitting. The two-step procedure required to compute derivatives with this

technique is: determine a best-fit function for the data; and take analytical partial

derivatives of this function with respect to the two independent position variables in

order to compute the two components of the vector. As such, a version of the

technique has been used previously, as was discussed above; however, the approach

presented here has two significant differences: the algorithm has been reformulated as

two-dimensional convolution; and the method has been generalized so that an analytic

expression for the impulse response, as a function of the polynomial order and the

window size, has been derived.

The advantages of convolution over the conventional least-squares approach for
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filtering data were previously discussed. These advantages hold true for gradient

computations. In addition, because the studies reviewed have demonstrated that

gradient-magnitude maps are an effective means of detecting trends, a general

expression for gradient-component weight functions facilitates designing filters that

pass a specified frequency band. This enables trends corresponding to desired

frequency bands to be amplified, making it possible to tailor the bandwidth of the

edge-detection filter to suit the goals of the study. That is, for a small-scale survey in

which the aim is to highlight relatively small shallow features, it would be desirable to

magnify the high spatial frequencies; whereas for a larger survey, and deeper targets,

lower wavenumbers could be emphasized.

Using gradients for enhancing high-frequency bands by computing derivatives

via local least-squares polynomial fitting has been applied in other disciplines. For

example, Besl (1988) presented expressions for computing partial derivatives of digital

surfaces using second-order orthogonal polynomials. In addition, Letts and Rochon

(1980) derived an operator for application to topographic data, based on a 3x3 window

and a second-order polynomial. These authors derived the weights by rearranging the

expression for the minimization of the square of the error (equation 2.4).

The starting point for this derivation is the previously presented method for

local least-squares regional and residual calculations. Thus the gradient computations

may be performed using either nonorthogonal polynomials or orthogonal polynomials.

Procedures for calculating the gradient components will be presented for both classes

of polynomials.
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The method of nonorthogonal polynomials

As before, the data are assumed to be on a rectangular grid, with dimensions

mAx by p&y where Ax and Ay are the grid intervals in the x and v directions. The

moving window is specified by {*,.„, y}.J] through {xi+w, yj+w)}, where i = 1,2,...,w, y =

1,2,...,«, w = 1,2,...,2&+1, k < (p-l)/2 and k < (m-l)/2. Again, let Z(x,y) represent the

best-fit polynomial in the window; then,

n n
rw/ \ V^ "T̂  T S C\~l\Z(XyV) - y y Q.JC y \j-')

/•=0 5=0

where n is the order of the polynomial. It is important to note that polynomials

defined by equation 2.1b are used rather than those specified by 2.1a. This is because,

as was demonstrated in the previous chapter , the polynomials given by 2.1b have

more reliable filtering characteristics than those given by 2.1a.

The analytical partial derivatives of this function with respect to x and y are

respectively:

* y (3-8a)
« r-O 5=0

and
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'-1 (3-8b)
r=0 5=0

Imposing the L2 norm is one method of determining the best-fit polynomial for the

data,

dE = O (3.9)
darj

for all r = 0,1,2,... «, and 5 = 0,1,2,...«

where

i+w J+\vE = E E {ztw,)-̂ ,))2. (3JO)
f=i-w u-j-w

Solving the ensuing system of (n+l)2 normal equations gives the least-squares solution

for the coefficients ars. These can in turn be used to compute the x- and y-components

of the gradient with equations 3.8.

The method of orthogonal polynomials

In the previous chapter an analytic expression for convolution operators for

regional-pass least-squares polynomial filtering was derived. The derivative theorem

for convolution (Bath, 1974) allows these operators to be transformed to gradient-

component operators. This theorem can be stated as

(3.1Ia)
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and

Ul \ tf Vl l ft ^-T-VI(XJ) *f2(x>y)} = ' */2(*»y)

Thus, differentiating the expression for the weight function of regional-pass filters with

respect to x and y transforms these to operators which have outputs that are the x- and

^-components of the gradient. These filters thus incorporate the high-frequency

enhancement behaviour of differentiation with the low-pass nature of regional filters.

The result, as will be borne out by wavenumber-domain analysis, is a class of band-

pass filters for which the transmission band may, to a certain extent, be selected.

This discussion thus begins with the expression for the impulse response of the

smoothing filter previously presented,

h
°mn , , , , - (2.12)

There is a subtle change here from the notation convention used in the previous

chapter. Previously the origin of the coordinate system was placed at the centre of the

window because this allowed substitution of zero for *„ thereby simplifying

computation of the impulse response without sacrificing generality. In this case, the Jt-

dependence is explicit because there is no such substitution. Thus the operator for the

jc-component of the gradient is:
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*> %% ax i i • (3.12a)
E E Pr (m)$s (n)

m*-/ n»-/

Similarly, substituting qt(y) for qt(0) in equation 2.12, and differentiating this

expression with respect to yt gives the impulse response for the y-component of the

gradient,

^ -n dv l l ' • (3.12b)r=0 5=0 1V* - -

m--/n—/

It is seen from equation 3.12 that computing gradient operators requires taking

derivatives of orthogonal polynomials. This can be done by differentiating the

recursive relationships of Forsythe (1957), given by equation 2.7. These derivatives

are:

cbc

o _ (3

ax

8<x

where
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(3.14a)

and

, v f - 2 , , , v r-I 2, ,
PrW-^——Pr-lW-p^W—————- -PrW

J d*j ____________ d»i (3.14b)

Equations 3.13, 3.14 and 2.7 make it possible to compute the derivative of the (r +1)-

order orthogonal polynomial from the values of the two previous orthogonal

polynomials and their derivatives. These are the final formulae necessary for

generating partial derivatives of the regional-pass weight functions, given by equations

3.12, giving the gradient-component operators.

Properties and computational procedures of local least-squares polynomial
gradient-component operators

It is possible to simplify the recursive relationship for the derivatives of the

orthogonal polynomials, and hence simplify computation of the gradient-component

operators. Three factors make this possible. First, the derivative needs to be evaluated

only at *, = O. Second, in the previous chapter it was demonstrated that ar+1 = O

always in the symmetrical interval defined by the moving window. Finally,

examination of equation 3.14b indicates the derivative of 6r is zero in the moving

window. This is because the numerator of equation 3.14b is the sum of an odd
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function over a symmetrical interval, and thus is equal to zero. The product under

summation in the numerator of equation 3.14b can be seen to be odd by recalling the

property of orthogonal polynomials expressed by equation 2.15, coupled with the

following property:

Qx if r is even
<>Pr(-x)

dx dx
.

if r is odd

Incorporating these three factors into equation 3.13 allows this recursive relationship to

be written as

dx

»«,(*) = O (3.16)

dx

dx

= 2(l-^)/7r!
Jr=O

Another factor that must be considered is the dependence on the grid interval.

