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Abstract 

To gain a better understanding of the earth’s subsurface anisotropy should be 

considered. This thesis aims to quantify the anisotropy parameters, ε and δ, that define 

compressional and converted waves. It is investigated whether a better approximation can 

be found from inversion of compressional wave data, converted wave data or the use of 

these in conjunction. A synthetic data set is used to develop and evaluate a number of 

inversion algorithms that estimate ε and δ. Algorithms include NMO equations, neural 

networks and regridding inversion. Neural networks are the most robust when applied to 

compressional wave data. In particular, it is found that δ is best estimated using P-wave 

neural networks that solve for δ, while ε is best estimated using P-wave neural networks 

that solve for both ε and δ. 

Having attained quality results from the synthetic data set, the optimal inversion 

techniques are applied to the Blackfoot data set. The results are encouraging and 

consistent with that of Elapavuluri (2000) and Thomsen (1986) where the coals and 

shales displayed a greater degree of anisotropy than the sands. 
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Chapter 1 Introduction 

1.1 Introduction 

 The most basic technique of exploration geophysics consists of sending seismic 

waves into the subsurface and recording the reflected energy at the surface using 

receivers. Processing the reflected energy allows the shapes and characteristics of 

underground structures to be identified and to assist in the prediction of the presence or 

absence of petroleum and/or minerals. In petroleum exploration two commonly invoked 

techniques are the seismic reflection method and vertical seismic profiling (VSP). 

Many models in exploration seismology naively presume that the earth is 

isotropic, that is, seismic velocities do not vary with direction. Yet individual crystals and 

most common earth materials are observed to be anisotropic with elastic parameters that 

vary with orientation (Shearer, 1999). Thus, it would be surprising if the earth was 

entirely isotropic. Further, it is now commonly accepted that most upper crustal rocks are 

anisotropic to some extent (Crampin, 1981) and more recently it has become apparent 

that anisotropy is evident in many other parts of the earth (Shearer, 1999). Alternating 

layering of high and low velocities where the thickness of the layer is less than the 

wavelength of the seismic signal will also appear anisotropic.  

In the past exploration seismologists and other scientists and engineers have been 

somewhat hesitant to consider the full effects of anisotropy. This may include several 

reasons such as the greater computational complexity and the lack of computing power 

required to estimate and apply an anisotropic correction. 
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 I recently attended a technical talk at the 2004 annual SEG in Denver, Colorado 

where a memorable statement was made ‘anisotropy: the rule not the exception’. I believe 

that this statement is a glimpse of the future where it will no longer be acceptable to 

dismiss anisotropic influences. Consequently, the ability to accurately define anisotropy 

is essential. 

1.2 Background 

Contributions to seismic anisotropy were pioneered by Postma (1955) who 

identified that a completely isotropic layered earth could appear anisotropic if the 

layering were on a finer scale than the wavelengths of the seismic waves. Jolly (1956) 

reported finding SH-waves that travelled twice as fast in the horizontal direction as in the 

vertical direction. Backus (1962) determined approximate equations for the variation of 

the P-wave velocity as a combination of elastic constants. Helbig (1964) discussed the 

velocity variation in media with elliptical anisotropy and Levin (1978) analysed the 

accuracy of the travel time equations based on derivatives. White and Sengbush (1953) 

discussed measuring seismic velocities at shallow depths and Berryman (1979) gave 

examples of shear waves having much stronger anisotropic behaviour then compressional 

waves. 

 A cornerstone paper on anisotropy was written in 1986 by Thomsen. Thomsen’s 

paper did not initially receive the praise that it is now recognized with (Grechka, 2001). 

At first glance it seemed like no more than a manipulation of known equations that 

describe the velocities of waves propagating in a vertically transverse isotropic (VTI) 

media. However, in reality his now famous parameters ε, δ and γ define combinations of 

the elastic coefficients responsible for such commonly measured quantities as normal-
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moveout (NMO) velocities and amplitude versus offset (AVO). Other significant 

contributions to the field have been made by Grechka et al. (1999), Alkhalifah (1994), 

Tsvankin et al. (1994, 1995, 1996 and 2001) and Daley et al. (1977, 1979 and 2004). 

 The anisotropic parameters must first be quantified in order to incorporate their 

effects into seismic processing. The first measurement of P-wave anisotropy was the ratio 

between horizontal and vertical velocities, normally ranging from 1.05 – 1.1, but 

sometimes as great as 1.2 (Sheriff 2002). Today Thomsen’s dimensionless parameters ε, 

δ and γ elegantly describe anisotropy; ε and δ determine P- and SV-wave anisotropy, 

while γ describes SH-wave anisotropy. 

Considerable research has been carried out in the extraction of ε and δ from surface 

seismic and borehole measurements. Most methods, including the ones used in this study, 

focus on moveout and traveltime equations (e.g., Alkhalifah and Tsvankin, 1995; 

Grechka and Tsvankin, 1998a, b; Grechka and Tsvankin, 1999; Grechka et al., 2001) or 

on joint compressional and converted wave studies which are also used in this study (e.g., 

Sayers, 1999; van der Baan and Kendall, 2002). 

This thesis aims to compare and contrast methods used to recover ε and δ from 

surface seismic data; namely to determine if a better estimation of these parameters 

comes from considering P-wave data, PS-wave data or the two in conjunction.  Different 

methods of recovering the anisotropy parameters will be investigated including NMO 

equations for VTI media, shifted-hyperbola NMO equations, neural networks and 

regridding inversion. 

 



 
 

 

4

1.3 Motivation 

 Erroneous assumptions of isotropic velocity lead to flawed images and thus 

incorrect interpretations where targets can appear to be shifted both in depth and laterally 

(Isaac et al., 2004). A common observation of including anisotropy is that the velocity 

model will differ from the isotropic case. This has repercussions in all aspects of seismic 

processing; non-hyperbolic moveout is evident, DMO fails to operate on both flat and 

dipping events simultaneously, migration is dependant on the phase angle of the 

wavefront which will no longer be equivalent to the group angle and polarity reversals 

are seen in AVO analysis for certain combinations of Thomsen’s parameters (Yilmaz, 

2001). In fact, any process that involves the concept of a scalar (isotropic) velocity field 

is subject to error (Tsvankin and Thomsen, 1994). 

1.4 Overview and my contributions 

Determination of δ is straight forward, but the determination of ε is not nearly as 

simple. By definition, resolution of ε requires knowledge of the horizontal velocity; a 

parameter that is difficult to recover from surface seismic data. One inversion algorithm 

analyzed in this study uses offset moveout equations to estimate ε by equating like terms 

in their traveltime definitions. These terms are non-linear and contain more than one 

parameter that has to be resolved; therefore non-linear inversion techniques are required. 

A possible inversion technique is regridding inversion. In contrast this method is 

compared to results obtained with neural networks.  
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In the work that follows chapter 2 discusses the theoretical basis of the equations 

used in regridding inversion and provides an overview of the inversion techniques of 

regridding and neural networks.  

Chapter 3 introduces synthetic modeling and the results of the anisotropic parameter 

estimations. I have used the synthetic ray tracing package NORSAR2D to generate a 

synthetic model and processed and interpreted the results using PROMAX. The resultant 

data are inverted for ε and δ. Evaluation of the parameter estimations are expressed in 

detail in chapter 3. Chapter 4 discusses inversion results after being applied to the 

Blackfoot data and chapter 5 discusses results and conclusions. 

Appendix 1 is an overview of seismic velocities and appendix 2 discusses sensitivity 

analysis done on neural networks and regridding inversion.  

My contributions are summed up below: 

1. Created a synthetic model and decided upon physical properties using  

NORSAR2D software 

2. Defined geometry of the survey to be ray traced 

3.  Generated synthetics using the anisotropic ray tracer in NORSAR2D 

4. Processed and interpreted ray tracing results in PROMAX 

5. Created a program in Matlab to convert RMS velocities to interval velocities 

6. Created a program in Matlab that optimized neural network inversion  

a. declared type of network, number of layers, number of neurons, type of 

transfer functions and stopping criterion  

7. Created a program in Matlab that implemented neural networks including 

declaration of training, target and simulation data 
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8. Created a program in Matlab to do regridding inversion 

9. Processed Blackfoot data in PROMAX 
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Chapter 2 Theory 

A material is anisotropic if its properties, when measured at a given location, 

change with direction; and is isotropic if its properties do not change with angle 

(Winterstein, 1990). Thus the speed of a ray propagating through an anisotropic medium 

depends on direction. This requires the concepts of phase and group velocities that are 

defined in terms of the elastic coefficients, which are in turn functions of Thomsen’s 

anisotropy parameters. These concepts will be developed in this chapter. An overview of 

regridding inversion and neural networks is also provided in this chapter. 

