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Abstract

Many physical processes can be modelled by a linear partial differential operator.

Classically, this corresponds to a convolution operation, or equivalently, the appli-

cation of a Fourier filter. The scope of such operators is limited to the stationary

stetting, but physical processes are never stationary. Part of our objective is to

consider two ways to extend the Fourier theory: (1) via Gabor analysis, and (2)

via pseudodifferential operator theory. The main emphasis is on the former, which

we deem general enough to handle most, if not all, linear physical processes.

Two important seismic inverse problems, each modelled by a pseudodifferential

operator, can be solved successfully via a Gabor filtering approach: (1) seismic

deconvolution for a dissipative earth; and (2) wavefield extrapolation in an inho-

mogeneous earth.

The first solution relies on the existence of a well-defined concept of nonsta-

tionary minimum phase in the analog setting; the second can be overly compu-

tationally intensive, owing to excessive redundancies in the Gabor frame. Both

of these issues can be addressed, respectively, by: (1) extending the idea of mini-

mum phase to the class of tempered distributions; and (2) developing an adaptive,

nonuniform sampling scheme to minimize the redundancy of the Gabor transform,

while simultaneously respecting the inherent nonstationarity of the problem.

vii



viii



Acknowledgements

I would first like to thank my advisors, Gary Margrave and Michael Lamoureux,

for their outstanding guidance, collaboration, motivation, and support throughout

my Ph.D. program. It has been a great pleasure learning from both of you—thanks

for sharing all that knowledge and wisdom.

My lovely wife Elena had the determination, faith, and patience to put up with

my many ups and downs. Bonnie Nasim volunteered her expert technical-writing

skills, and managed to make time during her precious Christmas holidays to edit

this work in painful detail. Thanks for a great job Bonnie.

I thank the following organizations for their generous financial support: the

CREWES Project and its sponsors, the POTSI Project and its sponsors, the Pa-

cific Institute for the Mathematical Sciences (PIMS), Mathematics of Information

Technology and Complex Systems (MITACS), Natural Sciences and Engineering

Research Council of Canada (NSERC), and the University of Calgary.

I had the pleasure of attending two very rewarding workshops at the inspira-

tional Banff International Research Station (BIRS)—I highly recommend a visit

to BIRS, and hope that it stays afloat for many years to come.

ix



x



Table of Contents

Approval Page iii

Dedication v

Abstract vii

Acknowledgements ix

Table of Contents xi

1 Introduction 1

2 Linear systems 9
2.1 Spaces for representing signals and images . . . . . . . . . . . . . . 10

2.1.1 The Hilbert space of finite-energy signals . . . . . . . . . . . 10
2.1.2 The Lebesgue spaces . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 The Schwartz space of rapidly decreasing signals . . . . . . . 13

2.2 The space of tempered distributions . . . . . . . . . . . . . . . . . . 14
2.2.1 Distributional derivatives . . . . . . . . . . . . . . . . . . . . 17
2.2.2 The Fourier transform of a distribution . . . . . . . . . . . . 18

2.3 Linear operators in Hilbert space . . . . . . . . . . . . . . . . . . . 19

3 Minimum phase for nonstationary analog systems 22
3.1 Causality and the Hilbert transform . . . . . . . . . . . . . . . . . . 24

3.1.1 Extension of the Hilbert transform to distributions . . . . . 26
3.2 Minimum phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Some characteristics of minimum phase . . . . . . . . . . . . 37

3.3 Nonstationary minimum phase filters . . . . . . . . . . . . . . . . . 41

4 Adaptive time-frequency analysis with nonuniform Gabor frames 44
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.1 Partitions of unity . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.2 Partitions of unity in higher dimensions . . . . . . . . . . . . 47
4.1.3 Translation and modulation operators in Hilbert space . . . 48

4.2 The Gabor transform . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.1 The short time Fourier transform . . . . . . . . . . . . . . . 49

xi



4.2.2 Gabor frames and the discrete Gabor transform . . . . . . . 50
4.2.3 Implementation of Gabor transforms with FFTs . . . . . . . 54
4.2.4 Window selection . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Nonuniform frames from maximal partition-of-unity frames . . . . . 55
4.3.1 Maximally redundant partition-of-unity Gabor frames . . . . 55
4.3.2 One-parameter families of Gabor frames . . . . . . . . . . . 57

4.4 Adaptive, nonuniform Gabor frames . . . . . . . . . . . . . . . . . . 62

5 Theory of Gabor filtering 65
5.1 Gabor filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.1 The analog theory . . . . . . . . . . . . . . . . . . . . . . . 66
5.1.2 A functional calculus for Gabor multipliers . . . . . . . . . . 71
5.1.3 On the discrete theory . . . . . . . . . . . . . . . . . . . . . 74

5.2 Applications to Mathematical Physics . . . . . . . . . . . . . . . . . 75
5.2.1 General linear partial differential operators . . . . . . . . . . 75
5.2.2 Pseudodifferential operators and Gabor filters . . . . . . . . 77

6 Deconvolution and Q-inversion in dissipative media 80
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.4 A synthetic example . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 Wavefield extrapolation in inhomogeneous media 98
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.2 Overview of the AGPS method . . . . . . . . . . . . . . . . . . . . 101
7.3 Synthetic examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.5 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8 Summary 116

Bibliography 121

xii



List of Tables

7.1 Comparison of computation times for various extrapolation algo-
rithms. In contrast to the first three methods, the cost of AGPS
is proportional to the complexity of the velocity model. The cost
of AGPS spans an order of magnitude between the two extremes,
namely, the velocity models depicted in figure 7.2. . . . . . . . . . . 107

xiii



xiv



List of Figures

4.1 Example of a Gabor amplitude spectrum, top-right. The input
time series on the left is a constant-Q-attenuated synthetic seismic
trace. Its Fourier amplitude spectrum is depicted below the Gabor
amplitude spectrum. The time series and its amplitude spectrum
can be thought of as projections of the Gabor spectrum onto the
time and frequency axes, respectively. . . . . . . . . . . . . . . . . . 53

4.2 A Gaussian atom of halfwidth σ, and the family of Gaussians, of
halfwidth σ/

√
p, obtained by raising the initial Gaussian to the

power p ∈ [0, 1]. As p decreases, the atoms gain mass, and their
mass distribution spreads. In the limit as p → 0 the family con-
verges to constant function, 1. . . . . . . . . . . . . . . . . . . . . . 58

4.3 A Lamoureux atom and the family of windows obtained by raising
the initial atom to the power p ∈ [0, 1]. As p decreases, the atoms
gain mass and their spreading mass-distributions are confined to the
original domain. At p = 1/4, the window is no longer differentiable
at the two boundaries. However, this can be resolved for any given
p by starting with a sufficiently high-order atom. In the limit as
p → 0, the family converges to a boxcar. . . . . . . . . . . . . . . . 61

4.4 A demonstration of how an adaptive, nonuniform partition of unity
Gabor frame (lower, solid) can be obtained from a maximal parti-
tion of unity, (the result of translating any of the smallest windows
to each offset sample-point) which reflects the local nonstationarity
of a velocity model. The piecewise-defined velocity model (upper,
solid) represents all types of velocity variation: random, constant,
a jump discontinuity between two constants, and a transition from
smooth to random. The smoothed velocity, (dashed) obtained by
convolving the velocity model with a fundamental atom, (any one
of the smallest windows) serves as a visual aid in comparing the
molecules to the local velocity variations. Specifically, where there
is more variation in the velocity function, there are correspondingly
more molecules, and conversely. . . . . . . . . . . . . . . . . . . . . 63

xv



5.1 Implementation of Gabor filters which are too sharp can lead to
disastrous results. Two sharp Gabor filters are displayed at (a)
and (d). The middle column shows their corresponding inverse
Gabor transforms, (synthesis window of unity) and the right column
shows the magnitude of the forward Gabor transforms (Gaussian
analysis windows) of the middle column, that is, the magnitude of
the orthogonal projections of the original filters onto the range of
the Gabor transform. The phase spectrum (shown in figure 5.3) for
(c) is rather exotic, while that for (f) is zero. The signal (b) is a
sinc function (with some Fourier wraparound effect), and (e) is a
spike at time zero. Each frequency slice of the output (f) is just the
Gaussian analysis atom, centered at the origin (see figure 5.2). . . . 70

5.2 A frequency slice of the plot in figure 5.1(f). . . . . . . . . . . . . . 71

5.3 The phase spectrum corresponding to the amplitude spectrum of
figure 5.1(c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.1 A pseudo-random reflectivity (lower) and a nonstationary synthetic
(upper) generated with an attenuation factor of 25. . . . . . . . . . 88

6.2 Magnitude of the Gabor transform of the pseudo-random reflectiv-
ity of figure 6.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3 Magnitude of the Gabor transform of the synthetic trace of figure
6.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4 Time-variant filter for weighting the Gabor spectrum of the syn-
thetic trace according to the available dynamic range, and hence
the available numerical precision of the data. . . . . . . . . . . . . . 91

6.5 Amplitude spectra of original and output signatures. The output
was smoothed to remove small residual oscillations. . . . . . . . . . 92

6.6 The magnitude of the smoothed spectrum, which models the data
(from figure 6.3) in a least-squares sense. The pointwise inverse
(plus a small constant) defines the magnitude of the deconvolution
operator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.7 Fourier amplitude spectra of original reflectivity and Gabor decon-
volution result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.8 Comparison of the bandpass-filtered Gabor deconvolution result
(lower) with a bandpass-filtered (DC to half Nyquist) version of
the reflectivity of figure 6.1 (upper). . . . . . . . . . . . . . . . . . . 95

6.9 The time-variant, bandlimited amplitude spectrum of the reflectiv-
ity estimate. Compare with the Gabor amplitude spectrum of the
true reflectivity in figure 6.2. . . . . . . . . . . . . . . . . . . . . . . 96

xvi



7.1 An adaptive partition-of-unity frame and its correspondence to the
local stationarity of a velocity model. The velocity function has
been rescaled for display purposes. The smoothed velocity is dis-
played as a visual aid in comparing the molecules to the local veloc-
ity variations. The larger the local variation in velocity, the smaller
and more abundant the molecules become. . . . . . . . . . . . . . . 103

7.2 Adaptive partition-of-unity frames and their correspondence to the
local stationarity of the given velocity models. The velocity func-
tions have been rescaled for display purposes. The smoothed ve-
locities are displayed as a visual aid in comparing the molecules to
the local velocity variations. The velocity model on the top jumps
from 2250 m/s to 3750 m/s. The velocity model on the bottom
fluctuates randomly between 1500 m/s and 2500 m/s. . . . . . . . . 105

7.3 Input wavefield (top) for two upward extrapolations by 200m, using
the exact extrapolator; the two bottom plots show the resulting
wavefields, using the step and random velocity models of figure 7.2,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.4 Inversion of the corresponding two wavefields at the bottom of fig-
ure 7.3, using the exact extrapolator: (top) using the step velocity
model of figure 7.2, and (bottom) using the random velocity model
of figure 7.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.5 Results of inverse extrapolating the wavefield at the bottom of figure
7.3, using the step velocity model of figure 7.2. The corresponding
computation times are listed in Table 7.1. The rows contain pairs
of results for PSPI, NSPS, and AGPS, respectively; the first column
is for a single depth step of 200m, and the second is for five steps
of 40m. These results should be compared with the exact results of
figure 7.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.6 Results of inverse extrapolating the wavefield at the right of figure
7.3, using the random velocity model of figure 7.2. The correspond-
ing computation times are listed in Table 7.1. The rows contain
pairs of results for PSPI, NSPS, and AGPS, respectively; the first
column is for a single depth step of 200m, and the second is for
five steps of 40m. These results should be compared with the exact
results of figure 7.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xvii



xviii



Chapter 1

Introduction

Once you study the wave equation for the first time, you will continue to study it
for the rest of your life. Well, unless you become an accountant, or a lion tamer,

or something like that.
—D. Hobill, while substitute-teaching physics class

Our experience with sound—as in music—calls for a unified mathematical treat-

ment of time and frequency analysis. Indeed, the human ear, combined with the

brain’s processing skills, interprets acoustic amplitude information as temporally

localized packets of bandlimited spectral information. Conversely, in following a

musical score, a musician transforms a time-frequency representation of a signal

into temporally varying acoustic amplitude data.

Classical Fourier theory fails to explain what we intuitively know: that “fre-

quency content” changes with time. “The reason is that the Fourier-integral

method considers phenomena in an infinite interval, and this is very far from

1



2 Chapter 1. Introduction

our everyday point of view” [25].

These fundamental observations imply that we ought to be modelling the lo-

calized time and frequency characteristics of a signal simultaneously; and indeed,

Gabor’s milestone theory sets the stage for nonstationary analysis of a signal,

“in which time and frequency play symmetrical parts, and which contains ‘time

analysis’ and ‘frequency analysis’ as special cases” [25].

The subject of time-frequency analysis1 is largely based on the short-time

Fourier transform (STFT), namely

STFT(f)(x, ξ) =
∫

Rd
f(y)g(y − x)e−2πiξ·ydy, (1.1)

since “most other time-frequency representations can be expressed in terms of the

STFT” [36] (the overline in equation 1.1 denotes complex conjugation). In partic-

ular, the discrete Gabor transform of a signal or image is a discrete sampling—in

the time-frequency plane—of the STFT of the signal.

In our applications, the windowing function, g, is real-valued and symmetric

about the origin. The x-dependence of the STFT of f thus corresponds to the

central coordinate of the translated atom, g(t−x), which in turn acts by windowing

the signal before the Fourier transform is applied. Thus for each x, we obtain

a localized spectrum of the signal. The suite of these spectra, STFT(f), is a

representation of f in the time-frequency plane.

The structure of the STFT of f depends on the choice of window: larger

windows achieve better frequency resolution at the cost of reduced time resolu-

1Much of what is often called “time-frequency analysis” (e.g.,[36]) is actually carried out
on functions of d variables, and so its scope encompasses both signals and images. (The term
“space-wavenumber analysis” is not quite as elegant!)
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tion, while smaller windows achieve better time resolution at the cost of reduced

frequency resolution. This is a fundamental obstruction to the concept of instan-

taneous frequency, and, more generally, to time-frequency analysis [36]. Indeed, it

would be impossible to determine in an infinitesimal amount of time, for example,

which note is plucked on a violin at any particular instant. The act of plucking

the string takes a finite amount of time itself.

The formal expression of this obstruction is known as Heisenberg’s uncertainty

principle, and it is well known that the window which balances this resolution

trade-off is the Gaussian.

Under broad conditions on the choice of window and the time-frequency lat-

tice on which the discrete Gabor transform is sampled, the corresponding repre-

sentation of a signal is lossless—in fact it is typically redundant—and a perfect

reconstruction of the signal is always possible. In other words, given a suitable

choice of Gabor frame, the Gabor transform is guaranteed to be invertible.

If we interpret the Gabor transform for what it essentially is—simply a nat-

ural, nonstationary extension of the Fourier transform—then our intuition leads

us to conjecture that the whole of classical Fourier analysis can be carried over

to the nonstationary setting, simply by replacing the Fourier transform with an

appropriate Gabor transform.

In particular, this guiding principle leads us to consider the idea of a Gabor

filter. Suppose we want to perform a generalized convolution operation on a signal,

by applying a time-variant impulse response. A Fourier transform over the time

variable yields a representation of this time-variant impulse response as a time-

variant transfer function on the time-frequency plane. The natural temptation now



4 Chapter 1. Introduction

is to multiply the Gabor transform of the original signal by this transfer function,

and then apply an inverse Gabor transform to reconstruct a filtered version of the

signal.

An equally compelling approach to time-frequency analysis—known as mi-

crolocal analysis—comes from the study of differential equations in mathematical

physics. Here, the analysis tool of choice is a pseudodifferential operator. For-

mally, a pseudodifferential operator looks much like a classical Fourier multiplier;

that is, a Fourier filter, except that its transfer function is no longer required to

be shift-invariant over time.

As we shall see, every linear partial differential equation with functional coef-

ficients has associated with it a Kohn-Nirenberg pseudodifferential operator.2 In

fact, if we allow distributional symbols, then every linear operator can be rep-

resented as a pseudodifferential operator ([33], [49]). In particular, every Gabor

filter corresponds to a (possibly non-classical) pseudodifferential operator.

For a certain class of analysis and synthesis windows, (for example, gaussians)

Gibson, Lamoureux and Margrave ([40]) have determined exactly which pseudo-

differential operators can be represented as a Gabor filter, and explicit formulas

for computing the Gabor symbol when it exists. Their important technical paper

([40]) is concerned exclusively with the continuous version of the Gabor transform.

On a more practical level, we can rest assured that as long as the symbol of

the pseudodifferential operator of interest is reasonably smooth compared to the

analysis and synthesis atoms, the Gabor filter defined by the same symbol will be

2Albeit, the associated operator may have a non-classical, or distributional symbol, depending
on the regularity of the coefficients.
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a good approximation to the original operator.

These results help to justify our approach to the two nonstationary seismic

inversion problems considered in Chapters 6 and 7 of this thesis. Both of these

inverse problems are based on linear wave-propagation models, with mathematical

descriptions that are most readily formulated as Kohn-Nirenberg pseudodifferen-

tial operators. As one might have guessed by now, we have developed solutions to

these inverse problems within the framework of Gabor filter theory.

In Chapter 6 we consider a nonstationary seismic deconvolution problem. Mar-

grave, et al. have proposed a general framework for solving this problem—called

Gabor deconvolution—which first appeared in [60], (a related method appeared

previously in [85]) and is now rapidly gaining popularity within the Geophysics

community and beyond.