As would be expected, the gradient-component operators are proportional to the grid

interval. A generalized approach to incorporating this dependence is to compute the

convolution weights using equations 3.12 and a unit grid interval. This generates

weight functions that may then be applied to data on any grid by dividing the output

of the convolution by the grid interval. The units of the ensuing gradient component

will then be data units per grid interval.
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There are four properties of the impulse response of gradient-component

operators that are not shared by the regional filters. These are here discussed.

(1) In the previous chapter it was shown that the weight function given by

equation 2.12 did not change for orders n and /i+l, with n - 0,2,4,... . This is because

in equation 2.12 for odd powers of either r or s, and hence for odd powers of «, it is

necessary to evaluate orthogonal polynomials for either x = O or v = O. It was

established that odd orthogonal polynomials, evaluated at zero are in turn zero, and

thus odd powers do not contribute to the filter coefficients. Examination of equations

3.12 indicates that this does not apply to gradient-component operators. This is

because calculating these operators does not require evaluating odd orthogonal

polynomials for x and y simultaneously equal to zero. Hence a unique operator is

generated for each polynomial order and a given window size.

(2) Equations 2.14 and 3.16 imply that these operators are even functions about

the axis corresponding to the gradient-component being computed, and odd about the

other coordinate axis. The significance of this is that the Fourier transform of an odd

function is imaginary, and thus these operators generate phase reversals. Equations

3.4a and b indicate that, from a theoretical standpoint, this is what is expected for

differentiation.

(3) If the polynomial order is equal to zero, the impulse response has

coefficients of zero. This result is to be expected, as the derivative of a zero order

polynomial is zero.

(4) If the polynomial order is one less than the window size, the weight
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function reduces to a one-dimensional operator. Using the notation of equations 3.12,

non-zero coefficients occur for m equal to zero for ^-component gradient operators,

and for n equal to zero for ^-component gradient operators. Specifically, when the

window size is 3x3 and the polynomial order is two, the impulse response is identical

to the finite-difference operator.

Transfer functions of horizontal-gradient operators

Three techniques for calculating the components of the horizontal gradient have

been discussed. These can all be classified as two-dimensional convolutions. Thus

transfer functions of these gradient operators can be determined. This serves two

purposes. First, passbands of the gradient filters, and hence spatial-frequency content

of gradient data, can be determined. The second motivation for transforming spatial

operators is to provide a means of evaluating the efficacy of the filter. This can be

done by comparing the ideal transfer functions, given by equations 3.4, with the

transfer functions of each gradient operator. The goal is to design gradient weight

functions whose frequency-domain representations resemble the ideal case in a given

frequency band, without suffering from the drawback of high-frequency amplification.

For all three weight functions, the monotonically increasing transfer function is

modified by tapering the amplitude response of the high frequencies. These filters

maintain the property of amplitude amplification corresponding to increasing

frequencies in the low-frequency portion of the passband. Hence a criterion for

evaluating these filters is the similarity of this frequency band and the corresponding
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band of the ideal case.

Amplitude spectra have been generated from discrete two-dimensional Fourier

transforms calculated for frequencies from zero to the Nyquist, using grid units as the

spatial dimension. In the following discussion the transmission bands of these filters

are estimated using the definition of cutoff given by Mesko (1984). These are the

frequencies that correspond to decreases of 3 dB in the amplitude response.

Ideal gradient operators

Shown in figures 3.1a and b are the ideal transfer functions for differentiation

with respect to x and y. These are plots of the functions given by equations 3.4a and b.

As was previously discussed, this operation amplifies high-frequency content. The

absence of a high-frequency cutoff causing enhancement of the high-frequency noise

and eradication of signal is demonstrated by figure 3.2. This shows the magnitude of

the horizontal gradient of the Bouguer gravity field from an area in north-central

Alberta. These data will be discussed in detail in the following chapter and are shown

in figure 4.1. The gradient-magnitude data were computed using the ideal x- and y-

component gradient filters. This was done by fast-Fourier transforming the unfiltered

gravity data and multiplying the result by \2nkx and by ilnky. The inverse transforms

of these filtered spectra were computed in order to obtain the x- and y-components of

the gradient. Incoherent noise is the predominant feature on these data, concealing any

authentic trends, and thus rendering the results unusable. In order for gradient data to

be applicable, the filter response must be modified so that it is possible to enhance a
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Figure 3.1. Amplitude spectra of differentiation with respect to x (a) andy (b). These
are transfer functions of ideal gradient-component operators.
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Figure 3.2. Horizontal-gradient magnitude of the Bouguer data shown in figure 4.1,
computed in the wavenumber domain using ideal filter responses for differentiation
with respect to the position variables x and y.
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functional frequency range. The following three incarnations of this ideal case attempt

to fulfil this requirement.

It can be seen on figures 3.1a and b that the filter response of the ^-component

operator and the ^-component operator differ only by a transformation of the

frequency axes. Because of this, it is only necessary to display the response of one of

the gradient-component operators. Thus, in the following discussion the transfer

function of the ^-component operator is shown, with the understanding that the x-

component operator can be obtained by a 90° counterclockwise rotation about the z-

axis (where the z-axis is positive up from the kx-ky plane) followed by a 180°

clockwise rotation about the *-axis. In addition, since the transfer functions are odd

about the axis corresponding to the gradient component being computed, and even

about the other frequency axis, the entire spectrum can be inferred from the spectrum

in the first quadrant. Thus only this quadrant is displayed.

Finite-difference gradient operators

Shown in figure 3.3 are the filter responses of finite-difference gradient

operators for the ^-component. The passband of this weight function is centred at 0.25

cycles per grid units. It has low- and high-pass frequencies at 0.14 and 0.34 cycles per

grid interval for frequencies parallel to the ky axis and does not alter frequencies

parallel to the kx axis. This is what is to be expected, as these are one-dimensional

operators, and thus should have amplitude responses that vary only with respect to the

corresponding frequency axis. The spectrum resembles the ideal response in the low-
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Figure 3.3. Amplitude response of the ^-component finite-difference gradient operator.
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frequency half of the passband, and thus should give reliable results for studies

focusing on anomalies with wavelengths between 4.0 and 7.1 grid units. As well, these

amplitude spectra make it clear that magnitude maps generated with these weight

functions do not suffer from the unrestrained high-frequency amplification. However,

the technique is limited because it is not possible to modify the transmission band of

the filter.

Wavenumber-domain designed gradient operators

Transfer functions for several values of m have been generated from equations

3.5 and 3.6b. Responses were computed by calculating the response from equation

3.6b and inverse transforming this in the range from -5 < x < 5 and -5 < y < 5. This

11x11 weight function was then Fourier transformed to give the transfer function.