2.1 Body wave propagation 

 Any quantitative description of seismic wave propagation requires the 

characterization of internal forces and deformations in solid materials. In order to 

formulate the equations of motion in a homogeneous elastic anisotropic medium, it is 

necessary to define and formulate relative quantities such as stress and strain. Strain 

defines deformation while stress describes an internal force. Stress and stain do not exist 

independently; they are related through a constitutive relation described below in 

equation 2.1. 

When an elastic wave propagates through rocks displacements are in accordance 

with Hooke’s Law as formulated by Love (1927). Namely the stress and stain are related 

through the constitutive relation  
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klijklij ec=σ ,       (2.1) 

where ijσ  is the stress tensor, ijklc  the elastic (stiffness) tensor and  kle  the strain tensor. 

The elements kle  of the strain tensor are defined by spatial derivatives of the 

displacement vector u 

⎟
⎠
⎞⎜

⎝
⎛

∂
∂+∂

∂=
k

l

l

k
kl x

u
x

ue 2
1 .     (2.2) 

The elastic tensor, ijklc , is a fourth-order tensor with 81 (34) independent components. 

However both the strain and the stress tensor are symmetric resulting in  

ijlkjiklijkl ccc == ,     (2.3) 

and reducing the number of independent components to 36. The potential energy, also 

known as the strain energy, is expressed as klijijklijijw eeceE == σ
2
1  (Aki and Richards, 

2002) where klijklij
ij

w ec
e
E ==

∂
∂ σ  which implies that 

klijijkl cc = ,     (2.4) 

since 
ijkl

w

klij

w

ee
E

ee
E

∂∂
∂=

∂∂
∂ 22

. Resulting in only 21 of these components being independent; 

this is the maximum number of elements required to describe an anisotropic medium 

(Krebes, 2003). For a transverse isotropic medium symmetry conditions further reduce 

the number of independent components from 21 to 5, and for the isotropic case, only 2 

elastic moduli are required. 
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Using the Voigt recipe (Musgrave, 1970) the fourth order stiffness tensor can be 

rewritten as a second order symmetric matrix: 

αβccijkl ⇒ ,     (2.5) 

where α⇒ij  and β⇒kl . 

  For a transverse isotropic medium with a vertical symmetry axis the elastic tensor 

is written as (Thomsen, 1986) 

 

⎥
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−

=

66

44
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331313

13116611

13661111

00000
00000
00000
000
0002
0002

c
c

c
ccc
cccc
cccc

cαβ .   (2.6) 

This tensor has five independent elastic constants that completely describe the medium. 

These elastic components are related to the anisotropic or Thomsen’s parameters and will 

be developed below. 

2.2 Transverse Isotropy 

Frequent causes of anisotropy are  

1. foliation of clay minerals 

2. fine layering in sedimentary rocks  

3. stress aligned fractures, cracks or pore space. 

Mechanisms (1) and (2) usually give rise to a symmetry axis that is normal to the 

bedding; when this axis is vertical it is defined as vertical transverse isotropy (VTI). 

Conversely mechanism (3) has an axis parallel to the fracture or crack normal; when the 

normal is horizontal it is defined as horizontal transverse isotropy (HTI). Mediums 
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composed of combinations of VTI and HTI have an orthorhombic symmetry (Crampin et 

al., 1984). 

In a vertically transverse isotropic medium the velocities of waves travelling in the x-

z plane (offset-depth plane) vary with direction while the velocities of waves travelling in 

the x-y plane (transverse plane) do not. Typically waves traveling in the horizontal 

direction will be faster than those traveling in the vertical direction.  

2.3 Phase Velocity 

The phase velocities, )(θv , for three mutually orthogonal polarizations can be 

described in terms of the elastic constants (Thomsen, 1986). Daley and Hron (1977) give 

expressions for the phase velocities in terms of the elastic tensor components where the 

phase velocity of a compressional wave is 

ρ
θθθ

2
)()(sin)()(

2
33114433 DccccvP

+−++= ,   (2.7) 

of a shear wave with a vertical polarization direction is  

ρ
θθθ

2
)()(sin)()(

2
33114433 DccccvSV

−−++= ,   (2.8) 

and of a shear velocity with horizontal polarization is 

 
ρ

θθθ )(cos)(sin)(
2

44
2

66 ccvSH
+= ,    (2.9) 
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where ρ is the density and  )(θD  denotes  

2
142

4413
2

443311

2
4433114433

2
4413

2
4433

}sin])(4)2[(

sin)]2)(()(2[2){()(

θ

θθ

ccccc

cccccccccD

−+−+

+−+−−−+−=
.  (2.10)

It is convenient to define the non-dimensional anisotropic parameters in terms of 

the elastic tensor components; this simplifies equations 2.7 – 2.9. Following Thomsen 

(1986) the anisotropic parameters can be defined as  

33

3311

2c
cc −=ε

,      (2.11) 
 

 44

4466

2c
cc −=γ

, (2.12) 

and 

 )(2
)()(

443333

2
4433

2
4413

ccc
cccc

−
−−+=δ

. (2.13) 

The P-wave velocity in the direction of the symmetry axis is defined as  

 ρα 33
0

c=
, (2.14) 

and for the S-wave velocity as 

 ρβ 44
0

c= .  (2.15) 

Equations 2.11 – 2.15 constitute 5 linear equations with 5 unknowns that are solved for 

the elastic constants such that  

 
2
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and 

( ) ( )

( ) 2
02

0

2
02

0
2
00

44
2

443344333313

12

2

ρβα
βδβαρ

δ

−⎟
⎠
⎞

⎜
⎝
⎛ −+−=

−−−−=

a

ccccccc
.   (2.20) 

  

Substituting these into equations 2.7 - 2.9 exact solutions for the phase velocities in terms 

of Thomsen’s parameters are found (Daley and Hron, 1977 and 2004) 
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θγβθ 2
0 sin1)( +=SHv .    (2.23) 

Expanding these equations into Taylor series and neglecting higher order terms you 

obtain the familiar simplified solutions for the phase velocities (Thomsen, 1986) that are 

assumed valid under the condition of weak anisotropy: 

 )sincossin1()( 422
0 θεθθδαθ ++=Pv ,    (2.24) 
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 )cossin)(1()( 22
2
0

2
0

0 θθδε
β
αβθ −+=SVv ,    (2.25) 

and 

)sin1()( 2
0 θγβθ +=SHv .     (2.26) 

These equations assume weak anisotropy meaning the absolute values of ε, δ and γ are 

less than 0.2. I will return to the weak anisotropic assumption in section 2.5. 

2.4 Group Velocity 

The x and y axes are equivalent for a transversely isotropic medium therefore we 

can confine ourselves to the x-z plane in the discussion of this type of medium. Figure 

2-1 depicts the phase angle, θ  (associated with the direction of wave propagation) and 

the ray or group angle,φ  (associated with the direction of energy transport). The phase 

velocity is the local velocity of the wavefront in the direction perpendicular to the 

wavefront and is the velocity used when referring to the horizontal slowness or the ray 

parameter, p. In contrast, the group velocity is the velocity of the ray and governs the 

speed at which wave-fronts propagate.  
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Figure 2-1 Depiction of phase angle and group angle. Angles are measured with respect to the 
vertical axis. The group angle resolves the direction of energy propagation while the phase angle 
resolves the local direction of the wavefront. 