Current deconvolution methods, based on a stationary principle known as

“the convolutional model”, attempt to estimate and remove the embedded causal

wavelet from the temporal seismic data. We propose a more realistic, nonstation-

ary seismic model, expressed in the time-frequency domain as a pseudodifferential

operator, in which (1) the embedded causal wavelet factors as the product of

a stationary source signature and a nonstationary exponential decay; and (2) a

nonstationary impulse response of the earth is tractable.

Analytic expressions are derived for least-squares fitting the model to the

Gabor-transform of the seismic trace, which yield estimates of Q (a dimension-

less quantity controlling the dissipation of the medium) and the source signature,

hence an estimate of the travelling wavelet.

These estimates lead to a smoothed version of the magnitude of the Gabor
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spectrum of the seismic trace, from which a least-squares nonstationary minimum-

phase deconvolution filter is easily constructed. Our results on synthetic data are

very promising.

The assumption of a minimum phase seismic wavelet is central to the Wiener

and Gabor deconvolution algorithms. The former assumes a stationary wavelet,

while the latter explicitly involves a nonstationary wavelet, and so an extension of

the concept of minimum phase to this setting is required. Moreover, although the

concept of minimum phase is well understood by the geophysics community (and

the sound engineering, electrical engineering, and other applied physics commu-

nities) for the case of digital signals, (e.g., Robinson, [77] and [76]) the extension

of minimum phase to analog signals has not received sufficient attention in the

literature. The resolution of these issues forms the main content of Chapter 3.

Certain well-known properties of digital minimum phase signals, such as convo-

lutional invertibility, stability, and Hilbert transform relationships between Fourier

amplitude and phase spectra, do not carry over so easily to the continuous setting.

In fact, there are some commonly held misconceptions surrounding the theory, and

it is a primary objective of Chapter 3 to overcome these issues by presenting a

logically consistent and mathematically rigorous theory of minimum phase.

We have found it necessary to develop the analog theory within the rather

general framework of tempered distributions. This includes the derivation of the

Hilbert transform from the assumption of causality, and its subsequent extension

to the space of tempered distributions.

The stage is then set for the basic development of the theory of nonstationary,

minimum-phase filters. As we shall see, these are the pseudodifferential operators
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which preserve minimum phase; that is, the ones that transform a minimum phase

signal into another minimum phase signal. As mentioned above, such a filter is

used explicitly in the theoretical development of Gabor deconvolution.

The second application of Gabor filtering theory to seismic inversion appears

in Chapter 7. It is based on the premise that wavefield extrapolation for a laterally

varying velocity model can be achieved by applying a nonstationary phase-shift

filter to an adaptive, nonuniform Gabor transform over the lateral coordinate.

The resulting algorithm, called adaptive Gabor phase-shift (AGPS), uses re-

sults from Chapter 4, which introduces a new method for constructing adaptive,

nonuniform Gabor frames from maximally redundant, uniform partitions of unity.

The main purpose of the construction is to minimize the redundancy of the Gabor

transform. The result is a significant decrease in computational intensity. A pre-

liminary discussion of Gabor frames, culminating in a criterion (Theorem 4.2.1)

for generating such frames, is also provided in Chapter 4.

AGPS has a computational cost that is proportional to the complexity of the

velocity model, while its accuracy is comparable to the NSPS (nonstationary

phase-shift, based on an adjoint-form pseudodifferential operator) and general-

ized PSPI (phase-shift plus interpolation, based on a pseudodifferential operator)

algorithms (see [56] and [27], respectively). AGPS includes NSPS and PSPI as

complementary limiting cases, yet the cost of AGPS can be an order of magnitude

less than that of either of these two methods.

The NSPS and PSPI filters differ to the extent that the functional dependence

of the velocity field of the medium is either on the input coordinates (NSPS) or

the output coordinates (PSPI)—in fact, they are spatial transposes of each other.
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This is why both methods are approximate: indeed, any accurate phase-shift

operator in a v(x) medium must allow for velocity variations along the trajectory

of a ray. AGPS attempts to address this problem by representing the input and

output wavefields as superpositions of windowed components, each of which is

approximately stationary with respect to the velocity field.

A general overview of analog linear systems from the perspective of functional

analysis is provided in Chapter 2. This serves to fix the notation and provide the

standard results required for the remainder of the thesis. Topics covered there

include function spaces for representing signals, the generalized function space

of tempered distributions, linear operators acting in Hilbert spaces, the Fourier

transform, and distributional derivatives.

Generally, the interdependence of the chapters is as follows: Chapter 2 is a

prerequisite for the entire work; Chapter 6 depends on Chapters 3 and 2; Chapter

7 relies on Chapters 4 and 2. A basic index is also provided, which contains

references to most of the notation and key concepts.

This work was typeset with LATEX2e, with figures generated by MATLAB and

encoded as EPS Level 2 Color.



Chapter 2

Linear systems

It is unfortunate for the world we live in that all of the operators that arise
naturally are not bounded.

—John B. Conway

The mathematical topics considered in this chapter fall under the broad heading

of functional analysis. The books by Rudin, [81], Conway, [12], Reed and Simon,

[75], and Cheney, [8], are all excellent resources. These texts generally assume an

elementary background in real analysis (see Rudin’s book, [82], or [80]) and some

experience with complex analysis (see [52], or [9]). Halmos’ book, [41], has many

interesting problems on Hilbert space, complete with hints and solutions. The two

volumes by Dunford and Schwartz, [18], are the classic treatises on linear operator

theory. Finally, the volumes by Kadison and Ringrose, [45], provide excellent

coverage of the theory of operator algebras.

9



10 Chapter 2. Linear systems

2.1 Spaces for representing signals and images

A signal is a real-valued function of a single time variable, while an image is a

real-valued function of up to three spatial variables. By considering classes of

functions defined on d−dimensional Euclidean space, Rd, the many properties

that signals and images have in common can be studied simultaneously. For this

reason and for brevity, we adopt a common convention and often refer to both

signals and images as signals. Similarly, much of what is called “time-frequency

analysis” (e.g., [36]) is carried out on functions of d variables, and so its scope

encompasses both signals and images.

Unless otherwise stated, by a function we shall mean a mapping f : Rd → C

from real d-dimensional Euclidean space to the set of complex numbers, C. The

support of a function f , denoted by Supp(f), is the closure in Rd of the set of

points at which f is nonzero.

We will also consider occasionally functions f : C → C of a complex variable

(see e.g., [52], [1], or [9] for more on this topic). Such a function is analytic at

a point z if it is complex differentiable at that point. If f is analytic at every

point z ∈ C, then f is called entire. A function of a complex variable has the

remarkable property of being infinitely complex differentiable at each point at

which it is analytic.

2.1.1 The Hilbert space of finite-energy signals

The functions we shall consider for representing signals and images will have finite,

measurable energy. These belong to the class of the so-called L2-functions, a space
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of complex-valued, measurable (see e.g., [82] or [80] for more on measurability)

functions on Rd, given by

L2(Rd) = {f : Rd → C : ‖f‖2 < ∞}, (2.1)

where the energy, or norm, of f is defined by

‖f‖2 =
(∫

Rd
|f(x)|2 dx

)1/2

. (2.2)

The reason for the subscript “ 2 ” in the notation for the norm will become clear

in the next subsection. An inner product is defined on L2(Rd) by

〈f, g〉 =
∫

Rd
f(x)g(x) dx, (2.3)

where the overbar denotes complex conjugation. It induces the norm on L2(Rd),

since ‖f‖2 =
√
〈f, f〉. The inner product space L2(Rd) is complete (all Cauchy

sequences converge within the space) with respect to the distance function induced

by the norm,

dist(f, g) = ‖f − g‖2, (2.4)

and thus it forms a Hilbert space (that is, a vector space with an inner product,

which is also complete with respect to the distance function induced by the inner

product). Indeed, L2(Rd) is the prototypical Hilbert space.

A sequence of vectors fn ∈ L2(Rd) is a Cauchy sequence if ‖fm − fn‖2 → 0 as

m,n →∞. Completeness means that the sequence converges in norm to a unique

function f ∈ L2(Rd): ‖f − fn‖2 → 0 as n →∞.

Two vectors f, g in a Hilbert space are orthogonal to each other if < f, g >= 0.

Similarly, a pair of subspaces K, K1 of a Hilbert space are orthogonal if every pair

f ∈ K and g ∈ K1 is orthogonal.
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Although a realizable signal is real-valued, its Fourier transform is typically

complex-valued. Also, it is well known that the Fourier transform maps L2(Rd)

onto itself, which motivates us to consider signals in this more general setting.

2.1.2 The Lebesgue spaces

For 1 ≤ p < ∞, a measurable function f (see e.g., [82] or [80] for more on

measurability) is in Lp(Rd) if its p−norm is finite; that is, if

‖f‖p =
(∫

Rd
|f(x)|p dx

)1/p

< ∞. (2.5)

Thus, for 1 ≤ p < ∞, a measurable function f is in Lp(Rd) if and only if |f |p ∈
L1(Rd). For p = ∞, f ∈ L∞(Rd) if f is measurable and

‖f‖∞ = ess sup|f(x)| < ∞. (2.6)

Here, “ess sup” means “essential supremum” (see [82], [51] or [80] for details). For

continuous functions, this is the same as the supremum.

The most interesting Lp−spaces for our purposes are for p = 1, 2, or ∞. El-

ements of Lp(Rd) are actually equivalence classes of measurable functions which

are identified if and only if they agree “almost everywhere”; that is, except on a

set of measure zero (the integral of the indicator function of the set of points at

which the two functions disagree vanishes). For example, the zero function can

be perturbed at countably many points, and still remain in the same equivalence

class. Generally, two measurable functions f and g are equivalent if and only if

f − g = 0 almost everywhere. It is customary to use the same notation both for

a function and the equivalence class it represents.
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2.1.3 The Schwartz space of rapidly decreasing signals

The Lp-spaces contain a host of rather exotic functions, lacking basic regularity

properties such as differentiability or even continuity. However, there is a space of

C∞, (smooth, or infinitely differentiable) rapidly-decreasing functions, called the

Schwartz class, which is dense in Lp for 1 ≤ p < ∞, (and weak-* dense in L∞,

but we shall not need this fact) (see [12] or [81]). Thus we can approximate an

Lp-function arbitrarily well by a smooth function in the Lp-norm.

A complex-valued function φ(x) on Rd is called “rapidly decreasing” if it

is infinitely differentiable and it and each of its derivatives decays faster than

the inverse of any polynomial; that is, if for all multiindices α, β, the functions

xα∂βφ(x) are bounded ([84]). A multiindex, α, is a d-tuple of positive inte-

gers, α = (α1, α2, . . . , αd) ∈ Zd
+ (Z denotes the set of all integers). Thus, with

x = (x1, x2, . . . , xd) ∈ Rd, the polynomial xα is defined as

xα = xα1
1 xα2

2 · · · xαd
d , (2.7)

and ∂α means

∂α = ∂α1
1 ∂α2

2 · · · ∂αd
d , (2.8)

where ∂αk
k is the αk

th partial derivative with respect to the kth coordinate xk.

The set of all rapidly decreasing functions is called Schwartz space and is de-

noted by S(Rd). The Fourier transform, (formula (2.10) below) gives a one-to-one

and onto correspondence between S(Rd) and S(Rd), with pointwise multiplication

taken into convolution and vice versa (see [12] or [81]).
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By Plancherel’s theorem,

‖f‖2 =
(

1

2π

) d
2 ‖f̂‖2 (2.9)

for all f ∈ S(Rd), and since S(Rd) is dense in L2(Rd), the Fourier transform

extends to a unitary operator on L2(Rd). We emphasize that the formula

f̂(ξ) =
∫

Rd
f(x)e−iξ·x dx (2.10)

for the Fourier transform of f only makes sense when f is in L1(Rd) — otherwise

the integral is not well-defined. The point is that although the Fourier transform

extends to an isometry on L2(Rd), its action on L2-functions outside L1(Rd) is

not given by formula (2.10).

An important feature of a function f ∈ L1(Rd) is that its Fourier transform is

a continuous function that vanishes at infinity: |f̂(ξ)| → 0 as |ξ| → ∞ (see [12] or

[81]). This decay property is not obvious by inspection of 2.10—the proof involves

the density of S(Rd) in L1(Rd), and the completeness of Co(R
d) (the space of

continuous functions that vanish at infinity) in the L∞−norm (see [81], Theorem

7.5).

2.2 The space of tempered distributions

Distributions, or generalized functions, arise as a generalization of the idea of a

bounded function. Motivated by the desire to understand Dirac’s delta-function,

δ, Laurent Schwartz developed his theory of distributions in 1944—and received

the Fields Medal in 1950 for this work (see e.g., [87]). Schwartz actually studied

generalized functions later than many others (e.g., Hadamard, Riesz, Sobolev,
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Bochner), but he was the first to systematize the theory, while relating all the

earlier approaches and establishing many important results ([29]).

It would be difficult, if not impossible, to avoid this subject in any rigorous

account of inverse-filtering theory. For a relevant example—the relevance of which

will become apparent below—suppose we are given f ∈ L1(Rd)∩L2(Rd), and we

want to solve the following problem for g:

f ∗ g = δ, (2.11)

subject to the condition that g is in the domain of the Fourier transform. Here

the ∗ denotes the operation of convolution. Then the problem can be transformed

to the Fourier domain, as

f̂ ĝ = 1. (2.12)

Formally, then, we expect a solution of the form

ĝ = 1/f̂ , or g = F−1
{
1/f̂

}
, (2.13)

where F−1 denotes the inverse Fourier transform. However, given any g ∈ Lp(Rd)

with 1 ≤ p ≤ ∞, we have f ∗ g ∈ Lp(Rd), while δ 6∈ Lp(Rd). Thus g 6∈ Lp(Rd) for

any p. Another way to see this is since f ∈ L1(Rd), f̂ vanishes at infinity, and so

any “function” g whose Fourier transform satisfies (2.12) must have a spectrum

that grows without bound at infinity. The point is that the problem (2.11) has no

classical solution; that is, one that can properly be called a function.

For an authoritative account of generalized function theory and its applications,

the English translation of the Russian 5-volume series, Generalized Functions, by

Gel’fand, et al., is highly recommended (see [28] through to [32]).
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Definition A tempered distribution T is a linear functional which is continuous

on Schwartz space; that is, a continuous linear mapping T : S(Rd) → C .

The continuity is with respect to the family of norms ([84]):

|φ|k = sup{|xα∂βφ(x)| : x ∈ Rd and |α + β| ≤ k}, (2.14)

indexed by the positive integers, k ∈ Z+, and where α and β in Zd
+ are multiindices.

Given a multiindex α, the notation |α| means the sum |α| = α1 + α2 + · · ·αd.

The space of tempered distributions is denoted by S ′(Rd). A very large, and

possibly the most important class of tempered distributions comes from the tem-

pered functions on Rd (see [108]). A measurable function f on Rd is said to be

tempered if
∫

Rd

|f(x)|
(1 + |x|)N

dx < ∞ (2.15)

for some positive integer N . Convergence of the integral (2.15) implies f has at

most polynomial growth:

|f(x)| ≤ C(1 + |x|)N . (2.16)

Given any tempered function f on Rd, the linear functional Tf on S(Rd) given as

Tf (φ) =
∫

Rd
f(x)φ(x) dx, φ ∈ S(Rd) (2.17)

is a tempered distribution. For example, every Lp−function is tempered, (for

all p with 1 ≤ p ≤ ∞), and so (2.17) defines a tempered distribution whenever

f ∈ Lp(Rd).

Definition The support of a distribution T , denoted by Supp (T ), is the smallest

closed set F ⊆ Rd satisfying the following property:

T (φ) = 0 for all φ ∈ S(Rd) with Supp (φ) ⊆ Rd \ F. (2.18)
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If Γ is the collection of all closed sets F ⊆ Rd satisfying property (2.18), then ([8])

Supp (φ) =
⋂{F : F ∈ Γ}. (2.19)

The definition of support for a distribution is compatible with the definition of

support for a function, in the sense that if Tg is the tempered distribution corre-

sponding to a suitably behaved function g, (e.g., any tempered function) then its

support agrees with the usual definition of support for a function (see [8]). This

is why the same notation is conventionally used for both definitions.

2.2.1 Distributional derivatives

The concept of differentiation of functions can be extended to the entire class of

tempered distributions, as follows.

Definition (e.g., [51], [84]) Let Dα = (−i)|α|∂α, (α ∈ Zd
+) and let T ∈ S ′(Rd).

Then the derivative of T is defined as

DαT = TDα. (2.20)

The use of the differential operator Dα = (−i)|α|∂α helps to simplify expressions

involving partial derivatives (D is then a self-adjoint operator, as we shall see

below).

It is a remarkable fact that any tempered distribution supported at the ori-

gin is a finite linear combination of derivatives of the Dirac distribution ([51],

Theorem 5, page 387). More generally, any tempered distribution with discrete

(consisting of isolated points) support is just a countable superposition of trans-

lates of distributions supported at the origin ([51]). One can also show (e.g., [51])
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that a distribution with compact (closed and bounded) support is DTf , for some

differential operator D and continuous function f .

2.2.2 The Fourier transform of a distribution

Definition The Fourier transform, T̂ , of a tempered distribution T ∈ S ′(Rd) is

defined by its action on Schwartz functions, (see e.g., [51], [8], or [82]) as

T̂ (φ) = T (φ̂). (2.21)

An important property of the class of tempered distributions is the following.

Proposition 2.2.1 The Fourier transform defines a continuous linear bijection

of S ′(Rd) onto itself.

Proof The Fourier transform F is a continuous linear bijection of S(Rd) onto

itself. Since the Fourier transform T̂ of a tempered distribution T is defined by a

composition of continuous linear maps, namely

T̂ = T ◦ F , (2.22)

the mapping T 7→ T̂ is continuous and linear. In particular, T̂ ∈ S ′(Rd), and so

the Fourier transform maps S ′(Rd) into itself.