Examples are shown for m = 1 and m = 9 in figures 3.4 and 3.5 respectively. These

filters can be classified as band-pass with respect to the frequency axis corresponding

to the gradient component, and low-pass with respect to the other frequency axis. For

example, the ^-component gradient filter shown is band-pass with respect to the ky axis

and low-pass with respect to the kx axis. The filtering characteristics are thus specified

by three frequencies; the low- and high-pass frequencies of the band-pass filter, and

the cutoff frequency of the low-pass filter. The filter generated using m - 9, has a

transmission band delimited by a band-pass filter designated by 1.10 and 2.53 cycles

per grid interval, and a low-pass filter designated by 1.04 cycles per grid interval.

Likewise, for the filter generated using m = 1, the transmission band is delimited by a
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Figure 3.4. Amplitude spectrum of ^-component gradient operator from Kis (1983),
calculated for m = 1. This is the filter which passes the lowest frequency band.
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characteristics of the ideal filter.
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band-pass filter designated by 0.04 and 0.08 cycles per grid interval, and a low-pass

filter designated by 0.04 cycles per grid interval. These represent the practical limits of

values that may be used for generating weight functions. This is because for m - O the

low-pass filter becomes an all-reject filter; and for values of m > 9, the filter response

undergoes considerable distortion in the high-frequency bands. This is demonstrated by

figure 3.6, which shows an amplitude response for m = 13.

Comparison of the spectra shown in figures 3.4 and 3.5 with the ideal spectrum

shown in figure Ib indicate that, overall, the transfer functions of these filters

generally resemble the ideal filter in specific low-frequency bands of the spectrum.

However, figure 3.5 indicates an inherent weakness in these weight functions: namely

the flank of the transmission band does not have a constant slope. Thus the amplitude

response is not consistent with those of the ideal spectra. This problem is most severe

for m = 9, while for m = 1 the response is symmetric, and the slopes on the flanks of

the transmission range are constant.

Local least-squares gradient operators

Computing the discrete Fourier transforms of equations 3.12a and b has

enabled the amplitude spectra for local least-squares gradient operators to be computed

for a variety of polynomial orders and window sizes. An example of a transfer

function for a ^-component operator is shown in figure 3.7, for a 5x5 window and a

second-order polynomial. This transfer function is typical. That is, the response

consists of a central asymmetric lobe, with smaller side lobes. Thus these operators
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Figure 3.6. Amplitude spectrum of y-component gradient operator from Kis (1983),
calculated for m - 13. There is considerable distortion from the ideal case in the high-
frequency ranges.
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Figure 3.7. Transfer function of the ̂ -component gradient operator for a 5x5 window,
and a second-order polynomial.
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pass virtually all frequencies, excluding zero frequency components, up to the Nyquist

frequency. However, outside of the central lobe the signal is effectively suppressed.

These filters can again be classified as band-pass filters in conjunction with low-pass

filters, as were the previous filters. It is important to note, however, the significant

improvement over the previous filters; that is, on the low-frequency flank of the

transmission band, the response conforms closely to the ideal case. Numerous

amplitude spectra, for various window sizes and polynomial orders, have been

computed, and this property applies in all cases. This indicates that local least-squares

operators have frequency-domain representations that are most consistent with the

ideal filter response.

As is the case for regional-pass filters, the passbands are determined by the

window size, and the polynomial order, and as before the wavenumbers passed

increase with increasing polynomial order and decrease with increasing window size

(Thurston et al., 1990). An example of increasing high-frequency transmission

corresponding to increasing polynomial order is shown in figures 3.8a-c. These show

filter responses for operators based on 7x7 windows and first-, second- and third-order

polynomials. In addition, figures 3.8b, 3.9a and b illustrate that frequency content

decreases with increasing window size. The transfer functions shown are for weight

functions computed with second-order polynomials, and windows of 7x7, 9x9, and

11x11.

The task of quantifying the dependence of passband on window size and

polynomial order was undertaken. The results of these analyses are shown in figures
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Figure 3.8. Transfer function of the ^-component gradient operator for a 7x7 window,
and a first- (a), second- (b) and third-order (c) polynomial.
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Figure 3.9. Transfer function of the ^-component gradient operator for a 9x9 (a) and
an 11x11 (b) window, and a second-order polynomial.
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3.10. These data were obtained by empirically estimating the limits of the passband for

a range of window sizes and polynomial orders. Because these filters are band-pass

with respect to one frequency axis, and low-pass with respect to the other, a complete

specification of the filtering characteristics would require determining the low- and

high-pass frequencies of the band-pass filter, as well as the pass frequency of the low-

pass filter. These data are awkward to display and require a prohibitive computational

effort. It is considerably simpler to determine only the characteristics of the band-pass

filter. Thus, the passbands were measured from the amplitude spectra of j-component

operators along the ky axis (i.e. for kx equal to zero). This approach gives reliable

estimates of the anticipated frequency content. If y-component operators are

considered, then for polynomial orders of n and n+l (for n= 1,2,...) the amplitude

response of the band-pass filter is not altered. This is demonstrated by figures 3.8a and

b. These amplitude responses indicate that maintaining a window size of 7x7, and

increasing the polynomial order from one to two, increases only the frequency content

in the kx direction. Thus, measurements of band-pass frequencies were performed for

filters derived from odd-order polynomials.

The abscissae in figures 3.10a-c are labelled ky. However, because of the

symmetry of the amplitude spectra of the x- and ^-component operators, these results

are identical to measuring passbands of jc-component frequencies along the kx axis.

Thus the results apply equally to x- and ^-component gradient filters.

Figures 3.10 display some interesting characteristics of these gradient-
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component operators. First, these plots provide an estimate of the frequency content of

data filtered by a weight function of a given polynomial order and window size. This

serves as a guide for selecting parameters according to the objectives of the study, as

well as indicating the frequencies represented on gradient data. In addition they

indicate the manner in which the filtering characteristics vary with window size and

polynomial order. On all three plots, the curve becomes steeper for increasing window

size. The implication of this is that the low- and high-pass frequencies and the width

of the passband are relatively insensitive to variations in window size when the

window size is large. Conversely, when the window size is small, these three

quantities can be varied considerably by changing the window size. The transition

between large and small windows occurs between 11x11 and 15x15.

Summary

The preceding discussion has demonstrated that reliable gradient-component

operators can be generated by differentiating the local least-squares polynomial

operators presented in chapter 2. It seems that these weight functions are more reliable

than their wavenumber-domain-designed counterparts, and, unlike the finite difference

operators, have a variable passband.

Quantification of the filtering characteristics of the local least-squares

polynomial separation and gradient-component operators sets the stage for evaluation

of these filters via application to real data. Such a study comes after the next chapter,

which focuses on an analysis of the data using conventional wavelength filtering.
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Chapter 4 - Wavelength Filtering of Bouguer Gravity Data

Introduction

The processing techniques based on polynomial approximation have been

applied to a Bouguer gravity data set from northern Alberta. The data used for this

study are based on 440 Bouguer gravity values from the Earth Physics Branch,

Department of Energy Mines and Resources, Canada. Corrections to the data are

described in detail by Goodacre et al. (1987). The Bouguer density used for the

reduction is 2670 kg/m3. Terrain corrections have not been performed, as for these

data this is less than 1 mGal (Walcott and Boyd, 1971). To facilitate digital

computations and automated display, the data were gridded at an interval of 2.5 km.