For a plane wave the phase velocity is defined as 
k

v ω=  where ω is the angular 

frequency and k is the wave number. If )ˆcosˆ(sin 31 xxkk θθ += , where 1x̂  is a unit vector 

pointing in the x-direction and similarly 3x̂  is a unit vector pointing in the z-direction, 

then the phase velocity as a function of the angle is given by 

 )ˆcosˆ(sin)( 31 xx
k

v θθωθ += ,    (2.27) 

(Aki and Richards, 2002). However it is the group velocity, the velocity at which the 

energy propagates, that would be measured at a geophone. The group velocity is defined 

as 
dk
dV ωφ =)(   or in terms of the phase velocity as  

 31 ˆsincosˆcossin)( x
d
dvvx

d
dvvV ⎟

⎠
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⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ += θ

θ
θθ

θ
θφ .  (2.28) 
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Figure 2-2 Depiction of group and phase velocity directions diverging from a point source. (Byun, 
1984) 

 

The group and phase velocities are illustrated in Figure 2-2. From Byun (1984) it can be 

shown that  

 )cos()()( θφφθ −= Vv ,     (2.29)  
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1)tan( =− ,      (2.30) 

and 
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θ
θφ

d
dvvV .     (2.31) 

Therefore, the magnitude of the group velocity can be defined in terms of the phase 

velocity and the phase angle. The application of the trigonometric identity 

)tan()tan(1
)tan()tan()tan(
yx
yxyx

+
−=− ,    (2.32) 
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to equation 2.30 is necessary to express the group angle,φ as  
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We have now successfully defined the phase velocity and its angle and the group velocity 

and its angle in an anisotropic medium. 

2.5 Weak Anisotropic Approximation 

Thomsen (1984) introduced an approximation to the methods described 

previously go from phase velocity in equations 2.24, 2.25 and 2.26 to group velocity and 

corresponding group angle. He stated that a sufficient linear approximation is 

 )()( θφ vV ≈ ,      (2.34) 

and that the group angle could be solved from a linear approximation to equation 2.33 

(Thomsen, 1986) 

 ⎥
⎦

⎤
⎢
⎣

⎡
+=

θθθθ
θφ

d
dv

v )(
1

)cos()sin(
11)tan()tan( .    (2.35) 

This leads to group angles for the P and two S-waves defined as 

 [ ])(sin)(421)tan()tan( 2 θδεδθφ −++=P ,     (2.36) 
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 )21)(tan()tan( γθφ +=SH .     (2.38) 

Solving for the group velocities using equation 2.31 and neglecting higher order terms the 

linear approximation goes as  

)()(
)()(

)()(

θφ
θφ

θφ

SHSH

SVSV

pP

vV
vV

vV

=
=

=

,      (2.39) 

thereby validating equation 2.34. The above formulae states that at a given ray angle φ , 

the corresponding phase angle can be calculated from equations 2.36 - 2.38, then 

equations 2.24 – 2.26 and 2.39 may be used to find the corresponding group velocity. 

2.6 Normal Moveout (NMO) 

φ

2)( tV φ

x

φ

2)( tV φ

x

 
Figure 2-3 Conventional reflection survey. The distance that the down going wave travels is noted on 
that arm of the ray. 

 
 Consider a conventional reflection survey in a homogeneous anisotropic elastic 

medium (Figure 2-3), the traveltime can be computed from  



 
 

 

18

222

22
)0(

2
)()( ⎟

⎠
⎞

⎜
⎝
⎛+⎥⎦

⎤
⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡ xVtV τφφ ,    (2.40) 

where τ is the vertical (zero-offset) two-way traveltime, x  the source receiver offset, t  

the travel time from source to reflector to receiver, )0(V  the vertical velocity and )(φV  

the velocity for incident angle φ . When 2t  is solved for we obtain 
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Equation 2.41 is dependent upon φ  and forms a curved line in the 22 xt −  plane. The 

slope of this line is given by first rearranging equation 2.41 and then invoking the 

quotient rule for the derivative as evaluated below 
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This can be further expressed according to Thomsen (1986) as 
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The normal moveout velocity is defined using the initial slope of this line where 

2

2
lim

0
2 )(

dt
dxV xnmo →=ψ  and ψ  is the dip angle of the reflector. The ray parameter, p , can be 

incorporated into this equation to ease its computational complexity to resolve  

dp
dhV

xNMO 0

2 lim2)(
→

=
τ

ψ ,     (2.44) 

 

 where 2/xh =  or the half-offset of the source and receiver (Tsvankin, 1995). Letting 

0z be the depth of the zero-offset reflection point then )tan(0 φzh =  and equation 2.44 

becomes 
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(2.45) 

To evaluate equation 2.45 the general relations between the group and phase velocities 

demonstrated above are used. First we express 
dp
d

d
d
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φφ )tan()tan( = . Referring to 

equation 2.33 we see 
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and since vp /)sin(θ=  by Snell’s law 
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Letting φφ cos)(
2
1 tVzo =  and using the expression for the group velocity in equation 

2.28 and recalling that the phase angle,θ , for the zero-offset ray is equal to the dip angle, 

ψ , 0z becomes 
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The NMO velocity is obtained by substituting equations 2.48 and 2.49 into 2.45  
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where the derivatives of the phase velocity are evaluated at the dip angle, ψ , of the 

reflector. Difficulties are anticipated when implementing this equation for shear waves 

that have cusps or singularities. The expression in equation 2.50 is fairly simple to invoke 

because it only involves the phase velocity function and the components of the group 

velocity. For a flat reflector the normal moveout velocities evaluate as 

δ21),0( 0 += pNMO VPV ,     (2.51a) 
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 (Tsvankin and Thomsen, 1994 and 

Thomsen, 1999). Note that σ reduces to zero for both isotropic (ε = 0, δ = 0) and 

elliptically anisotropic (ε = δ) (Daley and Hron, 1979) media. The equations for NMOV  are 

equal to the RMS velocities when the anisotropic parameters (σ, δ and γ) are all zero.  

2.7 Reflection travel times 

 A common approximation to reflection moveout is the Taylor series expansion of 

the )( 22 xt  curve near 02 =x (Taner and Koehler, 1969) 
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expressed these coefficients for a P-wave in a VTI medium as  
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and for the P-SV case as 
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where 2γ is the sp VV  moveout ratio as defined in equations 2.51a and 2.51b. The short 

spread moveout velocity is expressed through 2A  as 
2

1
A

VNMO = . 

2.8 Shifted hyperbola NMO (SNMO) traveltime 

 In 1956 Bolshix derived an equation for NMO in a layered earth. Malovichko 

(1978, 1979) unaware of an error is Bolshix’s formulation developed an equation for the 

shifted hyperbola NMO by realising that Bolshix equation approximated Gauss’s 

hypergeometric series, which has a known analytical sum (Castle, 1994). 

In 1994 Castle obtained the approximation to the NMO equation, the shifted 

hyperbola (SNMO) 

( ) 2

22

0
2 1

rms

o

SV
x

S
tStt +⎟
⎠
⎞

⎜
⎝
⎛+−= .    (2.55) 

Geometrically this equation describes a hyperbola that is symmetric about the t-axis and 

has asymptotes that intersect at ⎟⎟
⎠

⎞
⎜⎜
⎝
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⎛ −==

S
ttx 11,0 0 . Essentially it is a Dix NMO curve 
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shifted in time by ⎟
⎠
⎞

⎜
⎝
⎛ −

S
t 110  (Castle, 1994). The shift parameter, S is a constant and 

equivalent to 

2
2

4

µ
µ=S ,     (2.56) 

where µ2 and µ4 are the second and fourth order time weighted moments of the velocity 

distribution defined from 
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τ
µ  where kV is the interval velocity of the thk  layer 

and kτ  the vertical traveltime through the thk  layer. Equation 2.55 can be written in the 

form of Taner and Koehler (1969) where 
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and 
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Expressions for 2A  and 4A  found in equations 2.53, 2.54, 2.57 and 2.58 are the 

equations used for inversion purposes. 
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2.9 Anisotropy Parameters 

Having developed equations for the traveltime in a VTI media the following 

sections provide a physical understanding of the anisotropy parameters. For most 

sedimentary rocks, the parameters ε, γ and δ are of the same order of magnitude and 

usually less than 0.2; furthermore for most rock types the anisotropy parameters are 

positive (Thomsen, 1986). However it is possible to have negative values for the 

anisotropy parameters (Thomsen, 1986). In the modelling that follows the anisotropy 

parameters are pushed to their limits to explore the boundaries of “common” rock types.  