Given any T ∈ S ′(Rd), set

S = T ◦ F3 ∈ S ′(Rd). (2.23)

Then since F4 is the identity mapping on Schwartz space, we have that T = Ŝ,

and so the Fourier transform maps S ′(Rd) onto itself. It is one-to-one since if

T̂ = Ŝ, then applying the Fourier transform to both sides three times gives back

T = S.
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2.3 Linear operators in Hilbert space

Let H and K be separable Hilbert spaces. Separable means having a countable

dense subset, and by applying the Gram-Schmidt orthogonalization algorithm to

this set, one can always form an orthonormal basis. For our purposes, it is enough

to consider the cases H = L2(Rd), with K = H or K = C.

Definition A linear operator is a mapping K : H −→ K that preserves the

linear structure of its domain, Dom K. Specifically, for all λ ∈ C and for all

f, g ∈ Dom K ⊆ H,

K(λf + g) = λKf + Kg ∈ K. (2.24)

We require Dom K to be a linear subset of H, but we do not require it to be

closed (topologically closed, meaning that it need not contain all its limit points).

If there is a C > 0 such that for all f ∈ Dom K

‖Kf‖ ≤ C‖f‖, (2.25)

then K is called a “bounded operator”. If K is bounded, then its norm, ‖K‖ is

defined as the smallest constant C satisfying (2.25):

‖K‖ = inf{C ≥ 0 : ‖Kf‖ ≤ C‖f‖, ∀f ∈ H}. (2.26)

Otherwise, K is unbounded. There is a standard abuse of notation for the norms

on either side of expression (2.25): the left side refers to the norm on K, while the

right refers to the norm on H.

Bounded operators

The collection of bounded linear operators H → K is denoted by B(H,K). When

H = K, we simply write B(H). We state a few basic results from the theory of
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bounded operators on Hilbert space (see e.g., [12], [18], [41], and [8]; for more

advanced results, see [66], [15], [17], [71], and [45]).

The space B(H) is complete with respect to the operator norm (2.26). It forms

a unital algebra over C under composition and addition of bounded operators. The

mapping from B(H) to itself defined by K 7→ K∗, which carries an operator to its

adjoint, satisfies

(K∗)∗ = K, (KH)∗ = H∗K∗,

(λK + H)∗ = λK∗ + H∗, and

‖K∗‖ = ‖K‖,

for all λ ∈ C and K, H ∈ H. A linear operator K : H → K is continuous if and

only if it is bounded.

Let K ∈ B(H,K). Then by continuity, K can be extended uniquely to a

bounded operator on the closure of its domain, cl [Dom K)], and hence to all of

H by letting K vanish outside cl [Dom K)]. Thus, it is normally assumed that

Dom K = H whenever K is bounded.

A bounded operator K ∈ B(H) is self adjoint if K = K∗, unitary if K∗ = K−1,

idempotent if K2 = K, and a projection if and only if it is a self adjoint idempotent.

Every unitary operator

U : H → H (2.27)

on a Hilbert spaceH is an isometric isomorphism (or isometry); that is, it preserves

norms (which implies boundedness and hence continuity) and defines a one-to-one

correspondence from H onto itself.
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A partial isometry is an operator W ∈ B(H) for which ‖Wf‖ = ‖f‖ for all

f ∈ (KerW )⊥, where ( KerW )⊥ is the closed linear subspace of H consisting of all

f ∈ H which are orthogonal to every k ∈ KerW , and KerW is the closed linear

subspace of H consisting of all k ∈ H with Kk = 0.
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Chapter 3

Minimum phase for nonstationary

analog systems

If the facts don’t fit the theory, change the facts.
—Albert Einstein

The assumption of a minimum phase seismic wavelet is central to the Wiener and

Gabor deconvolution algorithms. Although the concept of minimum phase is well

understood by the geophysics community (and the sound engineering, electrical

engineering, and other applied physics communities) for the case of digital signals,

(e.g., Robinson, [77] and [76]) the extension of minimum phase to analog signals

has not received sufficient attention in the literature.

Certain well-known properties of digital minimum phase signals, such as convo-

lutional invertibility, stability, and Hilbert transform relationships between Fourier
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amplitude and phase spectra, do not carry over so easily to the continuous set-

ting. In fact, there are some commonly held misconceptions surrounding the

theory. This chapter addresses these issues by presenting a logically consistent

and mathematically rigorous theory of minimum phase.

We have found it necessary to develop the analog theory within the rather

general framework of tempered distributions. This includes the derivation of the

Hilbert transform from the assumption of causality, and its subsequent extension

to the space of tempered distributions.

The stage is then set for the development of the theory of nonstationary,

minimum-phase filters. As we shall see, these are the pseudodifferential (and

Fourier integral) operators which preserve minimum phase; that is, the ones which

carry minimum phase signals to minimum phase signals. Such a filter is used ex-

plicitly in the theoretical development of Gabor deconvolution.

3.1 Causality and the Hilbert transform

Definition A tempered distribution (or function) T is causal if Supp(T ) ⊆ [0,∞).

More generally, T can be any generalized function for which Supp(T ) makes sense

and Supp(T ) ⊆ [0,∞). The reason for working in such a general setting will

become clear as we proceed, particularly when we extend the concept of minimum

phase to the analog setting.

We shall make use of the Hilbert transform, H, a bounded linear operator on

L2(R). We first define its action on Schwartz functions as

(Hs)(ω) = P.V.
1

π

∫

R

s

ω − ξ
dξ
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=
1

π
lim

R→∞
lim
ε→0

[∫ ω−ε

−R

s

ω − ξ
dξ +

∫ R

ω+ε

s

ω − ξ
dξ

]
, (3.1)

where P.V. denotes the Cauchy principal value of the integral (see e.g., [1], [52]).

As we shall see, the Hilbert transform extends as a bounded linear operator on

L2(R), and satisfies the following properties on L2(R): H2 = −I, H∗ = −H, and

thus H−1 = H∗; that is, H is unitary. Also, if s is real-valued then so is Hs. Some

authors (e.g., [11]) have a factor of 1/i in the definition of H, which makes H a

self-adjoint unitary.

Proposition 3.1.1 If s is a causal Schwartz function, then the real and imaginary

parts of its Fourier transform are a Hilbert transform pair, namely

<{ŝ(ω)} = (H={ŝ})(ω), (3.2)

where < and = are used to denote the real and imaginary parts, respectively.

Proof Suppose s ∈ S(R) is causal. Then s = hs, where h is the Heaviside

function; that is, h is the indicator function of [0,∞). The Fourier transform of h

is given by (e.g., [70], or [72])

ĥ(ω) = πδ(ω)− i

ω
, (3.3)

and so

ŝ(ω) =
(
ŝ ∗ ĥ

)
(ω) =

1

2

(
ŝ(ω)− i

π

∫

R

ŝ(ξ)

ω − ξ
dξ

)
. (3.4)

Thus

ŝ(ω) = − i

π

∫

R

ŝ(ξ)

ω − ξ
dξ, (3.5)
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that is,

<{ŝ(ω)} = =
{

1

π

∫

R

ŝ(ξ)

ω − ξ
dξ

}
=

1

π

∫

R

={ŝ(ξ)}
ω − ξ

dξ = (H={ŝ})(ω), (3.6)

which is what we wanted to show.

Larry Lines has kindly pointed out that Jon Claerbout has a nice method for

performing this calculation digitally (see [10]).

3.1.1 Extension of the Hilbert transform to distributions

Expression (3.5) in the proof of proposition 3.1.1 shows that the action of the

Hilbert transform on the spectrum of a causal Schwartz function is rotation by 90◦

in the complex plane: Hŝ = iŝ. From the relationship ̂̃s = ŝ, where s̃(t) = s(−t)

is the time reversal of s, we see that the Hilbert transform rotates the spectrum

of an anti-causal signal by −90◦.

Given any f ∈ L2(R), f can be represented uniquely (up to a set of measure

zero, hence uniquely as an L2-function) in the form

f = f+ + f− , (3.7)

where f+ and f− are the causal and anti-causal parts of f , respectively. That is,

L2(R) can be identified with the direct sum

L2(R) = L2(R)+ ⊕ L2(R)− , (3.8)

where L2(R)+ and L2(R)− are the orthogonal subspaces of L2(R) consisting of the

causal and anti-causal L2-functions, respectively. Applying the Fourier transform,

we can then identify FL2(R) with the direct sum

FL2(R) ∼= FL2(R)+ ⊕FL2(R)−. (3.9)
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Consider now the subspace S̃ of Schwartz space given as the direct sum of the

causal and the anti-causal Schwartz functions:

S̃(R) = S(R)+ ⊕ S(R)−. (3.10)

This is just Schwartz space with {s ∈ S(R) : 0 ∈ Supp(s)} removed. In particular,

S̃(R) is still dense in L2(R) (because each factor S(R)± is dense in L2(R)±,

respectively), and moreover

FS̃(R) = FS(R)+ ⊕FS(R)− (3.11)

is dense in FL2(R) ∼= L2(R). Knowing how the Hilbert transform acts on the

spectra of causal and anti-causal Schwartz functions, we see thatH acts diagonally

on FS̃(R):

H(f̂) =




i 0

0 −i







f̂+

f̂−


 = i




f̂+

−f̂−


 . (3.12)

Evidently, expression (3.12) defines a continuous linear mapping

H : S̃(R) → S(R). (3.13)

Since S̃(R) is dense in L2(R), and FS(R)± ⊂ FL2(R)±, we have the following

result.

Proposition 3.1.2 The action defined by expression (3.12) extends the Hilbert

transform to a unitary operator on L2(R). The eigenvalues of the Hilbert trans-

form are exactly i and −i, and the corresponding eigenspaces are the Fourier

spectra of the causal and anti-causal signals, respectively.
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The fact that H is unitary can be seen directly from the following calculation:




i 0

0 −i







i 0

0 −i




∗

=




i 0

0 −i






−i 0

0 i


 =




1 0

0 1


 . (3.14)

Actually, the same definition (3.12) extends the domain of the Hilbert transform

into the space of tempered distributions. The only caveat is that the inverse

Fourier transform of a tempered distribution, being also a distribution, can be

both causal and anti-causal without being equivalent to the zero distribution, so

the sum

S ′(R) = S ′(R)+ + S ′(R)− (3.15)

will no longer be direct (some nonzero objects belong to both factors, e.g., the

Dirac delta distribution). This means some choices may have to be made at the

origin.

Example Let us see what is involved in computing the Hilbert transform of the

Dirac delta distribution, δ. First, define δ− and δ+ as

δ+ =
1

2π
ĥ =

1

2
δ − i

2πω
, (3.16)

(from 3.3) and

δ− =
1

2π

̂̃
h =

1

2
δ +

i

2πω
= δ+. (3.17)

Then δ− and δ+ are the Fourier spectra of the causal and the anti-causal parts of

the constant function, 1 = h + h̃, respectively, where the heaviside function h and

its time reversal, h̃, are taken to have value 1/2 at the origin. We have

H(δ) =
1

2π
H(1̂) =

1

2π
H(ĥ +

̂̃
h)
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= H(δ+ + δ−)

=




i 0

0 −i







δ+

δ−




=
(
iδ+ − iδ+

)

=
1

πω
.

Causal L1−functions

The following property of the causal L1−functions in terms of their Fourier spectra

is used in the next section, where we discuss the topic of minimum phase.

Theorem 3.1.3 Let f ∈ L1(R). If f is causal, then its Fourier transform extends

to an analytic function in the open lower half of the complex plane.

Proof Let f ∈ L1(R). Then its Fourier transform is computable using formula

(2.10). Writing ξ = u + iv, with u, v ∈ R, we have

f̂(ξ) =
∫

R
f(x)e−iξ·x dx =

∫

R
f(x)ev·xe−iu·x dx, (3.18)

which, for each fixed v where the integral converges, is the Fourier transform of

f(x)ev·x, evaluated at u. If f is causal, then for v ≤ 0,

|f(x)ev·x| ≤ |f(x)| , (3.19)

and the integral converges. In fact, if f is causal and v < 0, then for any N ∈ N, (N

denotes the natural numbers) the function (−ix)Nf(x)ev·x is absolutely integrable:

this follows from the assumption that f is absolutely integrable, and since ev·x

is rapidly decreasing, so is the product (−ix)Nev·x. It now follows that f̂ has

derivatives of all orders in the lower half of the complex plane, where the N th

derivative is given as the Fourier transform of (−ix)Nf(x).



30 Chapter 3. Minimum phase for nonstationary analog systems

More generally, we can see from the proof that if f is measurable and the integral

in (3.18) converges for some v = v0, then it converges in the closed half plane

=(ξ) ≤ v0, and f̂(ξ) is analytic in the open halfspace {ξ ∈ C : =(ξ) < v0} ([106],

or [70]). If f vanishes at infinity, then the more rapidly it decays, the larger the

open halfspace becomes in which f̂ is analytic. Conversely, if f grows without

bound at infinity, (so v0 < 0) then the more rapidly f increases, the smaller the

open half plane of analyticity of f̂ .

Theorem 3.1.4 Let f be a measurable function such that

f(x)eAx ∈ L1(R) (3.20)

for some fixed constant A ∈ R. Then for each fixed ν ≤ A, the function f can be

recovered as

f(x) =
1

2π

∫

Lν

f̂(ξ)eiξ dξ, (3.21)

where Lν is the horizontal line passing through iν in the complex plane.

Proof Fix any ν ≤ A. Then gν(x) ≡ f(x)eνx ∈ L1(R), and its Fourier transform

is given as

ĝν(ω) =
∫

R
f(x)e−ix(ω+iν)dx ≡ f̂(ω + iν). (3.22)

Applying the inverse Fourier transform yields

f(x)eνx = gν(x)

=
1

2π

∫

R
f̂(ω + iν)eiωxdω,

or

f(x) =
1

2π

∫

R
f̂(ω + iν)eix(ω+iν)dω

=
1

2π

∫

Lν

f̂(ξ)eiξ dξ,
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where ξ = ω + iν, dξ = dω, and Lν is the horizontal line passing through iν in

the complex plane.

This result is a Fourier-domain analogue to Bromwich’s1 method for recovering

the inverse Laplace transform of F (s) by integrating F along any vertical line, or

Bromwich path, [70] to the right of all singularities of F .

3.2 Minimum phase

Definition A tempered distribution (or function) s ∈ S ′(R) is minimum phase if

ŝ and 1/ŝ correspond to analytic functions on the open lower half of the complex

plane,

C− = {u + iv ∈ C : v < 0}. (3.23)

This definition requires some explanation. Indeed, it is not obvious at first exactly

how one should go about extending the Fourier transform of a tempered distri-

bution to a function on the open lower half of the complex plane. This process

was made clear for the causal L1−functions, as we saw in the proof of Theorem

3.1.3. To see how we can accomplish this task for a causal tempered distribution,

we first look at how a Schwartz function, say s ∈ S(R), can be extended to the

complex plane (following advice of M. Lamoureux).

The Fourier transform of s is ŝ(u) =
∫
R s(x)e−iuxdx, and we can define its

extension to the complex plane, where it makes sense, by formally replacing u

with z = u + iv:

ŝ(z) =
∫

R
s(x)evxe−iuxdx. (3.24)

1Thomas John l’Anson Bromwich, 1875-1929



32 Chapter 3. Minimum phase for nonstationary analog systems

Certainly if s has compact support then this integral makes perfect sense, since

the exponential growth is cut off outside the support of s. If s is causal, then for

any z ∈ C−, the exponential growth is cut off, while the exponential decay makes

it even easier for the integral to converge. Similarly, if s is anti-causal, the integral

makes sense on the open upper half plane. The main point here is that wherever

the integral converges, it defines a function.

Now for tempered distributions, it is convenient to use the inner product no-

tation to extend the definition 3.24, namely

ŝ(z) =< s, eiz(·) >, (3.25)

where the (·) is just a placeholder for the argument x. Even though eiz(·) is not

a Schwartz class function, the inner product makes sense, for instance, for any

z ∈ C− whenever s is a causal distribution. Indeed, take any smooth cutoff

function φ, with φ(x) = 1 on [0,∞), and vanishing on (−∞,−ε], for some ε > 0.

Then the product φ(x)eizx is Schwartz class for any z ∈ C−, and we can define

ŝ(z) =< s, φ(·)eiz(·) > . (3.26)

Now this definition is independent of the choice of cutoff function, for if ψ is

another cutoff function which is 1 on the support of s, then φ−ψ vanishes on the

support of s, so that

0 =< s, (φ− ψ)(·)eiz(·) >=< s, φ(·)eiz(·) > − < s, ψ(·)eiz(·) >; (3.27)

that is, < s, φ(·)eiz(·) >=< s, ψ(·)eiz(·) >. Thus the prescription 3.25 extends

the Fourier transform of a causal tempered distribution to a well-defined function
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on the open lower half plane. So long as the tempered distribution has one-

sided support, we can extend its Fourier transform to a function on an open half

plane in C, and to the entire complex plane in the case of a compactly supported

distribution.

Example Consider the extension of the Fourier transform of the (compactly sup-

ported) Dirac distribution, δ, to the whole complex plane, as follows. This is just

given as

δ̂(z) =< δ, eiz(·) >= eiz(0) = 1, (3.28)

which incidentally is the only natural way to analytically continue the constant

function 1 from the real line to the complex plane. This also shows that the Dirac

distribution is minimum phase.

Example Consider the Fourier transform of the distributional derivative, δ′, of

the Dirac distribution, δ. We have

δ̂′(z) =< δ′, eiz(·) >=< δ, izeiz(·) >=< −izδ, eiz(·) >= −iz, (3.29)

which is entire. Also, since −1/iz is analytic in the lower half plane, we see that

δ′ is minimum phase.