The gridded data set comprises 101x101 grid points, and covers a square area of

62 500 km2.

A contour map of these data is shown in figure 4.1. An initial analysis has

been undertaken using conventional filtering techniques. The results of this filtering

constitute the topic of this chapter. The purpose of this is to determine likely source

bodies that give rise to the regional and residual anomalies. These results provide an

understanding that will serve as the foundation for the subsequent study that employs

polynomial approximation techniques.

Regional and residual anomaly maps

A suite of low-pass filtered (i.e. long-wavelength) maps and the associated
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Figure 4.1. Bouguer gravity map of the study area, comprising the Trout Mountain
Low. The two solid circles indicate basement-penetrating wells (after Ross et ah,
1988), and the solid line indicates the Devonian axis of the Peace River Arch.
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residuals has been computed. Filtering was performed in the frequency domain with a

sixth-order Butterworth filter (Kanasewich, 1981, p. 265) using software developed by

Eaton (1988). The order of the filter is proportional to the slope of the taper. For sixth

order, the average slope is approximately 8 dB per octave. This slope effectively

separates frequency components, and ringing artifacts induced by this rapid taper are

not evident in the filtered data. In order to minimize edge effects, filtering was

performed over a data set containing 181 grid nodes per side. The outermost 40 points

along each edge of the map were discarded, leaving a window of 101x101 points.

Filtered data were computed for cutoff wavelengths up to 1000 km. When wavelengths

shorter than 1000 km are eliminated the output is uniform at approximately -70 mGal.

For cutoff wavelengths shorter than about 30 km no coherent signal is apparent.

Shown in figure 4.2 are the data filtered with cutoff wavelengths of 31.25 km, 62.5

km, 125 km, 250 km, and 500 km. These correspond respectively to spatial

frequencies of 0.032 km'1, 0.016 km'1, 0.008 km'1, 0.004 km'1, and 0.002 km'1. Where

possible the discussion of the filtered data focuses on suggesting sources for the

anomalies by correlation of the regional and residual anomaly maps with crustal

features identified in related published studies.
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Long-wavelength anomaly maps

Kane and Godson (1985) studied attenuation caused by filtering, and concluded

that anomaly maps containing wavelengths predominantly shorter than 250 km depict

sources at less than 40 km depth. As a corollary to this, the first-order influence on the

long-wavelength maps with cut-offs greater than 250 km will be upper mantle sources.

It is also possible for large-scale shallower sources to give rise to anomalies with

wavelengths longer than 250 km. In addition, the 125-km, 62.5-km, and 31.25-km,

long-wavelength maps, shown in figures 4.2 b,d, and f, also include crustal sources.

This assumption is based on the same reasoning used by Kane and Godson (1985) and

figure 3 from their paper, which suggests that anomaly maps containing wavelengths

shorter than 125 km include sources at depths less than about 15 km. The long-

wavelength counterparts of these maps will thus include anomalies residing generally

in the lower part of the crust. Consequently, this study of regional maps highlights

mantle anomalies, crustal anomalies with broad areal extent, as well as smaller crustal

bodies.

The map comprising wavelengths longer than 500 km, shown in figure 4.2i,

depicts a negative gradient, with a relative high to the northeast; and a relative low to

the southwest. If the base level of -70 mGal, corresponding to the output of the 1000-

km low-pass filter, is subtracted from these filtered data, the northeastern portion of

the map corresponds very closely to the middle-wavelength (500-1000 km band-pass

filtered) Airy anomaly map of Sprenke and Kanasewich (1982). The fact that this

feature is resolved on an isostatic anomaly map implies that this portion of the map



92

area is probably not in isostatic equilibrium. These authors surmised that this anomaly

is a relict of the Hudsonian orogeny; and is due either to anonamously high mantle

densities or to a topographic high on the Moho.

The relative low in the southeastern portion of the map area does not have a

counterpart on the middle-wavelength isostatic map; however Stephenson et al. (1989)

attributed this trend to crustal thickening beneath the Rocky Mountains (Berry and

Forsythe, 1975).

The 250-km long-wavelength map, shown in figure 4.2g, depicts a northeast-

trending relative low, centred approximately in the middle of the map, superimposed

on the longer-wavelength gradient seen on the 500-km long-wavelength anomaly map.

Burwash and Culbert (1976) identified a regional trend of increase in potassium

feldspar, accompanied by a decrease in specific gravity, towards the northeast. This

regional density trend closely resembles the shape, location, and orientation of this 250

km long-wavelength low. This density decrease was recognized from trend surface

analysis of potassium-feldspar and quartz mode observations, and specific gravity

measurements obtained from Precambrian rocks sampled in deep drill holes. These

authors attributed this to potassium metasomatism of crystalline basement rocks,

causing a decrease in specific gravity. This in turn was postulated to be related to the

positive isostatic nature of the Peace River Arch. If this density decrease is vertically

extensive it may give rise to the 250 km long-wavelength low.

The 125-km long-wavelength map, shown in figure 4.2e, is dominated by the

long-wavelength component of the Trout Mountain anomaly (discussed below).
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Relative gravity highs in the southeastern and northwestern corners of this map have

unknown origins. On the other hand, the axis of the saddle-shaped relative low in the

southwestern quadrant of the map, with an amplitude of approximately 4 mGal, is

coincident with the Devonian axis of the Peace River Arch. Stephenson et al. (1989)

resolved a coincident low on a 400 to 700 km band-pass filtered isostatic anomaly

map. These authors attributed this low to crustal thickening that could not be

accounted for by a topographic high. It is possible that this is the cause of this

anomaly; however, it also possible that this has an origin similar to the low on the

250-km long-wavelength data.

Short-wavelength anomaly maps

The aim of generating short-wavelength anomaly maps is to produce residuals

which isolate crustal source bodies. This entails removing broad anomalies. For the

present Bouguer gravity data, the broad anomalies are primarily due either to regional

crustal density trends or to upper-mantle features, and can be represented by

wavelengths greater than 250 km. In addition, as previously stated, bodies giving rise

to anomalies with wavelengths less than 250 km generally reside at depths less than

40 km. Hence, the residual field for these Bouguer gravity data should depict specific

bodies of relatively limited extent that are in the crust. Thus, crustal sources are

depicted on the 250-km and 125-km residual maps (figures 4,2f and h respectively).

The 62.5-km and 31.25-km residuals contain, shown in figures 4.2c and a respectively,

little useful information, as will be discussed.