2.9.1 Epsilon, ε 

A physical meaning for the anisotropic parameters ε can be developed when 

considering the special case of horizontal incidence. By letting the angle θ  equal 90 

degrees in equation 2.24 we obtain 

)0(
)0()90(

v
vv −=ε ,      (2.59) 

where )90(v is the horizontal P-wave velocity and )0(v  the vertical P-wave velocity. This 

parameter is a measure of the anisotropic behaviour of a rock and a measure of the 

fractional difference between the horizontal and vertical velocities. When a seismic wave 

propagates through a TI medium at angles nearly perpendicular to the symmetry axis the 

parameter ε dominates the P-wave velocity (Brittan et al, 1995). The parameter ε can also 

be used in combination with δ to relate group and phase velocities in a TI medium. 
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2.9.2 Delta, δ 

  It is more difficult to gain a physical understanding of δ other than to say that it is 

a critical factor that controls the near vertical response and that it determines the shape of 

the wavefront (Thomsen, 1986). If in equation 2.24 we let the angle θ  equal 45 degrees 

and invoke equation 2.59 for ε, δ evaluates as   
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)4(4

v
v

v
v ππδ .      (2.60) 

When an incident P-wave propagates approximately parallel to the axis of symmetry the 

parameter δ dominates the anisotropic response. It is not a function of the velocity normal 

to the symmetry axis and can take on both positive and negative values (Brittan et al, 

1995). The parameter δ may be used to relate the group and phase angles and 

subsequently the group and phase velocities within an anisotropic medium and is the 

controlling parameter for the normal moveout of compressional waves in a horizontally 

layered medium. 

2.10  Common Scatter Point Gathers 

In the recovery of ε and δ common scatter point (CSP) gathers are used. 

Elapavuluri (2000) showed that CSP gathers give more accurate results when inverting 

for the anisotropic parameters than do CMP gathers. Thus in the following velocity 

analysis is performed on CSP gathers.  

A scatter point is defined as a point in the subsurface that scatters energy in all 

directions. A reflector can be approximated by an array of scatter points. It is assumed 

that energy from a source is scattered by all scatter points to all receivers. A common 
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scatter point gather is a pre-stack gather that collects all the input traces that contain 

energy from a vertical array of scatter points (Bancroft, 2004).  
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Figure 2-4 Ray paths to a scatter point and the equivalent offset, where SP is indicative of the scatter 
point position on the surface, R the receiver position, S the source position and MP the midpoint 
between the source and receiver. To and Zo define the location of the scatter point on a time or depth 
section respectively. T and he define the position of a point that will be summed into a CSP gather on 
a time section. (Bancroft, 2004) 

 
All input traces may be summed into a CSP gather at an offset defined by the equivalent 

offset and are therefore not limited by the source receiver offset as is the case with CMP 

gathers. The maximum equivalent offset, eh , is limited by the recording time (Bancroft, 

2004). The equivalent offset is defined using ray paths to and from the scatter point 

where the source and receiver are collocated preserving traveltime. The traveltime is 

defined by the double square root (DSR) equation 
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where h  is half the distance from source to receiver or the midpoint referred to in CMP 

gathers. The collocated source and receiver travel time is given by  
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where eh  is now the equivalent offset. Equating equations 2.61 and 2.62 the equivalent 

offset evaluates as 

22

22
222 4

Vt
hxhxhe −+= .     (2.63) 

Using this equivalent offset an input point can be summed into a CSP gather.  

In the case of converted waves the scatter point is referred to as a conversion 

scatter point. 

 

Figure 2-5 Depiction of energy reflected to and from a conversion scatter point in a) the source and 
receiver are not collocated in b) the source and receiver have been collocated preserving traveltime 
(Bancroft and Wang, 2000). 
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The traveltime of the ray paths in Figure 2-5 is 
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The depth oz  is a pseudo depth from a time section, sh  is the distance from CSP to 

source, rh  the distance from CSP to receiver, sp VV=γ  and ech  the distance from the 

conversion scatter point to the collocated source and receiver 
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CSP velocity analysis is founded on the distances from sources and receivers to the 

CSP location where as CMP velocity analysis is based solely on the source receiver 

offsets. Additional benefits of CSP gathers include easier picking of velocities in 

structurally complex areas, better signal to noise ratio and after an NMO correction has 

been applied the section will be prestack migrated (Bancroft, 2004). 

2.11 Neural Network 

The first of two non-linear inversion algorithms invoked for this study is now 

discussed. An artificial neural network (ANN) is an information processing algorithm 

that is inspired by the way biological nervous systems, such as the brain, process 

information. In the simplest sense a neural network is a mathematical algorithm that can 

be trained to solve a problem. The key element is the novel structure of the information 

processing system. It is composed of a large number of highly interconnected processing 

elements (neurons) working in unison to solve specific problems (Haykin, 1999). 
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 Artificial neural networks, like people, learn by example. An ANN is configured 

for a specific application, such as pattern recognition or data classification, through a 

learning process. The learning process in biological systems involves adjustments to the 

synaptic connections that exist between the neurons. This is true of ANNs as well. In the 

work that follows ANN’s are referred to simply as neural networks or NN.  

Neural networks, with their remarkable ability to derive meaning from 

complicated or imprecise data, can be used to extract patterns and detect trends that are 

too complex to be noticed by either humans or other computer techniques (Freeman et al 

1991). A trained neural network can be thought of as an ‘expert’ in the category of 

information it has been given to analyse.  

2.11.1  Backpropagation 

Backpropagation feedforward networks are utilized in this study. The architecture 

of such an algorithm is shown below in Figure 2-6. 

 
Figure 2-6 Feedforward neural network architecture. (Matlab help documentation) 

This architecture uses backpropagation to train the network elements. In the 

backpropagation algorithm input vectors and the corresponding output target vectors are 

used to train a network until it can approximate a function. Networks with biases, a 
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sigmoid layer (hidden layer) and a linear layer (output layer) are capable of 

approximating any function with a finite number of discontinuities (Higham and Higham, 

2000). In Figure 2-6 there are 2 elements in the input vector, four neurons in the hidden 

layer and three elements in the output/target vector. During training the weights (IW,LW) 

and biases (b) of the network are iteratively adjusted to maximize the network. 

 Data are trained in batch mode where the weights and biases of the network are 

updated only after the entire training set has been applied to the network. In the 

application of the back propagation algorithm two distinct passes of computation are 

performed; first a forward pass and second a backward pass (Haykin, 1999; Freeman and 

Skapura, 1991). In the forward pass the synaptic weights remain unaltered throughout the 

network and the function signals, appearing at the output of every neuron, of the network 

are computed on a neuron by neuron basis.  The output is compared with the desired 

response obtaining an error signal. In summary the forward pass begins at the first hidden 

layer by presenting it with the inputs and terminates at the output layer by computing the 

error signal (difference between the output and target values) for each neuron in this 

layer.  The backward pass, on the other hand, starts at the output layer by passing the 

error signals leftward through the network, layer by layer, and recursively computing the 

local gradient in weight space for each neuron such that a correction is computed for the 

weights that is proportional to the partial derivatives.  The basic procedure is embodied in 

the following summarized by Freeman et al. (1991): 

1. Apply an input vector to the network and calculate the corresponding output 

values 
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2. Compare actual outputs with the correct outputs and determine a measure of 

the error 

3. Determine in which direction to change each weight in order to reduce the 

error 

4. Determine the amount by which to change the weight 

5. Apply the corrections to the weights 

6. Repeat 1-5 with all training samples until the error is reduced to an acceptable 

value. 

 Sensitivity analysis was preformed on this algorithm where error was added to the 

velocity and the resultant anisotropy parameters were resolved. Details are contained in 

Appendix 2. Error in the calculated δ is linearly proportional to errors in the input 

velocity, errors in the calculated ε where not linearly proportional to errors in the 

velocity. Further δ was observed to be more susceptible to error when the velocity was 

erroneous. 

2.12  Regridding Inversion 

The second non-linear inversion algorithm used in this study is regridding 

inversion. In a regridding inversion algorithm multiple unknown parameters are 

estimated to evaluate a function with a known solution, velocity in this case. Initially a 

guess at the range of possible values for the unknown parameters is made. In this sense 

the unknowns are discretized. The ensuing function is evaluated at each point. Figure 2-7 

illustrates the error surface and picks. The true solution is marked by a red asterisk. After 

this first iteration the optimal solutions is marked by a black asterisk. The area around 

this optimal solution is further discretized into a finer grid and again the function is 
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evaluated. This regridding is continued until the estimated solution is within a specified 

tolerance of the real solution; thereby obtaining estimates of the unknown parameters. 