An immediate consequence of our definition of minimum phase is the following.

Proposition 3.2.1 If f, g ∈ S ′(R) are minimum phase tempered distributions for

which their convolution f ∗ g is defined, then f ∗ g is also minimum phase.

Proof The Fourier transform of f ∗g is the product FG of the Fourier transforms

of f and g. Since both factors and their pointwise inverses are analytic in the open

lower half of the complex plane, the same is true of their product.
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The definition is also independent of the choice of scale, as it ought to be. That is,

given any λ > 0 and g ∈ S ′(R), it follows immediately that g is minimum phase

if and only if λg is minimum phase.

Actually, the term “minimum phase” more appropriately relates to the Fourier

spectrum ŝ, whereas s is more accurately described as being “minimum delay”.

The two terms have come to have the same meaning in the geophysics community

(e.g., [88]), reasonably so due to the identification of L2(R) with itself effected

by the Fourier transform. We shall continue with this convention. We choose to

forego a discussion of the physical implications of the definition, as it is beyond the

scope of our present objectives. The interested reader should consult (with a grain

of salt!) the appendices in Robinson’s book [77]. We mention also Futterman’s

work on frequency-dependent attenuation for dispersive waves, and its connection

with the minimum phase concept ([24]). The acoustic transmission response of

layered media, and the seismic signature of a dynamite source, are two more

examples of known minimum phase phenomena (see [78] and [16]). We should

remark at this point (as suggested by Larry Lines) that not all seismic sources are

minimum phase. For example, it is generally accepted that vibroseis sources are

not minimum phase.

According to our definition, ŝ is minimum phase if and only if 1/ŝ is minimum

phase. This is the main reason for demanding such generality of s. Indeed, if s is a

signal, then its Fourier transform vanishes at infinity: thus 1/ŝ is unbounded, and

its Fourier transform, F−1{1/ŝ}, provided it exists, cannot be a function. Quite

naturally, we want to preserve the symmetry implied by the definition, namely,

that s should be minimum phase if and only if F−1{1/ŝ} is minimum phase.
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3.2.1 Examples

Example The function f(x) = h(x)e−ax, for each a > 0, is a minimum phase

signal. Indeed, f ∈ L2(R) ∩ L1(R), so f is a signal and its Fourier transform can

be computed using formula (2.10) as

f̂(ξ) =
∫

R
h(x)e−x(a+iξ)dx =

∫ ∞

0
e−x(a+iξ)dx =

1

a + iξ
, (3.30)

provided a > 0. Certainly, f̂ and 1/f̂ are tempered functions on R, and so

they correspond to tempered distributions defined as in (2.17). Now f̂ is analytic

everywhere except at the point ξ = ai in the upper half plane, and 1/f̂ is entire,

which proves the claim.

Example It is instructive to go through the case a = 0, namely, to show that the

Heaviside function is minimum phase. As in (3.3), we have

ĥ(ω) = πδ(ω)− i

ω
. (3.31)

Now δ is supported at the origin, and so on the open lower half of the complex

plane, ĥ agrees with the function

ĥ′(ξ) = − i

ξ
, =(ξ) < 0. (3.32)

This function and its pointwise inverse are analytic for =(ξ) < 0, and the claim

follows.

The previous example illustrates why, in our definition of minimum phase, we do

not require ŝ or its inverse to be analytic on the real line.
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Example As we have already seen, the Dirac distribution is minimum phase, since

its Fourier transform is the distribution corresponding to the constant function,

1, whose extension to the whole complex plane is entire. More generally, for any

complex numbers µ and ε 6= 0, the tempered distribution µ+εδ is minimum phase.

Indeed, its Fourier transform is 2πµδ + ε, which agrees with the constant function

ε everywhere except at the origin of C. The condition ε 6= 0 is necessary to ensure

1/ε is analytic.

Example Suppose g is a causal Schwartz function, and consider the function of

frequency obtained by exponentiating its Fourier transform (recall that ĝ is also a

Schwartz function):

exp (ĝ(ω)) = exp (<(ĝ(ω))) exp (i=(ĝ(ω))). (3.33)

Since g is causal and certainly in L1(R), Proposition 3.1.3 asserts that ±ĝ are

analytic functions on the open lower half plane; hence so are

exp (ĝ) and 1/ exp (ĝ) = exp (−ĝ), (3.34)

since the exponential function is entire. In particular, the tempered (actually

bounded) function exp (ĝ) is the Fourier spectrum of a minimum-phase tempered

distribution T ∈ S ′(R).

By Proposition 3.1.1, since g ∈ S(R) ⊂ L1(R) is causal, the real and imaginary

parts of its Fourier transform are related by the Hilbert transform:

<(ĝ) = H=(ĝ), or =(ĝ) = −H<(ĝ). (3.35)

In particular, we see that the phase and magnitude spectra of T are related by

φT = =(ĝ) = H ln(|T̂ |). (3.36)
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Example The zero function is not minimum phase. Indeed, its Fourier transform

is again zero, which is entire, but nowhere invertible.

3.2.2 Some characteristics of minimum phase

We should expect the property of minimum phase—for a good definition of mini-

mum phase—to be translation invariant; that is, to be independent of the choice

of origin for the time axis.

Proposition 3.2.2 A tempered distribution f is minimum phase if and only if

each of its translates Tτf , (τ ∈ R) is minimum phase.

Proof Suppose f is minimum phase, so f̂ and 1/f̂ are analytic on the open lower

half of the complex plane. Since ̂(Tτf)(ω) = exp (iωτ)f̂(ω), and exp (iωτ) and

its inverse exp (−iωτ) are entire functions (that is, analytic everywhere on the

complex plane), it follows that T̂τf and 1/T̂τf are analytic on the open lower half

plane, whence Tτf is minimum phase for all τ ∈ R. The converse follows obviously

by setting τ = 0.

The following result offers an alternate characterization of minimum-phase tem-

pered distributions.

Proposition 3.2.3 A tempered distribution s is minimum phase if and only if

ln ŝ is analytic on the open lower half of the complex plane.

Proof The complex logarithm is an analytic function everywhere except at the

origin. Thus ln ŝ is analytic if and only if ŝ is analytic and non-zero. Also, 1/ŝ

is analytic if and only if ŝ is analytic and non-zero. It follows that s is minimum
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phase if and only if ln ŝ is an analytic function on the open lower half of the

complex plane.

We next recall a few preliminary results from complex analysis that will be

used in the remainder of this section. The main and final result of this brief

excursion is Jordan’s lemma (3.2.6).

A few results from complex analysis

Theorem 3.2.4 (Cauchy-Goursat Theorem, e.g., Churchill and Brown, 1984) If

the function F is analytic at all points interior to and on a simple closed curve Γ,

then
∫

Γ
F (z) dz = 0. (3.37)

Lemma 3.2.5 (Jordan’s Inequality, adapted from Churchill and Brown, 1984)

For each R > 0,
∫ 0

−π/2
eR sin θ dθ <

π

2R
. (3.38)

Proof (Churchill and Brown, 1984) For −π/2 ≤ θ ≤ 0, we have 0 ≥ 2θ/π ≥ sin θ.

Thus, for any R > 0 and θ ∈ [−π/2, 0], eR sin θ ≤ e2Rθ/π, so that

∫ 0

−π/2
eR sin θ dθ ≤

∫ 0

−π/2
e2Rθ/π dθ

=
π

2R
(1− e−R)

<
π

2R
.

Proposition 3.2.6 (Jordan’s Lemma, adapted from (Papoulis, 1977)) Let γ = γR

be the semicircle of radius R in the lower half of C, centered at the origin. If F (ω)
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is a measurable function such that F (ω) → 0 uniformly on γ as R →∞, then for

all t < 0,
∫

γ
F (ω)eiωtdω → 0 as R →∞. (3.39)

Proof Let ε > 0 be given. Since F (ω) → 0 as R → ∞, (for =(ω) ≤ 0) we can

choose R0 > 0 such that |F (ω)| < ε for |ω| > R0. With the change of variables

ω = Reiθ, dω = iReiθdθ, we have that for all R > R0 and t < 0,

∣∣∣∣
∫

Γ
F (ω)eiωtdω

∣∣∣∣ ≤ R
∫ 0

−π

∣∣∣eiRt(cos θ+i sin θ)F (Reiθ)
∣∣∣ dθ

≤ εR
∫ 0

−π

∣∣∣e−Rt(sin θ)
∣∣∣

<
επ

−t
,

where the last inequality follows from Lemma 3.2.5, together with the fact that

sin θ is symmetric about the vertical line through −π/2. Hence the integral over

[−π, 0] is twice that over [−π/2, 0].

We now in a position to establish some useful properties concerning the minimum

phase concept.

Theorem 3.2.7 If F (ω) is analytic for =(ω) ≤ 0 and satisfies the hypotheses

of Proposition 3.2.6, then F (ω) is the Fourier transform of a causal tempered

distribution f ∈ S ′(R).

Proof First, F is bounded on R, since F (ω) → 0 as R →∞. Thus F is tempered,

so that F ∈ S ′(R), and we have that f ∈ S ′(R), where f is the inverse Fourier

transform of F . For each R > 0, let γ = γR be the semicircle of radius R in the

closed lower half of C, centered at the origin, and let Γ = ΓR be the simple closed
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curve connecting γ with the interval [−R, R]. Since F (ω) is analytic for =(ω) ≤ 0,

and eiωt is entire, Cauchy’s Theorem 3.2.4 asserts that

∫

Γ
F (ω)eiωtdω = 0. (3.40)

By Proposition 3.2.6, for each t < 0 the integrals
∫
γ F (ω)eiωtdω converge to 0 as

R →∞. In particular, for each t < 0, the integrals defined by

∫ R

−R
F (ω)eiωtdω =

∫

Γ
F (ω)eiωtdω −

∫

γ
F (ω)eiωtdω = −

∫

γ
F (ω)eiωtdω (3.41)

form a bounded net, indexed by R > 0, which converges to 0 as R → ∞. Thus,

for all t < 0, passing to the limit as R →∞ shows that

∫

R
F (ω)eiωtdω = 0, (3.42)

and it follows that the distribution f agrees with the zero function on (−∞, 0),

that is, f is causal.

Corollary 3.2.8 If f ∈ S ′(R) is minimum phase and its Fourier transform, F ∈
S ′(R), satisfies the hypotheses of Proposition 3.2.6, then HF = iF .

Proof Since f is minimum phase, it is analytic in the lower half plane. By

hypothesis, it follows from Theorem 3.2.7 that f is causal. By definition of the

Hilbert transform of a causal distribution, HF = iF .

Theorem 3.2.9 If f ∈ S ′(R) is minimum phase, such that f̂ is a function on the

real line, and if ln f̂ satisfies the hypotheses of Proposition 3.2.6, then H(ln f̂) =

i ln f̂ .

Proof By Theorem 3.2.7, lnf̂ corresponds to a causal tempered distribution.
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Theorem 3.2.10 (extension of Signal Front result in [70]) If f̂ ∈ S ′(R) is ana-

lytic in the open lower half plane, and if for some τ ∈ R,

eiτξf̂(ξ) → 0 as ξ →∞ on γR, (3.43)

(as in Proposition 3.2.6) then Supp (f) ⊆ [τ,∞).

Proof Consider the translate, T−τf of f by −τ . Then {T−τf}∧ (ξ) = eiτξf̂(ξ) is

analytic in the open lower half plane and satisfies the hypotheses of Proposition

3.2.6. Thus, by Theorem 3.2.7, Supp (f) ⊆ [0,∞), and the result follows.

Definition (extension of Signal Front concept [70] to tempered distributions)

Given f ∈ S ′(R) satisfying (3.43) for some τ ∈ R, the supremum, τ0, over the set

of all τ satisfying (3.43) is called the signal front of f .

Of course, f need not be a signal in the classical sense. Also, τ0 = ∞ if and

only if f ≡ 0.

3.3 Nonstationary minimum phase filters

Definition A linear operator L is minimum phase if it preserves minimum phase;

that is, if for each minimum phase tempered distribution s ∈ S ′(R) for which Ls

defines a tempered distribution, Ls is again minimum phase.

The domain of the operator L is intentionally left unspecified, since it depends

on the regularity of the Schwartz kernel of L. We thus consider L as a mapping

from the preimage, L−1{S ′(R)}, of S ′(R) into S ′(R).
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Example Given any minimum phase Schwartz class function f ∈ S(R), consider

the convolution operator

Lf : S ′(R) → S ′(R) (3.44)

defined as

Lfs = f ∗ s. (3.45)

The product f̂(ξ)ŝ(ξ) and its pointwise inverse are analytic functions in the open

lower half plane, since this is true of both f̂ and ŝ by assumption. In particular,

Lfs ∈ S ′(R) is minimum phase, and so Lf is a minimum phase linear operator.

If the kernel f were in L1(R), then we would have a bounded (continuous)

minimum phase linear operator on L2(R). Since L2(R) ⊂ S ′(R), Lf can be

viewed—in a trivial way—as an operator Lf : L2(R) → S ′(R).

The convolution operators are commonly referred to as “filters” in signal pro-

cessing and imaging. They represent time-invariant, or stationary, linear systems.

Of much greater interest to us in our research is nonstationary filtering. Indeed

many, if not all, linear physical systems exhibit nonstationarity and thus cannot

properly be described by convolution operators.

To this end, consider a collection

f = {fτ : τ ∈ R} (3.46)

of minimum phase tempered distributions, fτ ∈ S ′(R), parameterized by τ ∈ R.

This just describes a function f = f(τ, t) of two variables whenever each member

of f is itself a function. Alternatively, we can interpret the Fourier transform of

f as a family of filter kernels, f̂ = {f̂τ : τ ∈ R}, also parameterized by τ ∈ R.
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Specifically, the action of the resulting family of filters can be represented (at least

formally) by the following inverse Fourier transform (see Kohn and Nirenberg,

1965, and Stein, 1993):

(Lfs) (τ) =
1

2π

∫

R
f̂(τ, ω)ŝ(ω)eiτωdω, where s ∈ L−1

f {S ′(R)}. (3.47)

For each fixed τ , and for each minimum phase s ∈ L−1
f {S ′(R)}, the product

f̂τ ŝ and its pointwise inverse are analytic functions in the open lower half of the

complex plane, and thus represent (via an inverse Fourier transform) a minimum

phase tempered distribution: Lfs. Thus Lf defines a nonstationary, minimum

phase linear operator.
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Chapter 4

Adaptive time-frequency analysis

with nonuniform Gabor frames

Mathematical rigor...all too often leads to rigor mortis.
—R. W. Hamming

Yes indeed, but rigor mortis is also a necessary condition for reincarnation. We

introduce here a new method for constructing adaptive, nonuniform Gabor frames.

The adaptive frame results are subsequently utilized in Chapter 7, where we in-

troduce the new “adaptive Gabor phase-shift” (AGPS) algorithm for wavefield

extrapolation. The motivation for the construction is to minimize the redundancy

of the Gabor transform, and hence obtain a potentially significant decrease in

computational intensity.
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We begin by fixing some notation and introducing the relevant background

material from Gabor analysis. This is followed by a discussion of Gabor frames,

culminating in a criterion (Theorem 4.2.1) for generating such frames. The remain-

der of the chapter is mainly concerned with the construction of a one-parameter

family of Gabor frames from a maximally redundant uniform partition of unity.

These preliminaries set the stage for our ultimate objective of constructing a family

of adaptive Gabor frames.

4.1 Preliminaries

4.1.1 Partitions of unity

A partition of unity is a collection {ψj : j ∈ Z} of functions that sums to 1:

∑

j∈Z

ψj(x) = 1, for each x ∈ R. (4.1)

With respect to such a partition of unity, any function can be represented as the

superposition of its windowed components,

fj(x) = ψj(x)f(x), (4.2)

as follows:

f(x) =
∑

j∈Z

ψj(x)f(x) =
∑

j∈Z

fj(x). (4.3)

Given any collection of functions, {φj} satisfying

0 < A ≤ ∑

j∈Z

φj(x) ≤ B < ∞, (for each x ∈ R), (4.4)
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for some constants, A,B > 0 , the collection can always be normalized to give a

partition of unity. Indeed, by setting

ψj(x) =
1∑

i∈Z φi(x)
φj(x), (4.5)

we have
∑

j∈Z

ψj(x) = 1, for each x ∈ R. (4.6)

4.1.2 Partitions of unity in higher dimensions

A d−dimensional partition of unity can easily be constructed from any set of d

one-dimensional partitions of unity as follows. We show how to do this in two

dimensions, since the procedure is similar in any number of dimensions.

Given a pair of one-dimensional partitions of unity, say {φn} and {ψm}, con-

sider the product (actually, the tensor product—see the next paragraph) {γm,n =

φnψm}. By assumption, we have

∑

n∈Z

φn =
∑

m∈Z

ψm = 1, (4.7)

so that
∑

m,n∈Z

γm,n =
∑

n,m∈Z

φnψm =
∑

n∈Z

φn

∑

m∈Z

ψm = 1. (4.8)

Thus {γm,n} forms a partition of unity.

A partition of unity constructed in this fashion will not generally inherit the

regularity properties of its factors. If an approximate partition of unity is accept-

able, however, the product of two approximate partitions of unity consisting of

Gaussians will always yield another approximate partition of unity, again consist-

ing of Gaussians ([5]). The tensor product, g
⊗

g ; that is,

(g ⊗ g) (x, y) = g(x)g(y), (4.9)
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of two identical Gaussians has the further property of being radially symmetric.