94

On the map shown in figure 4.2h the most prominent feature is an

approximately 170 km x 60 km north-south (in the northern portion) and southwest-

northeast trending (in the southern portion) low. This anomaly was first identified by

Walcott and Boyd (1971). They designated it the Trout Mountain Low (TML), and

surmised it to be due to a major lithologic change in the upper part of the basement,

possibly associated with a granitic batholith. Burwash and Power (1990), using a suite

of cores that intersect both the TML and the adjacent Precambrian basement, carried

out detailed gravity modelling of this feature. They concluded that the TML is a

granitic pluton, embedded in granulite-facies country rock. Based on these borehole

samples, their model was constrained to have a density contrast of -0.05 g/cm3 and a

top depth coincident with the unconformity at the Precambrian surface. From these

assumptions Burwash and Power obtained the following parameters for the source

body: the northern segment is a steep-sided body, 25 km thick, trending north-south

with a width at the base of 20 km. The southern segment trends N25°E with a base

width of at least 30 km, and is not as well defined.

Apart from the TML, determining source bodies for the residual anomaly maps

is speculative; however, assuming that these represent crustal sources, it is possible to

make some general statements.

A common cause of gravity lows is granitic batholiths (Bott and Smithson,

1967). West of the TML there is a similar, albeit smaller-amplitude, north-south

trending (in the northern portion), and southeast-north west trending (in the southern

portion) gravity low with a minimum amplitude of approximately 8 mGal. The
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basement rocks corresponding to this anomaly have been intersected by two wells

(Ross et. al., 1988) whose locations are shown on figure 4.1. These authors describe

the core from the 06-24-086-15W5 well as quartz monzonite, and the core from the

11-15-084-19W5 well as granite. This lithology is similar to the TML basement cores,

which were described by Burwash and Power (1990) as microcline-rich granite. As

well, Ross et al. (1988) dated the core from the 06-24-086-15W5 well at >1995 Ma,

an age similar to that of the rocks of the TML. While two samples do not provide

sufficient control to draw firm conclusions, the lithologic, shape and age similarities,

as well as the proximity to the TML, suggest that this body is also a granitic batholith,

with a similar history as the TML.

In general, the 125-km short-wavelength map (figure 4.2f) bears a strong

resemblance to the 250-km map (figure 4.2h). A significant difference is that the

amplitude of the TML is lower on the 125-km residual map. This can be explained by

the fact there is a long-wavelength component of the TML evident on the 125-km

long-wavelength map. On the other hand, the smaller low is essentially the same on

the 125-km and 250-km long-wavelength map. This is explained by the fact that this

smaller pluton is wholly represented by wavelengths less than 125 km, and is affected

very little by including signal with wavelengths between 125 km and 250 km. The

absence of longer-wavelengths associated with this pluton implies that it does not

extend as deep as the TML.

It should be noted that on the 250-km and 125-km residual maps (figures 4.2f

and h respectively) the southwestern portion of the TML and both sides of the
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adjacent pluton are flanked by parallel highs. Zurflech (1967) and Kane and Godson

(1985) demonstrated that artificial anomalies of opposite polarity and the same

orientation can be induced on the flanks of real features when Bouguer gravity data

are high-pass filtered. Because there is no evidence for these linear features on the

Bouguer anomaly map, it is quite likely that these are artefacts of the filter.

There is limited useful information on the 62.5-km short-wavelength map. The

highest amplitudes can be traced to leakage of the high-amplitude longer-wavelength

anomalies. In addition, there are a number of isolated peaks; however, these are

generally less than 36 km from flank to flank, and thus will are unreliable, as the

average station spacing is 12 km.

Finally, the 31.25 km short-wavelength data are of low amplitude and

incoherent. Hence the threshold for signal for these Bouguer gravity data is taken to be

about 0.032 km'1.

Summary

Frequency filtering of the Bouguer gravity data has separated a number of

trends that can be attributed to known crustal-scale features. In general, the

contributions are well understood, with the exception of the small-scale crustal

sources, which would require the incorporation of additional information and which is

beyond the scope of this investigation. This study is intended primarily as a precursor

to analysis via the polynomial approximation techniques. These approximation

techniques encompass local and global least-squares approximation, as well as
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transformation with horizontal-gradient component filters. Frequency filtering has

highlighted the salient features of these Bouguer gravity data. In the following chapter

these will be processed using polynomial approximation techniques. This will include

two main components. The first is to undertake regional and residual separation with

global and local least-squares approximation and to compare these results to the

filtered data with similar frequency content. The purpose of this is to assess the

consistency of these separation techniques. The second entails computing a suite of

horizontal-gradient magnitude data sets in order to determine whether this approach

enhances the results of the filtering.
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Chapter 5 • Application of Polynomial Approximation Filters

Introduction

In this chapter, the filtering techniques studied in chapters 2 and 3 are applied

to the Trout Mountain Bouguer gravity data. There are two main sections: application

of polynomial approximation for estimating regionals, and computation of a suite of

horizontal-gradient magnitude maps. The results of these filtering operations will be

compared to the results of the wavelength filtering.

Application of global and local polynomial approximation methods is an

attempt to reproduce the regional fields computed in the previous chapter.

Understanding the filtering characteristics of the polynomial approximation methods

aids in the computation of regionals which are equivalent to the wavelength-filtered

maps in terms of frequency content.

The focus of the horizontal-gradient magnitude analysis is to construct maps in

which bandwidths ranging from the threshold of coherent short-wavelength signal to

the longer-wavelength crustal sources are emphasized. Because the filtering

characteristics of the gradient-component filters are understood, it is possible to

generate maps comparable to the wavelength-filtered maps. Knowing the frequency

content of the gradient-magnitude maps facilitates evaluation of the horizontal-gradient

magnitude technique, as well as enhancing the interpretation.
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Regional/residual separation using polynomial approximation

In chapter 2 the filtering characteristics of global polynomial approximation

were discussed. This analysis showed that the frequency content of these regional

fields varies from point to point, making it difficult to generate maps suitable for

comparison with wavelength-filtered maps. However, by using the passbands of centre

filters as a guide and experimenting with various polynomial orders and data-set sizes,

it is possible to generate results that resemble the wavelength-filtered maps. Thus,

polynomial approximation was performed over large data sets, from which smaller

cores were extracted. Windowing the map has the additional benefit of eliminating

effects induced by the unreliable filtering characteristics in the vicinity of the edges.

From a mathematical standpoint, local least-squares polynomial fitting and

wavelength filtering are equivalent operations, and thus differences that arise can be

attributed to the differences in the transfer functions of the filters. In chapter 2, it was

demonstrated that local polynomial filters bias signal at 45° to the coordinate axes. As

a result, the frequency content of maps generated with local least-squares polynomial

filters can not identically match the wavelength-filtered maps. Where possible, filter

functions were designed to accommodate the dominant trends, with parameter selection

based on the results of the passband measurements presented in chapter 2.