The final solution is marked by a green square. Sensitivity analysis was also performed 

on this algorithm and is presented in Appendix 2. Error was added to δ, the shift 

parameter and the velocity independently and the consequent ε evaluated. Errors in the 

calculated ε were linearly proportional to errors in the input parameters and layer 

dependant. It is found that the regridding inversion is most sensitive to errors in the 

velocity. 
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Figure 2-7 A function to be optimized is evaluates for a range of possible values for each parameter. 
The area around the best solution is then further discretized into a finer grid and the function 
revaluated obtaining a new optimal solution. 
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An anticipated hurdle is the phenomenon of non-uniqueness. The system is 

underdetermined and therefore a unique solution may not exist. This is circumvented by 

evaluating the gradient of the error. When ε is greater than or equal to δ it is found that 

the best solution is obtained by discretizing the area with the steepest gradient conversely 

when δ is greater than ε the flattest area is discretized. 
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Chapter 3 Synthetic Modelling 

Methods developed in the previous chapters are applied to a synthetic data set to 

recover ε and δ.  A 2-D anisotropic model was created and ray traced in the depth domain 

using NORSAR2D software, a ray tracing package, to generate synthetic seismic 

sections. These sections were imported into PROMAX, a seismic processing package, to 

extract RMS velocities that were manipulated to obtain apparent ε and δ values. Methods 

invoked to recover the anisotropic parameters include: 

1. P-wave NMO equations estimating δ  

2. P-wave regridding inversion using NMO equations estimating ε 

3. PS-wave regridding inversion using NMO equations estimating ε 

4. PS-wave regridding inversion using NMO equations estimating ε and δ 

5. Neural networks applied to P-wave data estimating δ  

6. Neural networks applied to P-wave data estimating ε 

7. Neural networks applied to P-wave data estimating δ and ε 

8. Neural networks applied to PS-wave data estimating δ  

9. Neural networks applied to PS-wave data estimating ε 

10. Neural networks applied to PS-wave data estimating δ and ε 

11. Neural networks applied to PP- and PS-wave data estimating δ 

12. Neural networks applied to PP- and PS-wave data estimating ε 

13. Neural networks applied to PP- and PS-wave data estimating δ and ε 

The details of each method will be discussed below. 

 



 
 

 

35

3.1 Building the Model 

Synthetic seismograms are generated by NORSAR2D from the following steps 

1. Build the geological model 

a. Define layer boundaries 

b. Define material properties 

2. Specify geometry of the survey 

3. Simulate the survey (ray tracing)  

4. Convolve ray tracing results with a wavelet to generate synthetic seismograms 

3.1.1 Geological Model 

The synthetic model consists of nine horizontal layers each with its own unique 

material properties. The model was 20.0 km long and 6 km deep. The thinnest layer was 

0.25 km and the thickest 1.0 km. 

 
Figure 3-1 Geological model used to create synthetic seismic section. Model consists of 9 horizontal 
layers each with unique material properties 
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The material properties: P-wave velocity, S-wave velocity, density, ε and δ were assigned 

for each block as listed in Table 3-1. 

Table 3-1 Material properties of the synthetic model 

Layer P-wave  Velocity S-wave Velocity Density ε δ
(m/s) (m/s) (kg/m3) (unitless) (unitless)

1 1000 500 1.1 0 0.2
2 1200 600 1.2 0.05 0.25
3 1500 750 1.3 0.1 0.3
4 2000 1000 1.5 0.15 0.1
5 2500 1250 1.7 0.2 0.15
6 3000 1500 1.9 0.25 0.2
7 4000 2000 2.2 0.3 0.25
8 5000 2500 2.4 0.2 0.3
9 6500 3250 2.6 0.1 0.3  

3.1.2 Seismic Survey 

 Two seismic surveys were simulated using the model to produce synthetics; a PP- 

and a PS-survey. For both surveys, the shot spacing was 60.0 m and the receiver spacing 

20.0 m. In total there were 300 receivers and 234 shots with all receivers reading all 

shots. A very simplified version of the survey is seen in Figure 3-2. 

 
Figure 3-2 A simplified example of ray tracing results using NORSAR2D’s anisotropic ray tracer. 
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3.1.3 Ray Tracing 

Seismic ray theory is analogous to optical ray theory and has been applied for 

over 100 years to aid in interpreting seismic data (Shearer, 1999). It continues to be used 

almost extensively due to its simplicity and applicability to a wide range of problems. 

Ray tracing is a process by which one can calculate quantities tied to seismic wave 

propagation through a layered medium and may be classified as a high frequency solution 

to the seismic wave equations. For the high frequency approximation to hold seismic 

wavelengths must be shorter than the finest details of the model (Norsar 2D user guide).  

Derivation of the ray tracing equations closely mimics Margrave (2002). Figure 

3-3 is given as a reference for equation development. 

θ
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Figure 3-3 Components of the slowness vector in the slowness and x-z domain. 

 
Integral equations will be developed to compute the travel time and distance along a 

particular ray. At any point along a ray the slowness vector s can be resolved into its 

horizontal and vertical components. The length of s is given byu . The vertical slowness 

η  can be defined in terms of the horizontal slowness p as 

( ) 2122 pu −=η .     (3.1) 
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Defining 
u
p

ds
dx == θsin  and ( ) ( )

u
pu

ds
dz

2122
2sin1 −=−= θ  from the chain rule we obtain 

( ) 2122 pu
p

dsdz
dsdx

dz
dx

−
== . This can be integrated to attain 
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A similar expression can be developed for time. Where udsdt =  and 

( ) 2122
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−
==  integrating we get 
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)(z
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dz
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zut .      (3.3) 

Equations 3.2 and 3.3 define the general expressions used for ray tracing. 
 

 

3.1.4 Synthetic Generation 

Synthetic seismograms are created by convolving the ray tracing results with a 

damped 40 Hz minimum phase Ricker wavelet. The thinnest layer in the model is 0.5 km 

thick and has a velocity of 1000 m/s. The seismic wavelet is 25m in this interval thus 

ensuring that the high frequency assumption is not violated. The results of this 

convolution are stored in a SEGY file. The outcome for one of the shot gathers near the 

center of the line is displayed in Figure 3-4. 
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Figure 3-4 A shot gather that result from convolving the ray tracing with a Ricker wavelet.  

3.1.5 RMS (stacking) Velocity Estimation 

 The SEGY files described above were imported into PROMAX and a basic 

processing flow applied as below 

1. Geometry set-up 

2. AGC (automatic gain control) 

3. Sorting into CSP gathers 

4. Velocity Analysis 

A few CSP gathers were formed at selected locations using crude velocities and these 

gathers used to estimate more accurate velocities. 

3.2 Parameter estimation 

The anisotropy parameters can be estimated from the synthetic modeling. I present 

results from the individual data sets estimating each parameter separately as follows  
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1. Solving for δ from PP data 

2. Solving for ε from PP data 

3. Solving for δ from PS data 

4. Solving for ε from PS data 

5. Solving for δ using joint PP & PS data 

6. Solving for ε using joint PP & PS data 

and will summarize the results for ε and δ estimation at the end of this section.  

Velocities used in these algorithms are interval velocities. RMS stacking 

velocities were found from semblance analysis in PROMAX and converted to interval 

velocities using Dix type integration (Appendix 1). Ratio difference refers to the 

difference between the true and calculated values using 

( )
true

calculatedtrueabsdifferenceratio −= . When calculating the ratio difference for ε 

only layers 2-8 are considered as the true ε value of layer 1 is zero and this leads to 

instability from division by zero. It is assumed that the vertical velocities (Vp(0) and 

Vs(0)) are readily available from VSP or sonic log data or in this case the synthetic data 

set. 

A summary of the parameters used in neural networks is provided in Table 3-2.  

Table 3-2 Summary of parameters used in neural networks 

Data Type Output Number of Neurons Training Inputs Transfer Functions
PP δ 29 Vp(0), Vs(0), Vp_int Tan-sigmoid, Linear
PP δ,ε 88 Vp(0), Vs(0), Vp_int Tan-sigmoid, Linear
PP ε 32 Vp(0), Vs(0), Vp_int, δ  Linear, Linear
PS δ 9 Vp(0), Vs(0), Vps_int Tan-sigmoid, Linear
PS δ,ε 3 Vp(0), Vs(0), Vps_int Tan-sigmoid, Linear
PS ε 4 Vp(0), Vs(0), Vps_int, δ Tan-sigmoid, Linear

PP & PS δ 2 Vp(0), Vs(0), Vp_int, Vps_int Log-sigmoid, Linear
PP & PS δ,ε 30 Vp(0), Vs(0), Vp_int, Vps_int Log-sigmoid, Linear
PP & PS ε 62 Vp(0), Vs(0), Vp_int, Vps_int, δ Linear, Linear
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The number of neurons and type of transfer functions were chosen by varying the 

combination of transfer functions and the number of neurons (from 1 to 150) and 

selecting the combination that gave the lowest root mean squared (RMS) error. As a 

further QC step, to ensure that the neural networks were running properly, data from 

layers 1, 3, 5 and 7 of the geological model were chosen as training data and a simulation 

performed all 8 layers. Results from this training and simulation are seen in Figure 3-5, 

where the resultant δ for each layer is plotted. Trained results are those from training the 

network and simulated from applying the trained network to the data. Data used for 

training is a set of ‘true’ values and data used for simulation are values found from 

modeling. Discrepancies between trained and simulated values are a result of velocity 

picking errors.  
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Figure 3-5 A QC check when the network is trained on layers 1, 3, 5 and 7 and then incorporated to 
recover results for all layers. 