4.1.3 Translation and modulation operators in Hilbert space

Given a (possibly complex-valued) function g(x) on the real line, and constants

a, b ∈ Z , the translation operator, Tna, and the modulation operator, Mmb are

defined by

(Tnaf)(x) = f(x− na) and (Mmbf)(x) = e2πimbxf(x) (4.10)

for any f ∈ L2(Rd). Here, L2(Rd) is the Hilbert space of square-integrable func-

tions, with inner product

〈f, h〉 =
∫

Rd
f(x)h(x)dx (4.11)

and norm (or energy)

‖f‖ = 〈f, f〉1/2 = (
∫

Rd
|f(x)|2dx)1/2. (4.12)

A function belongs to L2(Rd) if and only if it has finite measurable energy:

‖f‖ < ∞. Functions in L2(Rd) will be referred to as signals, (where d = 1)

although the theory we develop applies equally well to images (d = 1, 2, or 3). In

fact, the generalization to any dimension is straightforward, but we consider only

a single dimension for simplicity. So the real variable x represents time or space,

depending on the desired application, and the corresponding Fourier dual variable,

ξ, accordingly represents temporal or spatial frequency. The time-frequency plane

is the continuum of all pairs (x, ξ); in quantum mechanics, these are the position

and momentum coordinates of phase space R2d.
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We consider also the Hilbert space `2(Z × Z), consisting of square-summable

sequences of complex numbers, {cm,n}, indexed by the integers m,n ∈ Z. A

sequence belongs to `2(Z× Z) if and only if

∑

m,n∈Z

|cm,n|2 < ∞. (4.13)

4.2 The Gabor transform

4.2.1 The short time Fourier transform

Further details pertaining to the current section may be found in [36], [20], [73],

and [25].

The continuous Gabor transform is an invertible linear mapping from L2(Rd)

into L2(R2d), defined as follows: fix a nonzero function g, called a window function,

or atom. The continuous Gabor transform of a signal f ∈ L2(Rd) with respect to

the window g is then denoted as

Vgf(x, ω) =
∫

Rd
f(t)g(t− x)e−2πitωdt. (4.14)

Here, the overline denotes complex conjugation. In our applications, g is usually

a symmetric, real-valued function (usually a Gaussian window, or some finitely

supported bump function). The continuous Gabor transform is also known as the

windowed Fourier transform, or short-time Fourier transform, for obvious reasons.
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4.2.2 Gabor frames and the discrete Gabor transform

The discrete Gabor transform is the partially discretized version of the windowed

Fourier transform, expressed as

Vgf(n,m) =
∫

Rd
f(t)g(t− na)e−2πimbtdt, (4.15)

where a and b are fixed positive constants, and n and m are d-tuples of integers.

This is just a sampled version of the windowed Fourier transform. The constant a

controls the spacing between windows, while b determines the sample rate for the

Fourier dual variable.

The range of the Gabor transform is contained in `2(Z2n), the space of complex-

valued, square-summable sequences {cn,m} for which

∑

n,m∈Zn

|cn,m|2 < ∞. (4.16)

We often use the shorthand notation, gn,m(x) = g(t − na)e−2πimbt, for the so-

called translated and modulated atoms. Given a triple {g, a, b} the corresponding

collection {gn,m} is called a Gabor frame if there exist constants A,B > 0 for

which

A‖f‖2 ≤ ∑

n,m∈Zn

|〈f, gn,m〉|2 ≤ B‖f‖2, (f ∈ L2(Rd)). (4.17)

A and B are called frame bounds, and a Gabor frame is called a tight frame if

A = B. Any orthonormal basis of L2(Rd), for example, is a tight frame, with

frame bounds A = B = 1.

Any Gabor frame {gn,m} has the property that the Gabor transform, or analysis

mapping,

Vg : L2(Rd) → `2(Zn × Zn), (4.18)
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(Vgf)(n, m) = 〈f, gn,m〉 =
∫

Rd
f(t)g(t− na)e−2πimbtdt, (4.19)

and its adjoint, the synthesis mapping, or Gabor expansion,

V ∗
g : `2(Zn × Zn) → L2(R2n) (4.20)

given by

V ∗
g {cn,m}(t) =

∑

n,m∈Zn

cn,mgn,m(t), (4.21)

are bounded linear operators. Consequently, the Gabor frame operator, Sg, defined

by

Sg = V ∗
g Vg : L2(Rd) → L2(Rd) (4.22)

Sgf =
∑

n,m∈Zn

〈f, gn,m〉gn,m, (4.23)

being a composition of bounded linear operators, is itself a bounded linear op-

erator. Given any Gabor frame, {gn,m}, the associated frame operator (4.23) is

always invertible: indeed, as implied by condition (4.17), Sg is bounded away from

zero, meaning Sg is injective, hence invertible on its range. The most important

consequence of this fact is that any f ∈ L2(Rd) can be reconstructed from its

Gabor coefficients as

f =
∑

n,m∈Zn

〈f, gn,m〉S−1
g gn,m, (4.24)

which follows from applying S−1
g to both sides of equation (4.23). The resulting

system, {γn,m = S−1
g gn,m}, is also a Gabor frame, called the dual frame. It is

generated by translations and modulations of the dual atom, or synthesis window,

γ = S−1
g g. The dual frame is a synthesis frame: it has the property that V ∗

γ Vg = I,

as one can easily check from the definitions and expression 4.24. The choice of

synthesis window is not unique in general. Many other windows can be substituted
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for γ that will allow reconstruction of the signal from its Gabor coefficients, but

the dual atom happens to be the synthesis window of least energy.

The Gabor frame is commonly called an analysis frame, while its dual is called

a synthesis frame. Precise information about how to choose analysis and synthesis

frames will be discussed in the next section, (also in Grossman, et al., [40]) where

1-parameter families of Gabor frames will be constructed from any partition of

unity.

Figure 4.1 shows an example of a Gabor amplitude spectrum, (magnitude of

the Gabor transform) where the analysis frame is an approximate partition of unity

consisting of Gaussian windows, and the corresponding synthesis frame is unity.

The left side is a synthetic seismic trace modelled with constant-Q attenuation,

and the bottom its Fourier amplitude spectrum. The Gabor amplitude spectrum

clearly demonstrates the continuous amplitude decay and loss of bandwidth with

time.

There has been a great deal of research on the existence of Gabor frames,

particularly in finding sufficient conditions on g, a, and b for which the frame

inequalities (4.17) can be satisfied (see [36] and [20]). However, as the following

theorem will show, this question of existence is not an issue in the applied setting.

Theorem 4.2.1 (Daubechies et al., [14]) Suppose that g ∈ L∞(Rn) is supported

on the cube QL = [0, L]n. If a ≤ L and b ≤ 1/L, then the frame operator is the

multiplication operator

Sf(x) =


 1

bn

∑

m,n∈Z

|gn(x)|2

 f(x), (4.25)
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Figure 4.1: Example of a Gabor amplitude spectrum, top-right. The input time
series on the left is a constant-Q-attenuated synthetic seismic trace. Its Fourier
amplitude spectrum is depicted below the Gabor amplitude spectrum. The time
series and its amplitude spectrum can be thought of as projections of the Gabor
spectrum onto the time and frequency axes, respectively.
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where gn(x) = (Tnag)(x). Consequently, {gm,n} is a Gabor frame, with frame

bounds A = α/an and B = β/bn, if and only if

0 < α ≤ ∑

n∈Z

|gn(x)|2 ≤ β a.e. (4.26)

Moreover, {gm,n} is a tight frame if and only if
∑

n∈Z |gn(x)|2 = constant a.e.

The sufficient conditions for gm,n to be a frame are easily satisfied in practice.

Indeed, any continuous function g on a closed interval is bounded, so it belongs to

L∞(Rd). Also, the distance a between window centers cannot exceed the width,

L, of the window; otherwise, part of the signal being analyzed would be neglected.

Moreover, since we will be using the FFT (fast Fourier transform), we have that

b = 1/L. These remarks, and the criterion (4.26), will be further discussed below.

4.2.3 Implementation of Gabor transforms with FFTs

In applications, efficiency is gained by implementing the Gabor transform with

the FFT. This specializes the definition of the Gabor transform—to the extent

that the sampling interval, b, (of the frequency coordinate) is predetermined by

the FFT and the window’s length.

4.2.4 Window selection

As we have mentioned, the Gaussian window is optimal in the sense that it achieves

the best possible time-frequency resolution. For numerical efficiency, however, we

recommend using a finite-length window that has a similar shape to the Gaussian.

The Gaussian decays to below machine precision after only several halfwidths, so a

suitably truncated Gaussian could be used. The window should also be sufficiently
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smooth to avoid artifacts such as spectral ringing; and it should be at least wide

enough so that its sampled version faithfully represents it.

The Gaussian, as promising as it may seem, is symmetric and hence zero phase.

It is conceivable that there may be situations for which non-zero phase windows

would be advantageous. For example, as we shall see when we introduce Gabor

filters below, locally minimum phase filters might be more accurately implemented

with locally minimum phase analysis and synthesis frames.

4.3 Nonuniform frames from maximal partition-of-unity

frames

4.3.1 Maximally redundant partition-of-unity Gabor frames

Consider any signal f ∈ L2(R), and select a window g̃ ≥ 0 according to the

prescription above (see subsection 4.2.4). Suppose the signal is sampled at M

points, with a uniform sample spacing of ∆x units, and that g̃ has N points, with

the same sample spacing. Then the sampling interval in the frequency domain is

given by

b =
2

N − 1
fNyquist =

1

∆x(N − 1)
. (4.27)

Next, consider the family of translates:

{g̃n = Tnag̃ : n = 0, 1, 2, ...,M − 1}, (4.28)

with a = ∆x. This is a suite of windows, one centered at each sample point. By

construction, it satisfies the inequalities (4.4). Thus, by normalizing if necessary,



56 Chapter 4. Adaptive time-frequency analysis with nonuniform Gabor frames

we can replace the family with a partition of unity, namely:

{gn = Tnag̃ : n = 0, 1, 2, ...,M − 1}, where gn =
g̃n∑M−1

m=0 g̃m

. (4.29)

Remark Although this defines a partition of unity, which would be uniform on the

whole real line, it will not be uniform near the edges of the finite-length domain,

[x0, xM−1], because the sum is over a finite set. One way around this problem is to

pad the input data with zeros, to displace these edge effects away from the domain

of interest.

The area of a cell in the corresponding sampling grid in the time-frequency

plane is thus

ab =
1

N − 1
. (4.30)

In this case, we chose the distance a between windows to be ∆x, but in general,

we would have

∆x ≤ a ≤ (N − 1)∆x. (4.31)

Multiplying (4.31) by expression (4.27) for b, we see that the area, ab is bounded

by

1

N − 1
≤ ab ≤ 1. (4.32)

The redundancy is defined as 1/ab, and the system is said to be oversampled by a

factor of 1/ab, or, in this case, N − 1. This is the maximum possible oversampling

rate, and for this reason we call the partition of unity maximally redundant.

Evidently, the hypotheses of the first part of Theorem 4.2.1 are satisfied for this

maximally redundant system (4.29). To prove that our system is in fact a Gabor

frame, it remains to verify condition (4.26). First, |g(x)| ≤ 1, and so we have that
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[g(x)]2 ≤ g(x). Thus

M∑

n=1

|gn(x)|2 ≤
M∑

n=1

|gn(x)| = 1 = β. (4.33)

For the lower bound, we need only check that
∑M

n=1 |gn(x)|2 6= 0 for all x. This is

clear, since otherwise there would be some x0 ∈ R, for which

|gn(x0)|2 = 0 = gn(x0) (4.34)

for all n, implying the following contradiction:

1 =
M∑

n=1

|gn(x0)| = 0. (4.35)

Thus (4.29) represents a maximally redundant partition-of-unity Gabor frame.

4.3.2 One-parameter families of Gabor frames

Theorem 4.3.1 Suppose

{φn = Tnaφ : n ∈ Z} (4.36)

is a partition of unity such that φn ≥ 0, and choose any p ∈ [0, 1]. If we set

g(x) = [φ(x)]p, then the collection

{gm,n = TnaMmbg : m,n ∈ Z} (4.37)

evidently defines a Gabor analysis frame. We claim that a corresponding synthesis

frame is given by

{γm,n = TnaMmbγ : m,n ∈ Z} (4.38)

where γ is defined as γ(x) = [φ(x)]1−p.
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Figure 4.2: A Gaussian atom of halfwidth σ, and the family of Gaussians, of
halfwidth σ/

√
p, obtained by raising the initial Gaussian to the power p ∈ [0, 1].

As p decreases, the atoms gain mass, and their mass distribution spreads. In the
limit as p → 0 the family converges to constant function, 1.
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Proof Indeed, let f ∈ L2(Rd) be given, and consider the Gabor coefficients of f ,

namely:

cm,n =
∫

f(x̃)g(x̃− na)e−2πimbx̃ dx̃. (4.39)

Summing these coefficients against the system (4.38) yields:

∑

m,n∈Z

cm,nγ(x− na)e2πimbx = · · ·

· · · =
∑

m,n∈Z

∫
f(x̃)g(x̃− na)e−2πimbx̃ dx̃γ(x− na)e2πimbx

=
∫

f(x̃)
∑

n∈Z

g(x̃− na)γ(x− na)
∑

m∈Z

e−2πimb(x−x̃) dx̃

=
∫

f(x̃)
∑

n∈Z

g(x̃− na)γ(x− na)δ(x− x̃) dx̃

= f(x)
∑

n∈Z

g(x− na)γ(x− na)

= f(x)
∑

n∈Z

φp(x− na)φ1−p(x− na)

= f(x),

which is what we set out to prove, i.e., that (4.37) and (4.38) form a dual pair of

Gabor frames.

We have used the fact that the sum,
∑

m∈Z e−2πimb(x−x̃) under the integral in (4.40),

has the same action as the Dirac-delta distribution concentrated at x̃ = x. Indeed,

the sum represents the inverse DFT, evaluated at x− x̃, of the constant function,

1.

Remark The choice of p assigns a relative balance between the mass distri-

butions of the analysis and synthesis atoms. Since the atoms are non-negative

members of a partition of unity, their amplitudes are bounded above by one.

Thus, as the exponent p ∈ [0, 1] decreases, the atomic mass increases and spreads
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simultaneously.

From Theorem 4.2.1, it is easy to see that for p = 1/2, the resulting frame is

tight; that the converse also holds in this setting remains a conjecture. Evidently,

this is also the only p for which the analysis and synthesis frames are identical.

In the case of a Gaussian of halfwidth σ, it is easily seen that exponentiation

by p results in a new Gaussian, of halfwidth σ/
√

p. A suite of such Gaussians,

parameterized by p ∈ [0, 1], is displayed in figure 4.2. In the limit as p → 0, the

family degenerates to the constant function, g(x) = 1.

As we have mentioned, the Gaussian can only form an approximate partition

of unity. However, the error can be made as small as desired by increasing the

ratio σ/a of the halfwidth to the spacing between translates. Margrave and Lam-

oureux [58] showed that this error is dominated by a sinusoid with amplitude that

decreases exponentially with the ratio σ/a. Practically speaking, the error can

be made negligible: for example, by setting the spacing between Gaussians to

about 10 percent of the halfwidth. Alternatively, the suite of Gaussians can be

normalized, as in (4.5), at the cost of a deviation from optimal time-frequency

resolution.

In the case of a compactly supported atom, for example a Lamoureux window of

order k, (a bell-shaped polynomial spline of order Ck) a little caution is required.

Figure 4.3 displays a suite of atoms generated by exponentiating a Lamoureux

window of order four. As is evident by inspection of the endpoints of the windows,

the order of differentiability of the resulting atom decreases as the exponent p ∈
[0, 1] decreases (any p ≤ 1/k). However, in practice this is easily resolved by

suitably adjusting the order of the Lamoureux window for a given choice of p.
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Figure 4.3: A Lamoureux atom and the family of windows obtained by raising the
initial atom to the power p ∈ [0, 1]. As p decreases, the atoms gain mass and their
spreading mass-distributions are confined to the original domain. At p = 1/4, the
window is no longer differentiable at the two boundaries. However, this can be
resolved for any given p by starting with a sufficiently high-order atom. In the
limit as p → 0, the family converges to a boxcar.

The Lamoureux window has the advantage of being compactly supported, in

contrast to the Gaussian window. Although the Gaussian is effectively compact

when digitized, the extent to which it is so depends on the available dynamic range

of the computing system.
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4.4 Adaptive, nonuniform Gabor frames

Any maximal partition of unity can be adapted to yield a nonuniform partition of

unity, in such a way that the essential nonstationarity of the particular problem is

respected. The idea is to form molecules, or macro-windows, by summing neigh-

bouring atoms over regions that meet a local stationarity measure. The result is

an adaptive, nonuniform partition of unity, or molecular decomposition. These

molecules can then be used to generate a one-parameter family of nonuniform

Gabor analysis and synthesis frames, in precisely the same way that they were

generated above from atomic partitions of unity (equations (4.37) and (4.38)).

For example, a stationarity measure can be specified by a fixed, user-assigned

threshold, against which the deviation of a given velocity field from its mean

over the current molecule is compared. Thus, if this deviation is less than the

threshold, then this region is deemed approximately stationary, and the current

atom is conjoined to the current molecule (the first molecule starts off as an atom).

Thus each molecule continues to grow by gathering neighbouring atoms until it

encounters a large enough velocity anomaly; then a new molecule is constructed,

and so on until the atoms are exhausted.