The algorithm implemented for global polynomial fitting is based on computing

the coefficients in terms of orthogonal polynomials. The coefficients are computed

from equation 2.12, and the long-wavelength component is calculated by using these

coefficients in equation 2.11. Local least-squares polynomial approximation was
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implemented as a convolution process, with the coefficients of the weight functions

computed using equation 2.15.

Regional fields were generated using these algorithms, with polynomial forms

defined by both equations 2.1a and b, for comparison with the 125-km and 250-km

long-wavelength anomaly maps from figures 4.2e and g. It is important to remember

that polynomials defined by equation 2.1b include higher-order cross terms that result

in increased high-frequency content of signal that is oblique to the coordinate axes.

The former are shown in figures 5.1 and 5.2, and the latter are shown in figures 5.2

and 5.3. Each figure comprises two maps depicting polynomial approximation with

both polynomial types. Figures 5.1a and b show the result of approximating 181x181

points with eleventh-order polynomials, and figures 5.3a and b show third-order

polynomials computed from a 15 Ix 151-point data set. Regional fields computed using

local least-squares polynomials are shown in figures 5.2a and b (57x57 window, and a

second-order polynomial), and in figure 5.3 (45x45 window, and a first-order

polynomial). Only one result is shown for the first-order local least-squares operator

as, for first order, identical operators are given by both polynomial types.
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window size = 55x55
order = 0/1
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Figure 5.4. Data from figure 4.1 low-pass filtered using local least-squares polynomial
filters.
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Regional maps computed using polynomial approximation

No one regional field computed using polynomial approximation wholly

reproduces the 125-km long-wavelength anomaly field. The northeasterly trending low

corresponding to the TML is narrower from flank to flank on the map shown in figure

5.1b, than on the map in figure 5.1a. This implies the former comprises shorter

wavelengths. In addition, the northwestern trend characteristic of the northern portion

of the long wavelengths of this low, and the northeasterly trending extension to the

south, seen on figure 5.1b, are not present on figure 5.1a. The inability of this

polynomial-approximation method to resolve these features is not unexpected. This is

because the coordinate axes are positive to the north and to the east, and thus

approximation by polynomials defined by equation 2.1a pass considerably shorter

wavelengths in these directions. Thus, signal that is not parallel to the coordinate axes

has noticeably lower frequency content. On the other hand, when polynomials defined

by equation 2.1b are used for global approximation, frequency content is somewhat

increased for signal that is not along the axes. The result of this is that on the map

shown in figure 5.1b the long-wavelength component of the TML is more accurately

depicted.

The improved results attributed to the inclusion of extra terms in the

approximating polynomial are marred by the fact that on figure 5.1b the subtle

expression of the Peace River Arch is truncated by a northeasterly trending low. It is

difficult to explain the origin of this anomaly; however, since it is not apparent on

either the wavelength-filtered maps, or on the maps generated from local
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approximation, it is quite likely an artefact. The fact that it does not appear when the

data are filtered with phase-invariant filters (figures 4.2 and 5.2) suggests that it is a

result of a phase shift. Further, the fact that it does not appear on figure 5.1a implies

that this spurious feature is also related to increasing the high frequencies of signal

that is not parallel to the coordinate axes.

It is important to note that, with respect to the 125-km long-wavelength

anomaly map (figure 4.2e), the centre of the TML is shifted approximately 25 km to

the northwest and 25 km to the southeast on figures 5.1a and b respectively. This may

be due to the fact that global polynomial approximation is not phase-invariant; this

distortion can shift the position of the body.

Computing the 125-km long-wavelength map with local polynomial

approximation does not significantly change the results. One noteworthy difference is

that the centre of the TML is coincident with the centre on the 125-km long-

wavelength map (figure 4.2e). This is probably because local polynomial

approximation is a phase-invariant operation. As well, the northeasterly trending

feature in the southwest corner is no longer evident, supporting the proposition that it

is related to phase distortion.

The regional field computed by local polynomial approximation, shown in

figure 5.4, is the most successful at reproducing the results of the 250-km long-

wavelength Butterworth filter. On this map, the amplitude and orientation of the

prevalent northeasterly trend is very nearly identical to the low resolved by wavelength

filtering.
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Finally, it should be noted that the results obtained by using polynomials of the

type of equation 2.1b are at the expense of increased computational effort. This is

because these polynomials require calculating an extra o(o-Hl)/2 coefficients, as well as

incorporating the additional terms in the regional polynomial calculation. This added

computational burden increases for higher-order polynomials and for larger data sets.

For third-order and 151x151 data points, polynomials defined by equation 2.1b

required an additional one-third of the execution time than was needed to compute

polynomials defined by 2.1a. For eleventh-order and 181x181 data points the

execution time increased by approximately 1.8 times. The polynomial form used for

local least-squares polynomial approximation has very little effect on computation

time. This is because the number of terms in the approximating polynomial only

increases the number of operations required to compute the coefficients of the weight

function, which is a small task when compared to convolving the operator with the

data.

Horizontal-gradient magnitude analysis

Kane and Godson (1985) compiled a 250-km short-wavelength anomaly map of

the conterminous United States, and a horizontal-gradient magnitude map using finite

differences. These authors noted that these maps are complementary. The gradient-

component operators developed in chapter 3 facilitate extending computation of

corresponding wavelength-filtered and horizontal-gradient magnitude maps. This is

because local least-squares polynomial operators facilitate variation of the frequency
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content of the gradient-magnitude maps. This allows a suite of these maps to be

compiled, each featuring a different bandwidth of crustal anomalies.

The horizontal-gradient magnitude maps of these Bouguer data have been

obtained by separately convolving the data with the impulse responses of the jc- and y-

component operators given by equation 3.13 and using these components to compute

the horizontal-gradient magnitude. Parameters for horizontal-gradient component

operators were chosen in order to generate gradient-magnitude maps that have

frequency content comparable to the wavelength-filtered maps presented in chapter 4.

Frequency content of gradient-magnitude maps were estimated using the results in

figure 3.10. The gradient-component operator parameters, the estimated low- and high-

pass wavenumbers, and the figure number in which the corresponding map appears,

are summarized in table 5.1.

Figure

5.6

5.7

5.8

5.9

Window

5x5

17x17

31x31

51x51

Polynomial

3

2

1

1

Low-pass

0.064 km'1

0.008

0.004

0.002

High-pass

0.160km-1

0.024

0.013

0.008

Table 5.1
Parameters for generating horizontal-gradient magnitude maps.

Before discussing specific features of the gradient-magnitude maps, it is

appropriate to make some general comments regarding the frequency content. In

chapter 3 the filtering characteristics of the gradient-component operators were

discussed. This discussion focused on determining the passbands associated with
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various combinations of parameters. However, irrespective of the behaviour of the

filter, transforming an anomaly to its gradient-magnitude counterpart inherently alters

the frequency content. This occurs because the magnitude of the gradient of an input

waveform has wavelengths half as long, provided these wavelengths fall within the

passband of the gradient-component operators.