 
 

 

42

 

3.2.1 Solving for δ from PP data 

For the PP survey δ values were found from three different methods 

1. applying NMO equation 2.51a (PP NMO δ) 

2. neural network inversion estimating δ (PP NN estimating δ) 

3. neural network inversion estimating ε and δ (PP NN estimating δ and ε) 

Results are listed in Table 3-3.  

Table 3-3 True and estimated values of δ after applying P-wave inversion methods 

Layer Interval 
Velocity 

True δ PP NMO 
δ 

PP NN 
Estimating δ 

PP NN 
Estimating δ and ε 

1 1180.9 0.2 0.197 0.198 0.198 
2 1458.9 0.25 0.239 0.242 0.242 
3 1880.1 0.3 0.286 0.288 0.290 
4 2178 0.1 0.093 0.096 0.092 
5 2835 0.15 0.143 0.146 0.142 
6 3523.8 0.2 0.190 0.195 0.191 
7 4794.8 0.25 0.218 0.237 0.233 
8 6382.3 0.3 0.315 0.305 0.303 

 

Figure 3-6 shows these results in a graphical format while Figure 3-7 displays the ratio 

difference as defined previously  
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Figure 3-6 True and estimated values of δ after applying P-wave inversion methods. The neural 
network (NN) methods slightly outperform the NMO method. 
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Figure 3-7 Comparison of the ratio difference between the true and calculated values of δ from P-
wave inversion methods. Neural networks used to estimate δ give the most accurate results. 

 
Table 3-4 lists the RMS errors associated with each method. 

Table 3-4 Root mean squared errors of P-wave inversion methods used to estimate δ. 

Method PP NMO 
δ 

PP NN 
Estimating δ 

PP NN 
Estimating δ and ε 

RMS 0.0148 0.0076 0.0091 

  

The superior of these methods appears to be the neural networks when solving for δ. 

3.2.2 Solving for ε from PP data 

The parameter ε was estimated from P-wave data in three different ways 

1. regridding inversion (PP Regrid ε) 
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equating equations 2.53 and  

a. (2.582.58 and solving for the interval velocity by estimating the shift 

parameter and ε 

2. neural network inversion estimating ε (PP NN estimating ε) 

3. neural network inversion estimating ε and δ (PP NN estimating δ and ε) 

  The regridding inversion used δ that was previously solved for from the NMO 

equation, equation 2.51a. Numerical results are listed in Table 3-5. The results and ratio 

differences are also plotted in Figure 3-8 and Figure 3-9 respectively. 

Table 3-5 Results for ε using P-wave inversion methods 

Layer True ε Regrid ε PP NN 
Estimating ε

PP NN 
Estimating ε and δ 

1 0 0.008 -0.010 0.00 
2 0.05 0.060 0.046 0.051 
3 0.1 0.067 0.094 0.103 
4 0.15 0.165 0.143 0.146 
5 0.2 0.208 0.226 0.196 
6 0.25 0.218 0.263 0.247 
7 0.3 0.310 0.342 0.311 
8 0.2 0.264 0.170 0.169 
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Figure 3-8 True and calculated ε values from P-wave inversion methods. 
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Figure 3-9 Ratio differences between true and calculated ε values calculated from P-wave inversion 
methods. 

 
The RMS errors for the above methods are listed in Table 3-6.  

Table 3-6 Root mean squared errors of P-wave inversion methods used to estimate ε. 

Method PP regrid 
ε 

PP NN 
Estimating ε

PP NN 
Estimating ε and δ 

RMS 0.029 0.021 0.012 

 

The above figures and tables indicate that neural networks appear to be the superior 

method for recovering ε and when the neural network solves for both ε and δ the results 

are better than when only ε is solved for.  
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3.2.3 Solving for δ from PS data 

Solving for δ from converted wave data was accomplished through 

1. regridding inversion (PS Regrid δ) 

a. Estimating ε and δ in equation 2.51b  

2. neural network inversion estimating δ (PS NN estimating δ) 

3. neural network inversion estimating ε and δ (PS NN estimating δ and ε) 

In equation 2.51b an initial guess for δ was obtained from the P-wave NMO equation, 

equation 2.51a, and the neighbourhood of this value discretized. Results are displayed in 

Figure 3-10 and Figure 3-11 and tabulated in Table 3-7. The corresponding RMS errors 

are listed in Table 3-8. 
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Figure 3-10 True and calculated δ values from PS-wave inversion methods. 
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Figure 3-11 Ratio differences of true and calculated δ values from PS-wave inversion methods 

  

Table 3-7 True and calculated δ values from PS-wave inversion methods 

Layer Interval Velocity 
(m/s) 

True δ PS regrid
δ 

PS NN  
Estimating δ

PS NN 
Estimating ε and δ 

1 513.9 0.2 0.207 0.205 0.197 
2 629.2 0.25 0.248 0.246 0.246 
3 762.2 0.3 0.295 0.304 0.321 
4 1448.6 0.1 0.102 0.113 0.103 
5 1788.7 0.15 0.150 0.154 0.151 
6 2072 0.2 0.197 0.298 0.226 
7 2798.4 0.25 0.227 0.245 0.2497 
8 3068.7 0.3 0.321 0.376 0.274 

 

 



 
 

 

50

Table 3-8 RMS errors for PS-wave inversion methods used to estimate δ 

Method PS regrid 
δ 

PS NN 
Estimating δ

PS NN 
Estimating ε and δ 

RMS 0.0115 0.0441 0.0152 

  

Of the PS-wave inversion methods used to recover δ, graphically and statistically, the 

regridding inversion method gives the best results.  

3.2.4 Solving for ε from PS data 

 Solving for ε from PS-wave data was performed using four methods:  

1. applying NMO equation 2.51b (PS NMO ε)  

2. regridding inversion (PS Regrid ε) 

a. Estimating ε and δ in equation 2.51b  

3. neural network inversion estimating ε (PS NN estimating ε) 

4. neural network inversion estimating ε and δ (PS NN estimating ε and δ) 

 The PS NMO ε method uses δ estimated from the P-wave NMO equation, equation 

2.51a. Results are given below in Figure 3-12, Figure 3-13, Table 3-9 and Table 3-10. 
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Figure 3-12 True and calculated ε values from PS-wave inversion methods. 
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Figure 3-13 Ratio difference of calculated and true ε values calculated from PS-wave inversion 
methods. 

 

Table 3-9 True and calculated ε values from PS-wave inversion methods 

Layer True ε PS NMO
ε 

PS regrid
ε 

PS NN 
Estimating ε

PS NN 
Estimating ε and δ 

1 0 -0.000 0.008 -0.007 -0.186 
2 0.05 0.049 0.058 0.0431 0.132 
3 0.1 0.072 0.0806 0.079 -0.049 
4 0.15 0.138 0.149 0.114 0.153 
5 0.2 0.190 0.199 0.190 0.201 
6 0.25 0.214 0.222 0.189 0.276 
7 0.3 0.262 0.272 0.270 0.300 
8 0.2 0.243 0.249 0.212 0.303 
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Table 3-10 RMS errors PS-wave inversion methods estimating ε  

Method PS NMO 
ε 

PS regrid 
ε 

PS NN 
Estimating ε 

PS NN 
Estimating ε and δ 

RMS 0.0266 0.0238 0.0288 0.0968 

 

Graphically and statistically the PS regridding inversion algorithm provided the best 

estimates of ε.  

3.2.5 Solving for δ from joint PP and PS data 

 Both compressional wave and converted wave data were used in conjunction to 

investigate if better results for δ could be attained. Two types of neural networks were 

invoked for this task;  

1. neural network inversion estimating δ (PP PS NN estimating δ) 

2. neural network inversion estimating ε and δ (PP PS NN estimating ε and δ) 

Results are displayed below in Table 3-11, Table 3-12, Figure 3-14 and Figure 3-15. 