A 1-D example of such a molecular decomposition is shown in figure 4.4. The

illustrated velocity model is meant to be as general as possible, ranging from a

simple constant to a nowhere-continuous random function. As desired, the atoms

cluster near the larger local variations in the velocity. Everywhere else, the atoms

‘bond’ to form molecules, and their size varies inversely with the magnitude of the

local variation of v. In addition, the molecules sum to unity, as they should. The
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Figure 4.4: A demonstration of how an adaptive, nonuniform partition of unity
Gabor frame (lower, solid) can be obtained from a maximal partition of unity, (the
result of translating any of the smallest windows to each offset sample-point) which
reflects the local nonstationarity of a velocity model. The piecewise-defined veloc-
ity model (upper, solid) represents all types of velocity variation: random, con-
stant, a jump discontinuity between two constants, and a transition from smooth
to random. The smoothed velocity, (dashed) obtained by convolving the velocity
model with a fundamental atom, (any one of the smallest windows) serves as a
visual aid in comparing the molecules to the local velocity variations. Specifically,
where there is more variation in the velocity function, there are correspondingly
more molecules, and conversely.
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amount of molecular bonding is controlled by the degree of stationarity as well as

the choice of thresholding parameter, the latter being user-defined.



Chapter 5

Theory of Gabor filtering

The more precisely the position is determined,
the less precisely the momentum is known.1

—W. Heisenberg

We begin by developing an approach to time-variant filtering from a signal

processing perspective using Gabor multipliers. This provides a particular way

to generalize linear time-invariant filters to the nonstationary setting. Essentially,

this is accomplished by localizing the Fourier transform in a time-variant fashion,

and hence by the use of the Gabor transform.

Another way to generalize linear time-invariant filters to the nonstationary

setting is to consider the class of linear operators corresponding to linear par-

tial differential equations with non-constant coefficients. More generally, we shall

consider nonstationary filters within the framework of the pseudodifferential and

1The uncertainty principle of Werner Heisenberg, (1901-1976) founder of quantum mechanics.

65
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Fourier integral operator theories that arose from this point of view in the first

place.

On the surface, these two approaches to nonstationary filtering are quite dis-

tinct: the first is guided by intuition in a signal processing context,2 while the

second is based on hard mathematical physics. Which is the better approach? As

we shall see, the resulting operators are very closely related, and for all practical

purposes they are virtually identical.

5.1 Gabor filters

5.1.1 The analog theory

By a Gabor filter function, we mean any complex-valued, finite-energy function

F (t, ω) on the time-frequency plane, or phase space, R2d, that is,

F ∈ L2(R2d) = L2(Rd ×Rd). (5.1)

Given such a function F , we define the action of the corresponding Gabor filter

on a signal s ∈ L2(Rd) by

s̃(t) = V ∗
γ [F (x, ω)Vgs(x, ω)](t), (5.2)

where s̃ denotes the filtered output signal. Since V ∗
γ maps L2(R2d) back into

L2(Rd), we see that the filtered output of the signal is again a signal.

This restriction of F to L2(R2d) is not necessary to ensure that the filtered

output of a signal is a signal. Indeed, we can take F to be any function that leaves

2This is but one approach to Gabor analysis. Essentially the same theory comes from quantum
mechanics, where what we call a “Gabor frame” is called a “Weyl-Heisenberg frame” (see [36]
and [105]).
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L2(R2d) invariant under pointwise multiplication; that is, any F for which

F · S ∈ L2(R2d) (5.3)

for all S ∈ L2(R2d). Thus, for example, F can be any measurable, essentially

bounded function on R2d. In practice, we might only be dealing with a small

subset of L2(R2d), which would admit much more general energy-preserving Gabor

filters.

A Gabor multiplier, in our sense, (see [33]) is the operator

M g,γ
F = V ∗

γ NF Vg, (5.4)

associated with the triple {g, γ, F}, where NF denotes the linear operation of

pointwise multiplication by F . A Gabor multiplier is then just the linear operator

associated with the action of a Gabor filter, precisely as in (5.2). We also refer to

the Gabor filter function, F , as the Gabor symbol of the multiplier.

We have introduced Gabor symbols as L2-functions, but this restriction is not

necessary. In fact, the theory generalizes—and as we shall see, it must in order

to be useful for solving inverse problems—to the setting of tempered distributions

(see e.g., [33]). We sometimes use the adjectives “classical” and “non-classical”,

respectively, when we want to make a distinction between functions and distribu-

tions.

With respect to any given atom, the range of the Gabor transform is a proper

subspace of L2(R2d). In particular, a Gabor filter need not be the Gabor transform

of a signal. This is a consequence of the fact that “the STFT of a tempered

distribution is a continuous function on the time-frequency plane” ([36], p. 227).
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Thus, for example, any discontinuous function on the time-frequency plane cannot

come from the Gabor transform of even a non-classical signal (albeit, one could

probably determine a suitable space of test functions such that the corresponding

distributions would be general enough for this purpose).

The Gabor transform operator, Vg, and its (left) inverse, V ∗
γ , have the property

that V ∗
γ Vg = I, the identity mapping on L2(Rd). We warn that composing these

operators in the reverse order does not give back the identity on L2(R2d); however,

the latter composition defines the unique orthogonal projection onto the range of

the Gabor transform. So if a given symbol, F , happens to also be the Gabor

transform of some signal, say F = Vgs, then applying the projection VgV
∗
γ to F

leaves F unchanged: formally, we have

[VgV
∗
γ ]F = [VgV

∗
γ ]Vgs = Vg[V

∗
γ Vg]s = Vgs = F. (5.5)

We thus see that the restriction of the projection, VgV
∗
γ , to the range of Vg is

the identity operator on the range of Vg. For symbols F outside the range of

Vg, applying the projection VgV
∗
γ tells us, in the least-squares sense, its nearest

neighbour inside the range of Vg. We warn that the property of being the “nearest

neighbour” in the least squares sense can be misleading—it need not be “close”

in the common sense of the word.

These observations are illustrated in figure 5.1. Two sharp filters, each consist-

ing entirely of ones and zeros, (black = 1 and white = 0) are displayed in the left

column. As we have mentioned, since both of these functions are discontinuous,

they must lie outside the range of the Gabor transform. Indeed, their orthogonal

projections onto the range of Vg, which are displayed in the right column of figure
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5.1, are clearly distinguished from the original filter functions. The middle column

shows the inverse Gabor transform of the first column.

Are these results to be expected? The Gabor symbol in figure 5.1 (a) describes

a boxcar in the frequency direction, so we expect a superposition of corresponding

sinc functions in the time domain, which is (up to Fourier wrap-around) what we

see in figure 5.1 (b). There is relatively little energy appearing away from the

edges in figure 5.1 (b), so we do not expect to see much energy at intermediate

time shifts in the Gabor amplitude spectrum, as in figure 5.1 (c). On the other

hand, the Gabor symbol of figure 5.1 (d) contains a temporal segment consisting

of effectively infinite-bandwidth pieces, so we ought to expect a superposition of

delta functions for the inverse Gabor transform. This matches the result shown in

figure 5.1 (e). Now figure 5.1 (f) is the result of Gabor transforming the spike in

figure 5.1 (e), and a quick calculation reveals that each frequency slice is just the

Gaussian analysis atom (except that we have only displayed the positive-temporal

half of it—see figure 5.2). Under the inverse Gabor transform, both figures 5.1 (a)

and 5.1 (c) map to the signal of 5.1 (b); similarly, both figures 5.1 (d) and 5.1(f)

map to figure 5.1 (e). In particular, V ∗
γ is not one-to-one on L2(R2d), at least for

a synthesis window of unity.

Remark The behaviour of the inverse Gabor transform V ∗
γ would be quite

different had we chosen a non-trivial synthesis atom, γ (we used a synthesis atom

of unity). For example, the projection of the stationary Gabor filter of figure 5.1

(a) onto the range of the Gabor transform would not have collapsed the latter

to the frequency axes near the time origin as in figure 5.1 (c). This is because,

unlike the previous examples, the synthesis frame would preserve the localized



70 Chapter 5. Theory of Gabor filtering

(a)

0 50 100 150 200 250

0.5

1

1.5

2

2.5

3

3.5

4

frequency (Hz) → 

←
 t

im
e

 

0 1 2 3 4
−150

−100

−50

0

50

100

150
(b) (c)

0 50 100 150 200 250

0

0.5

1

1.5

2

2.5

3

3.5

4

(d)

0 50 100 150 200 250

0

0.5

1

1.5

2

2.5

3

3.5

4
0 1 2 3 4

0

20

40

60

80

100

120

140
(e) (f)

0 50 100 150 200 250

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 5.1: Implementation of Gabor filters which are too sharp can lead to dis-
astrous results. Two sharp Gabor filters are displayed at (a) and (d). The middle
column shows their corresponding inverse Gabor transforms, (synthesis window of
unity) and the right column shows the magnitude of the forward Gabor transforms
(Gaussian analysis windows) of the middle column, that is, the magnitude of the
orthogonal projections of the original filters onto the range of the Gabor trans-
form. The phase spectrum (shown in figure 5.3) for (c) is rather exotic, while that
for (f) is zero. The signal (b) is a sinc function (with some Fourier wraparound
effect), and (e) is a spike at time zero. Each frequency slice of the output (f) is
just the Gaussian analysis atom, centered at the origin (see figure 5.2).
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Figure 5.2: A frequency slice of the plot in figure 5.1(f).

information content at the correct time-shifts.

5.1.2 A functional calculus for Gabor multipliers

A more interesting question about Gabor filters from a practical perspective is the

following: if we have two Gabor symbols F and G in L2(R2d), and we want to

compose their corresponding Gabor filters, is this the same as applying the single

Gabor filter with multiplier FG?

A sufficient condition for this to hold is that the symbol G is in the range of

the Gabor transform, Vg. Indeed, G ∈ RanVg if and only if VgV
∗
γ G = G, and if

so, then we have that

M g,γ
FG = V ∗

γ NFGVG = V ∗
γ NF NGVG = V ∗

γ NF VgV
∗
γ NGVG = M g,γ

F M g,γ
G . (5.6)

It follows that the set of all finite-energy Gabor multipliers with symbol in RanVg
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Figure 5.3: The phase spectrum corresponding to the amplitude spectrum of figure
5.1(c).
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forms a semigroup, or monoid (it would be a group if it had an identity element,

and if each of its members were invertible, with the inverse symbol being also in

RanVg, but this is asking far too much!). This semigroup property might remain

true for weaker conditions, but our examples above (see figure 5.1) strongly suggest

the use of caution when cascading Gabor filters.

The most important practical consequence of expression 5.6 is the following:

if a physical process can be modelled by the action of a Gabor filter, and if that

process can be reversed, then the reverse process can be modelled by the Gabor

filter corresponding to the pointwise inverse of the original symbol. This is exactly

the guiding principle for solving the inverse problems of Chapters 6 and 7.

It can often be the case, as it is for the former problem, that the symbol of the

forward model either has zeros or it decreases in magnitude so rapidly that when

sampled in a computer, the dynamic range of the system is exhausted. Either way,

the pointwise inverse of the symbol is simply unbounded. A standard way around

this type of problem is to add a small constant—called a stability factor—to the

symbol before inverting it. Other methods will also work, but the point is that an

approximate inverse can always be constructed.

Evidently, the multiplier defined by the scaled sum of two Gabor symbols is

identical to the corresponding scaled sum of the individual multipliers defined by

the two symbols: that is,

M g,γ
α(F+G) = α (M g,γ

F + M g,γ
G ) , (α ∈ C). (5.7)

In other words, a Gabor multiplier is a linear function of its symbol.
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Is the Gabor multiplier a one-to-one function of its symbol? That is, if

M g,γ
F = M g,γ

G , (5.8)

can we conclude that F = G?

The answer to this question again depends on the choice of window pair, {g, γ}.
Whenever {g, γ} is a compatible pair (see below, and [33]) of nowhere-zero func-

tions, with nowhere-zero Fourier spectra—for example, a pair of Gaussians—then

the answer is yes. As shown in [33], the identical Schwartz kernels, k(M g,γ
F ) and

k(M g,γ
G ), of the two multipliers can be expressed in terms of their Gabor symbols

via a cascade of linear operators. Under the current assumptions, it turns out

that each of these operators is one-to-one; hence so is their product. In particu-

lar, F = G; and so we see that for good window choices, distinct Gabor symbols

define distinct Gabor filters. This result—perhaps not a very surprising one from

an intuitive perspective—involves some challenging mathematics.

5.1.3 On the discrete theory

We briefly discuss the implementation of the analog theory within the discrete

setting. We start with a particular Gabor frame, {gm,n}, its dual, {γm,n}, and

some discretized Gabor filter function,

F : aRd × bRd → C, (5.9)

sampled on the corresponding time-frequency lattice, aRd× bRd. In practice, this

is just a matrix with complex-valued entries. The definition of a Gabor multiplier,

translated from expression (5.2), becomes

s̃(t) = V ∗
γ [F (an, bm) · Vgs(an, bm)](t), (5.10)
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where we have kept the same notation from (5.2) to denote the forward and inverse

Gabor operators. The product inside the square brackets is taken pointwise. The

effectiveness of the filtering process depends on: (1) how well the desired filter is

interpolated onto the time-frequency lattice; and (2) the choice of time-frequency

lattice; and (3) the choice of analysis and synthesis atoms. Each of these three

areas are still current topics of research (see e.g., [21], [20], [36], [49], [43], [14],

[38], [73], [102]).

5.2 Applications to Mathematical Physics

A key motivation for the study of pseudodifferential operators comes from their

connection with partial differential equations. When represented in the Kohn-

Nirenberg form, it becomes clear that pseudodifferential operators are a natural

extension of the translation-invariant Fourier filters, or convolution operators, to

the nonstationary setting.

5.2.1 General linear partial differential operators

We present a brief heuristic development similar to that of Stein in [93], chapter

6, section 1. We choose to present the theory of pseudodifferential operators only

formally. Passing beyond this scope in any meaningful way would require a rather

lengthy exposition. The literature is very rich in this topic, and the following list

should provide a more-than-sufficient starting point: [47], [55], [57], [93], [84], [36],

[96], [23], [105], [108], [43], [48], [63],[62], [64], and [102].
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Let L be a linear partial differential operator:

L =
∑

|α|≤m

aα(x)

(
∂

∂x

)α

, (5.11)

where α is a multiindex (see Section 2.1.3), and x ∈ Rd. The characteristic

polynomial of L, a(x, ξ), is defined by formally replacing the partial derivative

operator ∂/∂x with its Fourier dual, 2πiξ:

a(x, ξ) =
∑

|α|≤m

aα(x) (2πiξ)α . (5.12)

The action of L can be expressed in the Fourier domain in terms of a(x, ξ) as

follows:

(Lf)(x) =
∫

Rd
a(x, ξ)f̂(ξ)e2πix·ξ dξ . (5.13)

Equation 5.13 is a formal representation of the operator L as a Kohn-Nirenberg

pseudodifferential operator, with Kohn-Nirenberg symbol a(x, ξ). The case of

a partial differential operator is the prototype for a pseudodifferential operator.

The only difference is that the symbol in the former can always be expressed as

a superposition of tensor products, (see page 47) each of which involves a pair of

functions: a function of x alone, the other a function of the dual variable, ξ, alone.

A class of symbols that leads to approximately translation-invariant operators

([93]) is given by the conditions

|∂β
x∂α

ξ a(x, ξ)| ≤ Aα,β(1 + |ξ|)m−|α| (5.14)

for all multiindices α and β.

For a general symbol, a, the associated pseudodifferential operator Ta can

be thought of as a limit of linear combinations of product-convolution operators
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([93]). A product-convolution operator is the composition of a multiplication op-

erator with a convolution operator, or equivalently, a Fourier multiplier operator:

specifically, if a(x, ξ) = a1(x), is a function of x alone, then

(Taf)(x) = a1(x)f(x) (5.15)

defines a multiplication operator; while if a(x, ξ) = a2(ξ) depends only on ξ, then

(Taf)(x) =
{(
F−1a2

)
∗ f

}
(x) (5.16)

defines a convolution operator. These operators are dual to each other—either

can be represented in the form of the other simply by changing domains via the

Fourier transform.

5.2.2 Pseudodifferential operators and Gabor filters

Following a conjecture of Margrave, which goes back to unpublished ideas from

1998, Gibson, et al., ([33]) established an important connection between the (pos-

sibly distributional) Kohn-Nirenberg symbol of a pseudodifferential operator and

Gabor multipliers. More specifically, for any given pair of “compatible” analysis

and synthesis windows, (e.g., any pair of Gaussians, or any Schwartz function

combined with the constant function, 1) the authors determine precisely which

Kohn-Nirenberg operators can be represented as a Gabor multiplier, and also pro-

vide an explicit formula for computing the exact Gabor symbol—if it exists—from

the Kohn-Nirenberg symbol.

The Gaussian serves as a prototype for the definition of compatible analysis

and synthesis windows, introduced by Gibson, et al., [33]. They showed that the



78 Chapter 5. Theory of Gabor filtering

class of operators which are representable as Gabor multipliers based on Gaussian

atoms is a proper subset of the corresponding class based on “extreme value win-

dows”. These extreme value windows are compatible, analytic, rapidly decreasing

(Schwartz class) windows, with the property that their Fourier transform is also

analytic and rapidly decreasing.

If we allow distributional atoms, (say 1 and δ) we can construct completely

general Gabor multipliers (see [33], Proposition 20).

For a given compatible window pair, we intuitively expect a classical pseudo-

differential operator to be representable as the Gabor multiplier having the same

symbol, just in case its symbol is sufficiently smooth. Indeed, this intuition was

validated in [33], Theorem 4, for the case of compatible windows (see Table 3 in

[33] for a list of compatible windows).

This connection between classical Kohn-Nirenberg symbols and Gabor filters

leads us to conclude what is already known in pseudodifferential operator theory:

that the operator corresponding to the pointwise product of two Kohn-Nirenberg

symbols is approximately equal to the composition of the operators correspond-

ing to the individual symbols, and that the approximation tends to equality as

the symbols increase in smoothness. We simply use the given symbols as Gabor

symbols, after choosing an appropriate window pair, then compose the resulting

operators according to the functional calculus presented in section 5.1.2, then use

the resulting Gabor symbol as the Kohn-Nirenberg symbol for the approximate

operator.