This can be demonstrated by a simple example using data in a single

independent variable, say x. A single wavelength (or period) of any spatial or temporal

series can be represented as

fix) =

where y=2n/T, and T is the period (Jeffreys, 1964). The gradient magnitude of the

function defined by equation 5.1 is:

dx

One way of determining the wavelengths of both functions is to find the distance

between adjacent local maxima. Maxima are located by finding the roots of the first

derivatives of each function, for which the second derivatives are greater than zero.

For equation 5.1, this occurs for yx = n/4 + 2nn, whereas for equation this occurs for y

= 371/4 + nn, where n - 0,1,2,... Thus, the spacing between maxima, and hence the

wavelength, of the gradient magnitude is one-half of that of the input waveform. This

is illustrated by figure 5.5.

This implies that wavelength-filtered maps contain essentially the same

information as gradient-component maps comprising wavelengths half as long. For
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N-

Figure 5.5. A monochromatic waveform, and its gradient magnitude. A single cycle
of the input waveform spans two cycles of the gradient magnitude.
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instance, gradient-component operators based on a 31x31 window and a first-order

polynomial enhance wavelengths approximately between 70 km and 200 km. Thus

these express the same features as wavelength-filtered maps with cut-offs between 140

and 400 km.

Horizontal-gradient magnitude maps

Shown in figure 5.6 is the gradient-magnitude map computed using a 5x5

window and a third-order polynomial. In chapter 4, 0.032 km"1 was determined to be

the upper frequency limit of signal for these data. According to table 5.1, these

gradient-component operators emphasize frequencies between 0.064 km"1 and 0.16

km"1, a band that comprises primarily noise. However, because the noise has a

magnitude that is generally less than 2 mGal, higher-amplitude lower-frequency

coherent trends are evident. This is an example of high-amplitude anomalies appearing

on gradient-magnitude maps, even though these anomalies are comprised of frequency

bands not within the bandwidth specified in table 5.1. This can be attributed to the fact

that the frequency content of gradient-magnitude maps is more complicated than is

implied by table 5.1. That is, each gradient component contains a relatively small

amplified frequency band in the direction perpendicular to the direction of the gradient

component. This is the passband specified in table 5.1. When the components are

squared and summed to compute the gradient, this band is repeated and thus

constitutes the primary frequency band of the gradient magnitude. In addition to this,

there is a broad frequency band present, that includes all but the highest frequencies,
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116'W

C.I.- 0.1 mGal/km

56'N

,km 50

Figure 5.6. Horizontal-gradient magnitude data computed using a 5x5 window, and
a third-order polynomial.
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tI

56*N

C.I.- 0.08 mGal/km O 50I km

Figure 5.7. Horizontal-gradient magnitude data computed using a 17x17 window, and
a second-order polynomial.
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116'W

C.I.- 0.05 mGal/km

tI

.km 50

56'N

Figure 5.8. Horizontal-gradient magnitude data computed using a 31x31 window, and
a first-order polynomial.
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I
56* N
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Figure 5.9. Horizontal-gradient magnitude data computed using a 51x51 window, and
a first-order polynomial.
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in the orthogonal direction. This frequency band is not common to both gradient

components, and is thus an ancillary contribution; however it can result in the

preservation of high-amplitude anomalies, even if they are not within the passband

given in table 5.1.

The predominant feature on the map shown in figure 5.6 is the TML. The

gradient-maxima can be used to locate the edges of the pluton. The importance of

using a high-frequency gradient-magnitude map to locate the edges of this pluton will

be discussed later.

The northern portion is flanked on the east and west by a gradient of 1.8

mGal/km. Here, the gradient maxima are approximately 25 km apart. This width

increases to a maximum at the centre of the anomaly, where it is 30 km. In the

southern portion the gradient maxima are considerably lower, and are separated by a

distance of roughly 35 km. The peak that defines the northern end is readily apparent,

however the southern end is not evident. This makes it difficult to measure length

accurately, but 140 km is a reasonable estimate. Overall these areal dimensions are in

agreement with the modelling results obtained by Burwash and Power (1990); however

there is some discrepancy in the southern portion, which was modelled to have a width

of 30 km. The good agreement in the northern portion is not surprising, as one of the

results of the modelling was that these walls are steep-sided. On the other hand, the

western edge of the southern portion was modelled with nonvertical walls that dip to

the northwest. For sloping contacts, gradient maxima are offset downdip (Grauch and

Cordell, 1987). This would result in the distance between gradient maxima
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overestimating the width of the source. Further, for a constant density change,

horizontal gradients decrease as the slope of the contact decreases (Hammer and

Anzoleaga, 1975). Thus, non-vertical sides for this portion of the Trout mountain

pluton may also be the reason for the observation that these are the lowest gradients

associated with the TML.

In addition to the TML, the low to the west, speculated to also be caused by a

pluton, is delineated well on this map. The northern portion has a width of about 35

km, which narrows to 30 km in the south. Like the TML, the northern end is well-

defined, whereas a peak corresponding to the southern end is nonexistent. However,

based on the lateral gradients, 120 km is a reasonable estimate for the length.

Although there are a number of other features resolved on this map, like the

short-wavelength anomaly maps, it is difficult to determine likely causes for these

anomalies. Hence, no attempt will be made to interpret these features other than to

note that they are likely caused by shallow crustal bodies.

The map shown in figure 5.7 has undergone enhancement of wavelengths

between 125 and 40 km, and thus is most closely associated with the 250-km short-

wavelength anomaly map in terms of information. Comparison of these maps indicates

that the same features are depicted on both. This pair demonstrate the complementary

nature of wavelength-filtered and gradient-magnitude maps. That is, while the 250-km

short-wavelength anomaly map, shown in figure 4.2h, shows the magnitude and

polarity of the anomalies, the gradient-magnitude map in figure 5.7 highlights

geometrical relationships between features. For instance, on the map shown in figure
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5.7, the eastern edge of the TML is part of an extensive north-south trend. As well,

the northern end of the low to the west of the TML is seen to be truncated by a

feature oriented to the northwest. This can be attributed to the fact that horizontal-

gradient magnitude maps highlight density boundaries.

As discussed previously, in terms of frequency content, the horizontal gradient-

magnitude map shown in figure 5.8 most closely resembles the 125-km long-

wavelength anomaly map shown in figure 4.2e. Like the 125-km long-wavelength

map, the most prominent feature on this gradient-magnitude map is related to the

TML. Here, the pluton is defined by eastern and western maximum gradients of

approximately 0.4 mGal/km. It should be noted that the gradient maxima of the TML

depicted on this map do not depict the edges of the pluton. This is because the

maxima of the gradient of the long-wavelength components of an anomaly are not

geographically coincident with the edges of the source body, while the short-

wavelength gradients retain the shape information (Kane and Godson, 1985). Hence,

area! dimensions should only be estimated from the short-wavelength gradient-

magnitude signature.