Table 3-11 True and calculated δ values from joint PP and PS-wave inversion methods 

Layer True δ PP PS NN 
Estimating δ

PP PS NN 
Estimating δ and ε

1 0.2 0.208 0.190 
2 0.25 0.286 0.209 
3 0.3 0.213 0.333 
4 0.1 0.118 0.066 
5 0.15 0.149 0.152 
6 0.2 0.187 0.234 
7 0.25 0.250 0.250 
8 0.3 0.544 0.305 
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Figure 3-14 True and calculated δ values from joint PP and PS-wave inversion methods. 
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Figure 3-15 Ratio difference of calculated and true δ values calculated from joint PP and PS-wave 
inversion methods 
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Table 3-12 RMS error for joint PP and PS-wave inversion methods estimating δ  

Method PP PS NN 
Estimating δ

PP PS NN 
Estimating ε and δ

RMS 0.0929 0.0256 

 

When both wave types are considered a neural network that solves for both parameters 

gives optimal results. 

3.2.6 Solving for ε from joint PP and PS data 

 Similarly ε was determined by doing a joint inversion on compressional and 

converted wave data. Two types of neural networks were tested;  

1. neural network inversion estimating ε (PP PS NN estimating ε) 

2. neural network inversion estimating ε and δ (PP PS NN estimating ε and δ) 

Results are provided in Figure 3-16, Figure 3-17, Table 3-13 and Table 3-14. 
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Figure 3-16 True and calculated ε values from joint PP and PS-wave inversion methods. 
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Figure 3-17 Ratio difference of calculated and true ε values calculated from joint PP and PS-wave 
inversion methods. 

 
Table 3-13 True and calculated ε values from joint PP and PS-wave inversion methods 

Layer True ε PP PS NN 
Estimating ε

PP PS NN 
Estimating ε and δ 

1 0 0.007 0.00 
2 0.05 0.041 0.057 
3 0.1 0.077 0.101 
4 0.15 0.140 0.107 
5 0.2 0.193 0.203 
6 0.25 0.223 0.298 
7 0.3 0.284 0.300 
8 0.2 0.201 0.169 
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Table 3-14 RMS errors for joint PP and PS-wave inversion methods used to estimate ε 

Method PP PS NN 
Estimating ε 

PP PS NN 
Estimating ε and δ

RMS 0.0148 0.0255 

 

The best estimation of ε is found from a neural network that estimates ε. 

3.2.7 Comparison of methods 

 A summary of the RMS errors associated with each inversion method is provided 

in Figure 3-18 and Figure 3-19. Figure 3-18 displays the RMS error for δ estimation; 

while Figure 3-19 displays the RMS error for ε estimation. The y-axis has been plotted on 

a log scale. 
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Figure 3-18 RMS errors for the estimation of δ. P-wave neural networks outperform other methods. 
The PS and PP-PS neural networks give the worst results.  
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Figure 3-19 RMS errors for the estimation of ε. P-wave neural networks that estimate both 
parameters outperform other methods. The PS method gives the worst results 

 
Figure 3-18 indicates that δ is best resolved from P-wave neural networks that invert for δ 

and Figure 3-19 indicates that ε is best resolved from P-wave neural networks that invert 

for both ε and δ. 

3.3 Conclusion 

 Techniques discussed in chapter 2 to estimate the anisotropy parameters have 

been applied to a synthetic data set generated from an anisotropic model. P-wave neural 

network inversion techniques are the most robust method for estimating δ and ε. 

Methods were assessed by comparing the RMS errors of each method. Overall, 

neural networks applied to compressional wave data gave the best results. Other methods 
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were very close in their performance, but overall it was the P-wave neural networks that 

proved to be most promising. The method determined to best recover δ was a neural 

network applied to P-wave data that estimates δ. It was able to delimit δ to within 5% of 

the true value. Conversely the method deemed to best determine ε was a neural networks 

applied to P-wave data that recovered both δ and ε. It was able to delimit ε to within 16% 

of the true value. When considering only converted wave data the PS regridding 

inversion gave the best results for both ε and δ. When considering compressional and 

converted wave data used in conjunction neural networks designed to recover both 

parameters gave the best results for δ and when designed to recover only ε gave the best 

results for ε. 
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Chapter 4 Field Data 

Inversion methods determined to give optimal results for the synthetic data are 

applied to the Blackfoot study for estimation of ε and δ. Accordingly neural networks are 

applied to compressional wave data for the recovery of the anisotropic parameters. 

4.1 Field Data 

  A 3.0 km 3C-2D seismic line was collected over the Blackfoot field in 

November of 1997.  Blackfoot is located in Township 23, Range 23 west of the fourth 

meridian and is about 10-15 km southeast of Starthmore Alberta as seen in Figure 4-1. 

 

Figure 4-1 Map showing the location of the Blackfoot field in relation to the city of Calgary (Stewart 
et al., 1997). 
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4.2 Geology 

 The targets of the Blackfoot survey are Glauconitic incised valleys in the lower 

Manville Group of the Lower Cretaceous (Figure 4-2). The targets are lucrative with an 

average porosity of 18% and a cumulative production that exceeds 200 MMbbls oil and 

400 BCF gas (Miller at al., 1995). The Glauconitic sandstones vary from 0-35 m in 

thickness and are located at a depth of roughly 1550 m in the area of study. The sand is 

very fine to medium grained in the eastern part of Alberta. (Miller at al., 1995).   

 

Figure 4-2 Stratigraphic sequence of the area of interest (Miller et al., 1995). 
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4.3 Evidence of anisotropy at Blackfoot 

 A test for anisotropy in the Blackfoot dataset was performed on the 1999 radial 

component by varying the values of the effective Vp/Vs ratio. No obvious anisotropic 

effects were observed; this is normal when analyzing a flat data set. However the most 

sound image of the channel was found using Vp/Vs =0.9. Thus, there is anisotropy in the 

area but it is weak (Lu and Margrave, 2001). Similar results were found by Cary and Lu 

(1999) who learned from a similar analysis that a great deal of resolution is lost when the 

effects of layered anisotropy are ignored. Hasse (1998) also explained non-hyperbolic 

moveout through anisotropy after discounting other potential explanations. Estimates of 

the anisotropic parameters are given by Elapavuluri (2003). Elapavuluri estimated δ from 

equation 2.51a and ε from a Monte Carlo inversion. 

4.4 Seismic Survey 

 The survey involved the collection of a 3 km 3C-3D reflection profile. The shot 

interval was 20 m on the half station, the receiver interval was also 20 m except in the 

central 1 km where the spacing was 2 m. This thesis does not consider the high resolution 

data. 151 shots consisting of 4 kg charges were employed. The charges were loaded in 

holes at a depth of 18 m. Receivers were buried at a depth of 0.5 m to eliminate wind 

noise (Stewart et al., 1997). 

4.5 VSP Survey 

 In 1995 a VSP survey was acquired in the PCP 12-16-23-23W4 well. The VSP 

survey was designed to record shots from a 3C-3D surface survey. A five level tool read 

431 shots that consisted of 4 kg of dynamite buried in 18 m holes. Longer vertical arrays 
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were simulated by moving the receiver up and down hole for various shots, depth 

coverage was from 400 - 910 m (Zhang et al., 1996). Data was recorded for 4 s at 1ms 

intervals. Vertical P- and S-wave velocities were taken from this survey. 

4.6 Outline of the method  

 A line named ‘20m vertical’ was processed in Promax to obtain RMS velocities. 

The basic processing flow was 

1) Geometry 

2) AGC 

3) Band-pass filtering 

4) Sorting into CSP gathers 

5) Velocity analysis 

The RMS velocities were converted to interval velocities. Vertical compressional and 

shear velocities were found from the VSP data. Data was read into the neural networks 

that were developed during synthetic data simulation. The P-wave neural network that 

estimates δ was used to recover δ and the P-wave neural network that estimates both δ 

and ε was used to recover ε. 

4.7 Estimation of ε and δ 

The optimal inversion methods are applied to the Blackfoot data to recover ε and δ. 