For a great variety of realistic physics problems, then, the associated pseudo-

differential operator and Gabor filter will have virtually the same symbols. Data
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collected from real experiments will always have a certain degree of random noise

present; applying an “exact” filter, which was designed for a noise-free case, will

tend to deteriorate the signal-to-noise level. Finally, the ability to accurately

represent the data, even in a noise-free environment, is highly limited by the

sampling process; the fidelity of the “real” signal gets degraded, (bandlimited)

so in essence the data represents a smoothed version of the signal (plus random

noise). Naturally then, a probability distribution is associated with the degree of

certainty in our measurements—just as Heisenberg, et al. have taught us.3

A few suggestions for further reading in this area: [36], [19], [48], [63],[62], [64],

and [102].

3His 1927 paper on the uncertainty principle, Über die Grundprinzipien der Quanten-
mechanik: FF 3, no. 11, 83, was translated to English in 1984: The physical content of quantum
kinematics and mechanics, John Archibald Wheeler and Wojciek Hubert Zurek, eds. Quantum
theory and measurement: Princeton University Press, 62–84.
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Chapter 6

Deconvolution and Q-inversion in

dissipative media

Seismic attenuation can be modelled macroscopically via an exponential ampli-

tude decay in both time and frequency, at a rate determined by a single dimen-

sionless quantity, Q.

Current deconvolution methods, based on the convolutional model, attempt to

estimate and remove the embedded causal wavelet. We propose a more generalized,

nonstationary seismic model, expressed as a pseudodifferential operator in the

time-frequency domain. The model has the properties that (1) the embedded

causal wavelet factors as the product of a stationary seismic signature with a

nonstationary exponential decay, and (2) a nonstationary impulse response for

the earth is tractable.
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Analytic expressions are derived for least-squares fitting our model to the

Gabor-transformed seismic trace, thus yielding both a Q-value and an estimate

of the source signature, and hence an estimate of the nonstationary travelling

wavelet. These estimates are then used to compute a smoothed version of the

magnitude of the Gabor spectrum of the seismic trace, from which a least-squares

nonstationary minimum-phase deconvolution filter is easily constructed.

Our results on randomly generated synthetic seismic data are very promising.

6.1 Introduction

This chapter concerns the application of Gabor filter theory to the modelling,

analysis, and subsequent deconvolution of a nonstationary, constant-Q-attenuated

seismic signal. Gabor deconvolution is discussed in a broader context by Margrave,

et al., [60].

We outline the derivation of a time-variant spectral model for the Gabor trans-

form of a constant-Q-attenuated seismic trace. Remarkably, in addition to being

intuitively plausible, it generalizes the standard convolutional model. Next, we

derive explicit least-squares, model-based estimates for both Q and the station-

ary part of the wavelet, and thus an estimate of the nonstationary, Q-attenuated

wavelet. The theory is then evaluated via an algorithm for the deconvolution of a

Q-attenuated synthetic seismogram.
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6.2 Theory

Let r(t) be a reflectivity, w(t) a source signature, and α(t, f) the time-frequency

symbol of a constant-Q operator, namely

α(t, f) = exp

(
− π

Q
{ft + iH(ft)}

)
, (6.1)

whereH is the Hilbert transform. We assume that the source signature is a causal,

stationary wavelet, and hence assume that its time-frequency decomposition is

equivalent to its Fourier transform, ŵ(f). We further assume that ŵ(f) is smooth;

by definition, α(t, f) is also smooth. A synthetic seismic trace, s(t), is built by

nonstationary convolution of the Q-operator with the reflectivity, (see [54] for more

detail) followed by stationary convolution with the source signature. This yields

ŝ(f) = ŵ(f)
∫ ∞

−∞
α(t, f)r(t)e−2πiftdt, (6.2)

or

s(t) =
∫ ∞

−∞
ŵ(f)

[∫ ∞

−∞
α(u, f)r(u)e−2πifu

]
e2πiftdf, (6.3)

which can be expressed more compactly as

s(t) =
∫ ∞

−∞

∫ ∞

−∞
ŵ(f)α(u, f)r(u)e2πif(t−u)dfdu. (6.4)

Now, the continuous Gabor transform (also called the short-time Fourier trans-

form) of s(t) is defined as

Vgs(τ, f) =
∫ ∞

−∞
s(t)g(t− τ)e−2πiftdt, (6.5)

where g(t) is called the analysis window, e.g., a Gaussian. Margrave et al., [60]

show that the Gabor transform of s(t) factorizes, to first order, as

Vgs(τ, ν) = ŵ(ν)α(τ, ν)Vgr(τ, ν). (6.6)
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To first order, our Gabor-spectral model is given by (6.6). The problem is simpli-

fied by first considering only the magnitudes

|Vgs(τ, ν)| = |ŵ(ν)||α(τ, ν)||Vgr(τ, ν)|. (6.7)

The Gabor transform of the reflectivity is assumed white, with unit mean. By

“white”, we mean that |ŵ(ν)||α(τ, ν)| provides the general spectral shape, while

the Gabor spectrum of the reflectivity provides only details.1 Thus, we drop the

term |Vgr(τ, ν)| from (6.7), and seek a (smoothed) time-frequency trace model as

S(τ, ν) = W (ν)e−πτν/Q, (6.8)

where W (ν) = |ŵ(ν)| and e−πτν/Q = |α(τ, ν)|. The equality in (6.8) is taken in

the least-squares sense, meaning that a residual error with minimized L2-norm is

assumed. For a further simplification, we consider the logarithm of both sides of

(6.8):

ln S(τ, ν) = ln W (ν)− πτν/Q. (6.9)

6.3 Method

We first minimize the function α = α(W,Q) given by

α(W,Q) =
∫ ∞

−∞

∫ ∞

−∞

[
ln

S(τ, ν)

W (ν)
+

πτν

Q

]2

dτdν (6.10)

with respect to Q. Equation (6.10) is the square of the L2-norm of the difference

between both sides of (6.9). The domain of integration is finite in practice, since

1Seismic data is not necessarily white; in fact, it can be what has been called “blue”. This is
a quality which can be inferred from well logs, when available, and which can subsequently be
used to whiten the data. See e.g., [16].
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seismic data are bandlimited and have finite duration. The region of integration,

Ω, is selected to encompass only the numerically significant part of the time-variant

spectrum of the signal, thus avoiding large errors due to division by excessively

small numbers. To this end, a characteristic weighting function, χΩ, defined as

χΩ(τ, ν) =





1 if (τ, ν) ∈ Ω

0 if (τ, ν) /∈ Ω
, (6.11)

is included as a factor in the integrand. For example,

∫

Ω
f(τ, ν)dτdν =

∫ ν1

ν0

∫ τ1

τ0
f(τ, ν)χΩ(τ, ν)dτdν, (6.12)

where f is any integrand with numerically stable support Ω, contained in the

rectangle [τ0, τ1]× [ν0, ν1]. Any positive weighting function can be substituted for

χΩ, provided it decays to zero smoothly enough to avoid spectral ringing. Given

such a region Ω , (or weighting function) expression (6.10) becomes

α(W,Q) =
∫

Ω

[
ln

S(τ, ν)

W (ν)
+

πτν

Q

]2

dτdν (6.13)

which can be computed according to the prescription (6.12). Minimizing (6.13)

with respect to Q amounts to solving

0 =
∂α

∂Q
= 2

∫

Ω

[
ln

S(τ, ν)

W (ν)
+

πτν

Q

] [
−πτν

Q2

]
dτdν (6.14)

for Q, which leads to the finite estimate:

Q = π

∫
Ω τ 2ν2dτdν

∫
Ω τν ln W (ν)

S(τ,ν)
dτdν

(6.15)

in terms of the unknown signature, W (ν). The variational calculus yields an

expression for the least-squares-optimal function, W (ν): write s = ln S, w = ln W ,
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and let δw = δw(ν) be an arbitrary variation. Incrementing w(ν) by δw(ν), (6.13)

becomes

α(w + δw, Q) =
∫

Ω

[
s(τ, ν)− w(ν)− δw(ν) +

πτν

Q

]2

dτdν, (6.16)

or

α(w+δw,Q) = α(w, Q)−2
∫

Ω

[
s(τ, ν)− w(ν) +

πτν

Q

]
δw(ν)+

∫

Ω
[δw(ν)]2. (6.17)

Any function w(ν) for which the middle term in (6.17) vanishes will minimize

α(w, Q) with respect to w, so we need only solve the following equation for w(ν):

∫

Ω

[
s(τ, ν)− w(ν) +

πτν

Q

]
δw(ν)dτdν = 0. (6.18)

Since δw(ν) is independent of time, we have

∫ ν1

ν0

{∫ τ1

τ0
s(τ, ν)χΩ(τ, ν)dτ − w(ν)

∫ τ1

τ0
χΩ(τ, ν)dτ +

πν

Q

∫ τ1

τ0
τχΩ(τ, ν)dτ

}
δw(ν)dν = 0. (6.19)

The ν-integral vanishes for arbitrary δw(ν), so the function of ν inside the braces

must vanish. This leads to

w(ν) =

∫ τ1
τ0

s(τ, ν)χΩ(τ, ν)dτ∫ τ1
τ0

χΩ(τ, ν)dτ
+

πν

Q

∫ τ1
τ0

τχΩ(τ, ν)dτ∫ τ1
τ0

χΩ(τ, ν)dτ
. (6.20)

Converting back to the logarithmic notation, we arrive at

W (ν) = exp

{∫ τ1
τ0

ln[S(τ, ν)]χΩ(τ, ν)dτ∫ τ1
τ0

χΩ(τ, ν)dτ
+

πν

Q

∫ τ1
τ0

τχΩ(τ, ν)dτ∫ τ1
τ0

χΩ(τ, ν)dτ

}
. (6.21)

The first term in the exponential is the time average of ln S(τ, ν), and the second

involves the average time over each frequency. Using an overline to denote a time

average, (6.21) becomes

W (ν) = exp

{
ln S(ν) +

πν

Q
τ(ν)

}
. (6.22)
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Substitution of (6.22) into the expression (6.15) for Q yields

Q = π

∫
Ω τ 2ν2dτdν

∫
Ω τν

[
ln S(ν) + πν

Q
τ(ν)− ln S(τ, ν)

]
dτdν

(6.23)

Finally, solving for Q leads to

Q = π

∫
Ω τν2 [τ − τ(ν)] dτdν

∫
Ω τν

[
ln S(ν)− ln S(τ, ν)

]
dτdν

. (6.24)

6.4 A synthetic example

MATLAB functions from the CREWES toolboxes were used extensively to gener-

ate the least-squares estimates (6.24) and (6.22) of Q and W (ν), and to perform a

Gabor deconvolution. Figure 6.1 displays a pseudo-random reflectivity and a non-

stationary synthetic trace. The latter was built by applying a Q-operator to the

reflectivity, followed by convolution with a 20Hz minimum phase source signature.

Figure 6.2 displays the magnitude of the Gabor transform of the reflectivity.

The sample points in the time direction (row number) correspond to successive

translations by 0.01s of Gaussian window centers. These Gaussian windows have

the property that their sum is approximately unity over the duration of the syn-

thetic trace, and their half-width (0.1s) has been selected to meet this criterion.

Each row is computed as the discrete Fourier transform of the windowed trace that

is centered at the corresponding offset time. Each sequence of coherent peaks, e.g.,

those at about 1s, corresponds to a zone of high amplitude in the reflectivity of

figure 6.1.

Since the Q-operator represents an exponential decay surface in time and fre-

quency, its logarithm is a surface with hyperbolic contours, decaying according
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Figure 6.1: A pseudo-random reflectivity (lower) and a nonstationary synthetic
(upper) generated with an attenuation factor of 25.
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Figure 6.2: Magnitude of the Gabor transform of the pseudo-random reflectivity
of figure 6.1.
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Figure 6.3: Magnitude of the Gabor transform of the synthetic trace of figure 6.1.

to the product of the time and frequency values. This explains the general de-

cay pattern from the top left toward the bottom right in the magnitude of the

Gabor transform of the synthetic trace (figure 6.3). Note the progressive loss of

bandwidth and mean amplitude over time.

The filter in figure 6.4 was used to weight the integrands in (6.24) and (6.22)

according to the prescription (6.12). This produced a Q-estimate of 28.3, (the

correct value was 25, which, as is well known in the seismic community, is an

extremely low value for Q, hence a good test for the inversion algorithm) and the

source signature estimate, whose smoothed Fourier spectrum is plotted with that

of the original signature in figure 6.5. Small residual oscillations in the signature
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Figure 6.4: Time-variant filter for weighting the Gabor spectrum of the synthetic
trace according to the available dynamic range, and hence the available numerical
precision of the data.

spectrum, inherited from the reflectivity, were smoothed by convolution with a

boxcar.

Figure 6.6 displays the magnitude of the least-squares model of the data, cal-

culated as

|w(ν)|est e−πτν/Qest , (6.25)

a smoothed version of the display in figure 6.3 (est refers to estimated quantities).

The deconvolution operator is the pointwise inverse of (6.25),2 combined with its

nonstationary minimum phase spectrum.

The deconvolved result is compared with the original reflectivity in figure 6.8;

2A small constant, known as a “stability factor” by seismologists, was added to avoid “division
by zero”. The size of this constant can be related to the available dynamic range, as well as
resolution and noise suppression factors as discussed in [100].
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Figure 6.5: Amplitude spectra of original and output signatures. The output was
smoothed to remove small residual oscillations.
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(from figure 6.3) in a least-squares sense. The pointwise inverse (plus a small
constant) defines the magnitude of the deconvolution operator.
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Figure 6.7: Fourier amplitude spectra of original reflectivity and Gabor deconvo-
lution result.
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Figure 6.8: Comparison of the bandpass-filtered Gabor deconvolution result
(lower) with a bandpass-filtered (DC to half Nyquist) version of the reflectivity of
figure 6.1 (upper).

both are bandpass filtered from D.C. to Nyquist. This bandlimited version of the

reflectivity is a good benchmark by which to compare our results, since it is the

best that one could hope to obtain. As is clearly shown, the reflector locations are

highly correlated and the amplitudes agree very well.

6.5 Summary

A time-variant spectral model for the Gabor transform of a constant-Q-attenuated

trace was proposed. Using differential calculus and the calculus of variations, the
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estimate. Compare with the Gabor amplitude spectrum of the true reflectivity in
figure 6.2.
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model was fitted to the data in the least squares sense. This yielded estimates for

Q and the source signature, hence an estimate of the nonstationary, Q-attenuated

wavelet. The theory was numerically evaluated via an algorithm for the Gabor

deconvolution of a synthetic, Q-attenuated trace. The illustrated example used a

very low input Q-value, yet returned highly promising initial deconvolution results.

These results, reinforced by the fact that our model includes the convolutional

model as a special case, strongly motivate further research in this direction.
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Chapter 7

Wavefield extrapolation in

inhomogeneous media

Wavefield extrapolation for a laterally varying velocity model can be achieved

by applying a nonstationary phase-shift filter to an adaptive, nonuniform Gabor

transform over the lateral coordinate. A family of adaptive Gabor frames can be

constructed from a molecular decomposition of unity, each molecule of the latter

being built by conjoining neighbouring atoms from a uniform partition of unity—

consisting of translates of a single atom along the lateral coordinate—according

to a local stationarity criterion derived from the velocity model.

The resulting extrapolation algorithm—called AGPS (adaptive Gabor phase-

shift)—has a computational cost that is proportional to the complexity of the

velocity model, while its accuracy is comparable to both NSPS (nonstationary
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phase-shift) and generalized PSPI (phase-shift plus interpolation). AGPS includes

NSPS and PSPI as complementary limiting cases, yet the cost of AGPS ranges

from an order of magnitude less to about the same order.

7.1 Introduction

This chapter has a predominantly qualitative scope. An investigation into the un-

derlying mathematical and theoretical background for the new AGPS algorithm

forms the core of Chapter 4, and appears in a more compact form in [38]. For

a derivation of the new and exact wavefield extrapolator—used here to forward

model the propagation of an impulsive wavefield—see [59]. Apart from its re-

markable accuracy, a distinguishing feature of this extrapolator is its transitivity

through any v(x) medium. By transitivity, we mean that a single depth step

yields the same result as the iteration of any number of intermediate steps does.

We use this algorithm as a benchmark to test the performance of three approxi-

mate wavefield extrapolation methods: the NSPS and generalized PSPI methods

of Margrave and Ferguson, (see [56]) and AGPS.

The AGPS algorithm includes NSPS and PSPI as complementary limiting

cases. Each of these methods applies a velocity-dependent, nonstationary phase-

shift filter over each temporal frequency slice of the input data. The two latter

filters differ to the extent that the functional dependence of the velocity is either

on the input coordinates (NSPS) or the output coordinates (PSPI)—in fact, they

are spatial transposes of each other. This is the key reason why both methods

are approximate: indeed, any accurate phase-shift operator in a v(x) medium
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has to account for the fact that the velocity can vary along the trajectory of a

ray. AGPS attempts to address this problem by representing the input and the

output wavefields as a superposition of windowed components, each of which is

approximately stationary with respect to the velocity.

We begin with an overview of the AGPS algorithm, and refer the reader to

Chapter 4, and references therein, for the mathematical details. We then provide

a performance analysis for the AGPS, PSPI, and NSPS extrapolators, based on

forward-modelled data generated by Margrave’s exact extrapolator.