Aside from resolving the long-wavelength component of the stronger

anomalies, there is a subtle feature on figure 5.8 that is not evident on any of the

wavelength-filtered maps. This is the northwest trending ridge of magnitude 0.06

mGal/km, in the southwestern portion of the map. The centre of this ridge is

coincident with the maximum gradient, as imaged on figure 5.6, that corresponds to

the eastern edge of the smaller pluton. This is interesting because the southeastern
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portion of this ridge appears to be an extension of the maximum that corresponds to

the eastern edge of the smaller body. The fact that it extends to the southeastern

portion of the TML may signify that this body joins the Trout Mountain pluton.

On the gradient-magnitude map shown in figure 5.9 wavelengths between 500

and 125 km have been highlighted. Thus, the northeasterly oriented low resolved on

the 250-km long-wavelength map (figure 4.2g) should be obvious. While the eastern

portion of this feature is outlined by a peak, the anomaly is not as well defined on this

map as it is on its wavelength-filtered counterpart. This is largely due to the presence

of the TML, which is not completely removed by the gradient-component filters. This

is a second example of leakage of frequency bands that are not within the specified

passband. In this case this is detrimental, as it precludes delineation of this gravity

low.

Summary and conclusions

The following conclusions regarding local and global least-squares polynomial

approximation can be drawn from this study:

In some cases, global polynomial approximation has been observed to cause a

geographic shift of the centres of anomalies with respect to their location on maps

filtered by phase-invariant operators. This has been attributed to spatially-dependent

phase distortion.

Global and local least-squares approximation by polynomials defined by

equation 2.1a are hampered by the fact that these polynomials result in the
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transmission of considerably higher frequencies along the directions of the coordinate

axes. This degrades features that are oblique to the axes. Polynomials defined by

equation 2.1b are more equitable, and are thus more dependable. Nevertheless,

regional fields for both polynomial types should be computed, because using

polynomials defined by equation 2.1b rather than 2.1a has been shown to introduce

artificial anomalies. This may be due to a combination of including extra terms in the

approximating polynomial, and phase distortion.

Because of the extra terms, global approximation by polynomials defined by

equation 2.1b is more computationally intensive than approximation by polynomials

defined by equation 2.1a.

The following conclusions regarding horizontal-gradient magnitude maps can

be drawn from this study:

Horizontal-gradient maps are comparable to wavelength-filtered maps that have

cutoff wavelengths twice as long.

Gradient-magnitude maps highlight density boundaries. This facilitates

measurement of area! dimensions from the gradient-magnitude maps. This must be

done from the short-wavelength maps, as the longer-wavelength components do not

retain the shape information. In addition, this has been observed to portray subtle

features that are not otherwise apparent, and reveal relationships between anomalies

that are not obvious on wavelength-filtered maps.

It is difficult to filter out high-amplitude features completely using the

horizontal-gradient magnitude, even when these features are outside the passband of
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the gradient-component operators. This makes the horizontal-gradient magnitude

technique unsuitable for studying long-wavelength crustal features that are masked by

higher-amplitude shorter-wavelength features.
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Chapter 6 • Conclusions

The framework for this thesis is local least-squares polynomial approximation.

This approach entails computing the value of the best-fit polynomial over a subrange

centred on, and in the immediate vicinity of, each input data point. Thus, each

processed data point originates from a unique polynomial.

Previous studies have demonstrated that for data in one independent variable

this technique is equivalent to linear digital filtering (Wood and Hockens, 1970; Chan

and Leong, 1972). The present study commences with an extension of this concept to

data in two independent variables. This confirms that, like their one-dimensional

counterparts, these are phase-invariant low-pass linear digital filters. The two-

dimensional operators are complicated by the fact that the transfer functions are not

isotropic, and transmit higher frequencies oblique to the axes of the coordinate system.

The amount of directional distortion depends upon the terms contained in the

approximating polynomial. Hayes (1970) defines two potential forms for these

functions, which are given by equations 2.1. Operators designed using polynomials

from equation 2.1b have the widest passband at bearings of 45° to the axes; however,

the amount of distortion is small compared to that which is induced by operators based

on polynomials defined by equation 2.1a.

Analysis of the transfer functions of the impulse responses concentrates on

determining high-pass frequencies for various parameter combinations. In addition to

quantifying the filtering characteristics, this reveals the following properties of these

filters: the high-pass frequency is proportional to the polynomial order, and inversely
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proportional to the number of points incorporated in the least-squares fit; using fewer

points decreases the directional distortion; and, for a given polynomial order the high-

pass frequency varies the most when the number of points is small.

Global approximation entails replacing the entire data set by a single best-fit

polynomial. Lance (1982) has shown that this technique is tantamount to filtering with

a spatially dependent operator, with a unique weight function for each data point.

Towards the centre of the data set, the local and global operators have similar filtering

characteristics, and in fact the global filter that acts on the centre data point is

identical to a local operator. Thus, the discussion of the filtering characteristics of the

local operators has ramifications for the global method. In particular, this suggests that

directional dependence is reduced when polynomials defined by equation 2.1b are used

in favour of polynomials defined by equation 2.1a. This is demonstrated by application

to Bouguer gravity data.

The use of local least-squares polynomial approximation for computing

horizontal-gradient vector components was introduced by Sharpton et al. (1987). The

derivative rule for convolution facilitates formulation of their method in terms of

convolution. This is accomplished by differentiating the expressions for the low-pass

local least-squares operators. This gives analytic expressions for the impulse responses

of the x- and v-components of the horizontal-gradient vector.

Transfer functions of local least-squares operators have been compared to

transfer functions based on two other approaches to computing horizontal-gradient

components: finite differences, and ideal low-pass filtered impulse responses designed
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in the frequency domain. The former are restricted because the passbands cannot be

varied, whereas the latter do not conform to the ideal transfer functions. The local

least-squares operators are not hampered by these shortcomings.

Previous workers have recognized that the magnitude of the horizontal-gradient

vector can be used to detect edges of features on Bouguer gravity data. When this

technique is enhanced by introducing gradient components with a variable frequency

content, application to a Bouguer gravity data set has demonstrated the following

characteristics:

Subtle features are highlighted. This is particularly true for the longer-

wavelength gradient-magnitude maps; and because these features are not necessarily

obvious on wavelength-filtered maps, they can enhance the interpretation. As well,

these maps complement wavelength-filtered maps by highlighting density boundaries.

When interpreting areal dimensions from horizontal-gradient magnitude maps,

it is important to use the high-frequency gradient magnitudes, as the low-frequency

components do not represent source-body edges.

A drawback of these maps is that there is a secondary low-pass element that

includes a broad frequency band, making it difficult to remove high-amplitude

features.
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