7.2 Overview of the AGPS method

AGPS propagates a wavefield from a depth level z to a depth level z + ∆z by

applying nonstationary phase-shift filters to an adaptive spatial Gabor transform

of the input data. Given a velocity model, v(x), the first step is to choose a suitable

window, or atom. The choice of atom is in itself a current topic of research, (e.g.,

[20] or [36]) but we recommend using a Gaussian or Gaussian-like window, with a

halfwidth that is at least large enough to ensure that its sampled version faithfully

represents it. This atom is then translated along the discrete x−coordinate, one

atom centered at each sample point. The resulting suite of windows is rescaled, if

necessary, to ensure that its superposition equals one: thus, the translated atoms

form a maximal, uniform partition of unity (see Chapter 4).

Next, this maximal partition of unity is adapted to yield a nonuniform partition

of unity, in such a way that the essential nonstationarity of the velocity function

is respected. This procedure involves the formation of what we call “molecules”,
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or macro-windows, by summing neighbouring atoms over regions that satisfy a

local stationarity measure. The stationarity measure in the current context is

simply an acceptable threshold—chosen empirically—against which the deviation

of the velocity1 from its mean over the current molecule is compared. Thus, if this

deviation is less than the threshold value, the current atom is conjoined to the

current molecule. Each molecule gathers atoms until it encounters a large enough

velocity anomaly. The result is an adaptive partition of unity, or what we call a

“molecular decomposition.”

In our numerical implementation of the AGPS algorithm, the molecules are

defined recursively as follows. Let λ ≥ 0 be a constant, called a threshold, and let

the current state of the nth molecule be denoted by MN
n , where N is the current

number of atoms it contains. If xn1 denotes the center coordinate of the first atom

in MN
n , we may write

MN
n (x) =

nN∑

j=n1

g(x− xj) (7.1)

where nN = N + n1 − 1. Next, define the mean of the velocity over the current

molecule by

vMN
n

=

∑nN
j=n1

v(xj)MN
n (xj)∑nN

j=n1
MN

n (xj)
. (7.2)

The stationarity condition with respect to the given threshold λ is as follows:

if |v(xnN+1) − vMN
n
| < λ, then

MN
n → MN+1

n = MN
n + gnN+1;

otherwise MN
n → MN

n and M1
n+1 = gnN+1.

1M. Yedlin has suggested using not the velocity variation, but the variation of the ratio of
the velocity and its derivative, v/v′. This quantity is related to WKBJ-type length scales, and
hence offers a nice bridge to ray theory.
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Figure 7.1: An adaptive partition-of-unity frame and its correspondence to the
local stationarity of a velocity model. The velocity function has been rescaled for
display purposes. The smoothed velocity is displayed as a visual aid in comparing
the molecules to the local velocity variations. The larger the local variation in
velocity, the smaller and more abundant the molecules become.

Such a molecular decomposition is shown in figure 7.1. The illustrated velocity

model is representative of all types of variations, ranging from a simple constant

to an everywhere discontinuous random function. The atoms cluster near the

larger local variations in the velocity, while everywhere else, the atoms ‘bond’

to form molecules. Their size varies inversely with the magnitude of the local

variation of v. The molecules also sum to unity, as desired. The next step is to
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use this molecular decomposition to construct a one-parameter family of analysis

and synthesis frames for the Gabor transform, indexed by p ∈ [0, 1]. For each

fixed p, the analysis windows are defined by raising each molecule to the power

p. The corresponding dual frame, consisting of synthesis windows, is defined by

raising each molecule in the decomposition to the complementary power, 1 − p.

For example, if the fundamental atom is supported on a finite interval, and p = 1,

then the molecular decomposition itself forms the analysis frame, and the synthesis

windows are boxcars. For p = 0, these roles are reversed. However, if the atom

is supported on the whole of R, (for example, a Gaussian) then no synthesis

(analysis) windows are used if p = 1 (p = 0). In either case, the analysis and

synthesis frames are identical for p = 1/2.

The analysis and synthesis frames, constructed in this way, ensure an overall

energy and amplitude preserving transformation to the Gabor domain and back

(see [38]). Moreover, with respect to the choice of atom and stationarity measure,

the redundancy of the Gabor transform is minimized; hence so is its computa-

tion time. Each frequency slice of the input data, ψ (x, ω, z = z0) is then Gabor

transformed, (x → (x̃, kx)), phase-shifted by ei∆zφ, where

φ (x̃, kx, ω) =

√√√√ ω2

v (x̃)2 − k2
x, (7.3)

then inverse Gabor transformed. This phase-shift operation results in an estimate

of the wavefield, ψ (x, ω, z = z + ∆z) , at the new depth z + ∆z and frequency ω.

After repeating this process for each ω, an inverse Fourier transform over ω gives

the desired estimate in space-time coordinates.

The velocity function v (x̃) in the dispersion relation (7.3) is defined, for each
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Figure 7.2: Adaptive partition-of-unity frames and their correspondence to the
local stationarity of the given velocity models. The velocity functions have been
rescaled for display purposes. The smoothed velocities are displayed as a visual
aid in comparing the molecules to the local velocity variations. The velocity model
on the top jumps from 2250 m/s to 3750 m/s. The velocity model on the bottom
fluctuates randomly between 1500 m/s and 2500 m/s.
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x̃, as the mean of the velocity over the molecule centered at x̃. It thus assigns a

constant velocity to each molecule in the Gabor decomposition. A key feature that

controls the accuracy of the algorithm is the choice of stationarity measure: a large

threshold can lead to large molecules, hence a more coarsely sampled velocity. On

the other hand, too strict a measure could lead to higher cost than necessary for

the desired accuracy.

Roughly speaking, the balance between the dependence on the input and the

output coordinates can be shifted by adjusting the parameter p ∈ [0, 1]. However,

the situation is more complicated than this, and has yet to be fully understood. In

the limit as the window size shrinks to zero, the cases p = 1 and p = 0 reduce to the

NSPS and PSPI algorithms, respectively. It turns out that for the examples below,

which use compactly supported windows, the best choice is p = 1. Intuitively, we

might expect p = 1/2 to be optimal, since this implies a symmetric dependence

on the input and output coordinates. Experiment suggests that the optimal value

of p depends on the choice of window, but this remains an open question.

7.3 Synthetic examples

Margrave’s exact one-way extrapolation algorithm was used as a forward model

to upward propagate an impulsive wavefield through a laterally varying velocity

field. This impulse response was then inverted, by reverse-extrapolation, using the

exact, NSPS, PSPI, and AGPS extrapolators. The relative costs for two extreme-

case velocity models appear in Table 1. The first is a step between two constant

velocities, (figure 7.2, (top)) and the second involves a velocity function that varies
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Table 7.1: Comparison of computation times for various extrapolation algorithms.
In contrast to the first three methods, the cost of AGPS is proportional to the
complexity of the velocity model. The cost of AGPS spans an order of magnitude
between the two extremes, namely, the velocity models depicted in figure 7.2.

Extrapolation Absolute cost Relative cost
algorithm step/random step/random

Exact - 1 step 47.1/46.3 100/100
NSPS - 1 step 4.0/3.7 8.2/7.9
NSPS - 5 steps 20.6/17.5 42.5/37.9
PSPI - 1 step 4.0/3.7 8.2/8.1
PSPI - 5 steps 20.4/19.2 41.9/41.5
AGPS - 1 step 0.6/3.9 1.2/8.5
AGPS - 5 steps 3.2/19.4 6.4/42.0

randomly at each offset (figure 7.2, (bottom)). In the first case, AGPS outperforms

NSPS and PSPI by a factor of six, while all three have similar costs in the second

case. The extra cost for the exact algorithm in the random case is small, so its

use in complex media may be justified. Figure 7.2 shows the velocity models

used in our examples, and the corresponding molecular decompositions of unity.

Both decompositions are used as analysis frames (so p = 1) for the nonuniform

Gabor transform. The fundamental atoms (black) are Lamoureux windows of

order two, (twice differentiable polynomial splines) sampled at 7 points, and the

spacing between atoms is 10m.

The input wavefield for both examples, shown in figure 7.3 (top), consists of

eight bandlimited impulses. Figures 7.3 (middle) and 7.3 (bottom) show the exact

upward extrapolations of the input wavefield by 200m, using the velocity models

of figures 7.2 (top) and 7.2 (bottom), respectively.
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Figure 7.4 shows the results of reverse extrapolating the last two wavefields with

the exact operator. These last two results will serve as benchmarks for comparing

the quality of the remaining methods. Aside from some minor numerical artifacts,

these images are the best one can hope to obtain (see [59]).

Figure 7.5 displays the various results of inverse extrapolating the wavefield

of figure 7.3 (middle)—using the step velocity model of figure 7.2 (top)—which

should be compared to figure 7.4 (top). The corresponding computation times

are listed in Table 7.1. The rows contain pairs of results for PSPI, NSPS, and

AGPS, respectively; the first column is for a single depth step of 200m, and the

second is for five steps of 40m. PSPI gives a reasonable result in both cases, but it

introduces an artificial discontinuity in the wavefield at the interface between the

two constant velocity blocks. It is well known that PSPI produces this artefact

for large depth steps. The results for NSPS are better, particularly since the fifth

impulse is more focused. AGPS yields essentially the same result as NSPS, but

shows marginally fewer artefacts in the case of five steps. This makes AGPS a

bargain—at least for simple velocity models. Figure 7.6 displays the results, in

exactly the same format as for figure 7.5, using the input wavefield of figure 7.3

(bottom) and random velocity model of figure 7.2 (bottom). These should be

compared to figure 7.4 (bottom). The corresponding computation times are listed

in Table 7.1. The PSPI and NSPS results 7.6 (top left) and 7.6 (middle left)

are remarkably different. PSPI again introduces discontinuities in the wavefield

at every discontinuity in the velocity—hence the randomly scattered appearance

of the extrapolation. The result of 7.6 (middle,left) for NSPS shows “migration

smiles” that arise due to the use of incorrect velocities. Increasing the number of
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Figure 7.3: Input wavefield (top) for two upward extrapolations by 200m, using
the exact extrapolator; the two bottom plots show the resulting wavefields, using
the step and random velocity models of figure 7.2, respectively.
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Figure 7.4: Inversion of the corresponding two wavefields at the bottom of figure
7.3, using the exact extrapolator: (top) using the step velocity model of figure 7.2,
and (bottom) using the random velocity model of figure 7.2.
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Figure 7.5: Results of inverse extrapolating the wavefield at the bottom of figure
7.3, using the step velocity model of figure 7.2. The corresponding computation
times are listed in Table 7.1. The rows contain pairs of results for PSPI, NSPS,
and AGPS, respectively; the first column is for a single depth step of 200m, and
the second is for five steps of 40m. These results should be compared with the
exact results of figure 7.4.
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Figure 7.6: Results of inverse extrapolating the wavefield at the right of figure 7.3,
using the random velocity model of figure 7.2. The corresponding computation
times are listed in Table 7.1. The rows contain pairs of results for PSPI, NSPS,
and AGPS, respectively; the first column is for a single depth step of 200m, and
the second is for five steps of 40m. These results should be compared with the
exact results of figure 7.4.
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steps, as in 7.6 (top right) and 7.6 (middle right), helps to cure both of these issues.

Again, AGPS yields very similar results as NSPS in both cases, although AGPS is

slightly better focused, and contains fewer artefacts. Since they use approximate

velocities, all three methods tend to misplace the wavefield in time. This effect is

most easily observed near discontinuities in the velocity function.

7.4 Summary

We showed that AGPS propagates a wavefield from a depth level z to a depth

level z + ∆z by applying nonstationary phase-shift filters to an adaptive spatial

Gabor transform of the input data.

A family of adaptive Gabor frames was constructed from a molecular decom-

position of unity. Each molecule of the frame was built by conjoining neighbouring

atoms from a uniform partition of unity—consisting of translates of a single atom

along the lateral coordinate—according to a stationarity criterion derived from

the velocity model.

Each molecule in the resulting Gabor frame was assigned a mean velocity, and

then the phase-shift operator was applied, using these velocities, in the nonuniform

Gabor domain.

This process was repeated for each temporal frequency slice, and the desired

extrapolation was represented in the space-time domain by applying an inverse

Gabor transform, followed by an inverse Fourier transform over frequency.

The cost of AGPS is proportional to both the complexity of the velocity model

and the desired degree of accuracy. Its accuracy is comparable to that of NSPS
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and PSPI, but its cost is much lower, especially for simple velocity models. For

random media, the cost of Margrave’s exact algorithm is only marginally greater

than the latter three, so its superior quality warrants its use.

7.5 Future work

Each of the approximate wavefield extrapolators suffers from a misplacement of

the wavefield in time, hence also in depth, especially near vertical discontinuities

in the velocity field. However, this can likely be healed somewhat by using a

processing technique similar to that used by Stoffa et al., ([94]). We first rewrite

the phase-shift, φ∆z, (see expression (7.3)) as the sum of a focusing term, φf∆z,

and a shifting term, φs∆z, where

φf (x, kx, ω) =
ω

v(x)




√
1− k2

x

ω2
− 1


 (7.4)

and

φs (x, ω) =
ω

v(x)
. (7.5)

The shifting term is independent of kx, so it does not vary with propagation

direction. Physically, this term is responsible only for a vertical depth shift of the

data, while the focusing term serves as an angle-dependent correction. The idea

is to precondition the data by applying the phase-shift operator

eiφs∆z (7.6)

in the (x, ω)−domain, before implementing the focusing phase-shift filter in the

Gabor domain. The second step amounts to replacing expression (7.3) with

eiφf∆z (7.7)
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in the AGPS algorithm.
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Chapter 8

Summary

We interpreted the Gabor transform as a natural, nonstationary extension of

the Fourier transform. This was the basis for conjecturing that classical Fourier

analysis could be adapted to handle nonstationary systems, simply by replacing the

Fourier transform with the appropriate Gabor transform. Following this principle

motivated the idea of a Gabor filter, the corresponding analogue to a Fourier filter.

We saw that every linear partial differential equation with functional coeffi-

cients has associated with it a (non-classical) Kohn-Nirenberg pseudodifferential

operator. Moreover, we saw that that every linear operator, which includes every

Gabor filter, could be represented as a pseudodifferential operator. We observed

that a pseudodifferential operator looks much like a classical Fourier filter, but

with a transfer function that is not necessarily translation invariant.

Provided that the symbol of the pseudodifferential operator of interest was
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reasonably smooth compared to the analysis and synthesis atoms, the Gabor filter

defined by the same symbol was deemed to be a good approximation to the original

operator.

These arguments helped to justify our approach to the two nonstationary seis-

mic inversion problems considered in this thesis. Both of these inverse problems

were based on linear wave-propagation models, with mathematical descriptions

given as Kohn-Nirenberg pseudodifferential operators. We then developed algo-

rithms to solve these inverse problems within the framework of Gabor filter theory.

We considered the nonstationary Gabor deconvolution problem, based on a

pseudodifferential operator generalization of the convolutional model for a seis-

mic trace—in which the embedded causal wavelet factored as the product of a

stationary source signature and a nonstationary exponential decay.

Analytic expressions were derived for least-squares fitting the model to the

Gabor-transform of the seismic trace, which yielded excellent estimates of Q and

the source signature, hence an estimate of the travelling wavelet.

These estimates lead to a smoothed version of the magnitude of the Gabor

spectrum of the seismic trace, from which a least-squares nonstationary minimum-

phase deconvolution filter was easily constructed. Our results on synthetic data

are very promising.

The assumption of a minimum phase seismic wavelet is central to the Wiener

and Gabor deconvolution algorithms. The former assumes a stationary wavelet,

while the latter explicitly involves a nonstationary wavelet, and for this reason an

extension of the concept of minimum phase to this setting was developed.

Although the concept of minimum phase is well understood for the case of
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digital signals, we felt its extension to analog signals had not received sufficient

attention in the literature. We showed that certain well-known properties of dig-

ital minimum phase signals, such as convolutional invertibility, stability, and the

Hilbert transform relationships between Fourier amplitude and phase spectra, only

hold under certain conditions in the analog setting.

We attempted to overcome these issues by developing a mathematical theory

of minimum phase in the necessarily general context of tempered distributions.

This in turn allowed us to develop a theory of nonstationary, minimum-phase

filters—those pseudodifferential operators which preserve minimum phase.

Our second application of Gabor filtering theory to seismic inversion was based

on the premise that wavefield extrapolation for a laterally varying velocity model

could be achieved by applying a nonstationary phase-shift filter to an adaptive,

nonuniform Gabor transform over the lateral coordinate.

The resulting algorithm, called adaptive Gabor phase-shift, (AGPS) made use

of a new method—which we also presented—for constructing adaptive, nonuni-

form Gabor frames from maximally redundant, uniform partitions of unity. The

main purpose of the construction was to minimize the redundancy of the Gabor

transform, and thus significantly reduce its computational intensity.

We found that AGPS had a computational cost that was proportional to the

complexity of the velocity model, while its accuracy was comparable to the NSPS

and generalized PSPI algorithms. Also, AGPS included NSPS and PSPI as limit-

ing cases, yet the cost of AGPS ranged from an order of magnitude less to about

the same order.

The NSPS and PSPI filters differ to the extent that the functional dependence
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of the velocity field of the medium is either on the input coordinates (NSPS) or the

output coordinates (PSPI). However, we pointed out that any accurate phase-shift

operator in a v(x) medium must allow for velocity variations along the trajectory

of a ray. AGPS attempted to address this problem by representing the input and

output wavefields as superpositions of windowed components, each of which was

approximately stationary with respect to the velocity.

A general overview of analog linear systems from the perspective of functional

analysis was provided to support the remainder of the thesis. Topics covered

included function spaces for representing signals, the generalized function space

of tempered distributions, linear operators acting in Hilbert spaces, the Fourier

transform, and distributional derivatives.
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[21] Feichtinger, H. G. and Strohmer, T., eds., 2002, Advances in Gabor analysis:

Birkhäuser.
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