Following Elapavuluri (2003) anisotropy parameters will be estimated in the formations 

listed in Table 4-2. Acronyms used to describe these formations are also listed in Table 

4-2. 
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Table 4-1 Formation naming convention 

Acronym Formation Name 

BFS Base of Fish Scales 

MANN Blairmore-Upper Mannville 

COAL Coal Layer 

GLCTOP Glauconitic Channel 

MISS Shunda Mississippian 

 

Inversions results are listed in Table 4-2 and 
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Table 4-3, for reference results from Elapavuluri (2003) are also shown. The results are 

also shown graphically in Figure 4-3 and Figure 4-4. 

Table 4-2 Calculated δ values from Blackfoot P-wave neural networks and Elapavuluri (2003) 

Formation δ  
(estimated)

δ  
(Elapavuluri)

BFS 0.269 0.230 

MANN -0.005 0.040 

COAL 0.284 0.240 

GLCTOP 0.057 0.060 

MISS -0.121 0.000 
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Table 4-3 Calculated ε values from Blackfoot P-wave neural networks and Elapavuluri (2003) 

Formation ε 
(estimated)

ε 
(Elapavuluri)

BFS 0.232 0.060 

MANN -0.020 0.008 

COAL 0.192 0.120 

GLCTOP 0.030 0.006 

MISS 0.010 0.001 
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Figure 4-3 Comparison of δ recovered from P-wave neural networks that estimate delta and the 
results of Elapavuluri  (2003) obtained from a Monte Carlo inversion. 
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Figure 4-4 Comparison of ε recovered from P-wave neural networks that estimate both ε and δ and 
the results of Elapavuluri (2003) obtained from a Monte Carlo inversion. 

 

Attempts to quantify anisotropy in the Blackfoot field are limited. Comparing with the 

results of Elapavuluri (2003) a fairly good match is obtained. The worst correlation is 

found at the MISS for δ and at the BFS for ε. The results are consistent with Thomsen 

(1986) where the sands show little anisotropy and the coals and shales display stronger 

anisotropy. 

4.8 Conclusions and Discussion 

Inversion methods found to be optimal from synthetic modelling were applied to 

the Blackfoot data set in order to recover ε and δ. The method of choice for recovering δ 
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was neural networks that estimate δ from P-wave data and for recovering ε was neural 

networks that estimate both ε and δ from P-wave data. The data was sorted into CSP 

gathers to perform the velocity analysis. Elapavuluri (2003) found that CSP gathers gave 

superior results when compared to CMP methods. Vertical velocities were obtained from 

a VSP survey. Results are consistent with Elapavuluri (2003) and Thomsen (1986), the 

coals and shales display a higher degree of anisotropy than the sands. 
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Chapter 5 Conclusion and Discussion 

 The earth is known to be anisotropic yet many processing algorithms assume 

isotropy. The most commonly encountered type of anisotropy is VTI. This thesis aims to 

determine if the anisotropic parameters (ε and δ) that describe P- and PS-waves can be 

best determined from compressional wave data, converted wave data or using both 

simultaneously and to determine which method best estimates these parameters. Methods 

were evaluated using the RMS error. 

Anisotropic ray tracing was performed on a synthetic model consisting of 8 

horizontal layers, each with its own unique physical properties, using NORSAR2D’s 

anisotropic ray mapper. Results were convolved with a Ricker wavelet to create synthetic 

seismograms. Common scatter point gathers were formed in PROMAX and velocity 

analysis carried out.  CSP gathers were chosen as they can be formed with slight 

dependence on velocity but still provide accurate velocities (Bancroft, 2004). This was 

also proven by Elapavuluri (2003). CSP gathers can and usually do have a higher fold 

than traditional CMP gathers as this is limited by the migration aperture and not the 

source receiver offset leading to higher resolution in the semblance analysis. 

Several methods for the estimation of Thomsen’s anisotropy parameters were 

proposed and investigated: 

1. P-wave NMO equations 

2. PS-wave NMO equations 

3. P-wave regridding inversion 

4. PS-wave regridding inversion 

5. Neural networks applied to P-wave data estimating δ  
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6. Neural networks applied to P-wave data estimating ε 

7. Neural networks applied to P-wave data estimating δ and ε 

8. Neural networks applied to PS-wave data estimating δ  

9. Neural networks applied to PS-wave data estimating ε 

10. Neural networks applied to PS-wave data estimating δ and ε 

11. Neural networks applied to PP- and PS-wave data estimating δ 

12. Neural networks applied to PP- and PS-wave data estimating ε 

13. Neural networks applied to PP- and PS-wave data estimating δ and ε 

Methods were assessed by comparing the RMS errors of  each method. Overall, 

neural networks applied to compressional wave data gave the best results. Other methods 

were very close in their performance, but it was the P-wave neural networks that proved 

to be most promising. The method determined to best recover δ was a neural network 

applied to P-wave data solving for δ. It was able to delimit δ to within 5% of the true 

value. Conversely the method that best determined ε was a neural network applied to P-

wave data that recovered both δ and ε. It was able to delimit ε to within 16% of the true 

value. When considering only converted wave data the PS regridding inversion gave the 

best result for both ε and δ. When considering compressional and converted wave data 

used in conjunction neural networks designed to recover both parameters gave the best 

results for δ and when designed to recover only ε gave the best results for ε. 

Having had success with synthetic data the algorithms that best defined the 

anisotropy parameters were applied to the Blackfoot data set. Evidence of anisotropy in 

the area had been shown. Inversion results were consistent with Elapavuluri (2003) who 

had previously used P-wave NMO equations to determine δ and a Monte Carlo inversion 
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to determine ε. Results are also in agreement with laboratory results of Thomsen (1986) 

where the coals and shales displayed a higher degree of anisotropy than the sands. 

In conclusion a simple and robust algorithm is proposed for the estimation of 

Thomsen’s anisotropy parameters, ε and δ. A neural network that estimates δ, has 29 

neurons, uses vertical compressional and shear wave velocities and compressional 

interval velocity information for training and incorporates a tan sigmoid and linear 

transfer function will give optimal results for the estimation of δ. Similarly a neural 

network that estimates ε and δ, has 88 neurons, use vertical compressional and shear 

wave velocities and compressional interval velocity information for training and 

incorporates a tan sigmoid and linear transfer function will give optimal results for the 

estimation of ε. 
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Appendix 1 Velocities 

Instantaneous velocity is defined as dt
dzVins =  and represents the actual velocity 

at a point in the subsurface at a specific location. To relate a specific depth with a specific 

time the average velocity is used 

∫−
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insave dttV

tt
tV .    (A1.1) 

This is the velocity used for time to depth conversion. The RMS velocity is an apparent 

velocity and is defined in Claerbout, 2001 as 
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 If velocity varies with depth, the traveltimes from a scatter point are roughly 

hyperbolic in an isotropic medium. If we break the event into many short line segments 

each segment gives a different )( iRMS tV  and we then have the tiresome job of determining 

the best model. Instead we fit the observational data to the best fitting hyperbola using a 

different velocity hyperbola for each apex i.e. find )( 0tVstk  (a stacking velocity) so this 

equation will best flatten the data in (t,x)-space 
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where 0t  is the vertical two way travel time. A common application involves attaining 

interval velocities from measured RMS velocities. In the ith layer the interval velocity is 

ivint_ and the two way travel time it _0∆ . The RMS velocity of a reflection from the bottom 
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of the ith layer is iRMSV _ . Applying equation A1.2 we define velocities from reflections at 

the first, second and third layers as (Claerbout, 2001) 
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Algebraic manipulation of equations A1.5 and A1.6 leads to the squared interval velocity 
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or more simply 
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where τ is now the two way vertical travel time. Examination of equation A1.7 leads to 

the limitation that the RMS velocity for the third layer can not be much smaller that than 

the RMS velocity estimate for the second layer. This is a Dix type integration or Dix 

equation (Dix, 1955). 
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Appendix 2 Sensitivity analysis 

A2.1 Regridding Inversion 

To determine how sensitive the regridding inversion algorithms are to errors in 

the input parameters sensitivity analysis was performed on the P- and PS-wave regridding 

inversion algorithms for the determination ε. A five, ten, fifteen and twenty-five percent 

error was added to δ, the shift parameter and the interval velocity for the P-wave 

regridding inversion and to the δ and interval velocity for the PS-wave regridding 

inversion. All other parameters were held constant at their true values and the resultant ε 

calculated.  

Figures A2.1, A2.2 and A2.3 show the resultant ε and ratio differences for the P-

wave regridding algorithm, while Figures A2.4 and A2.5 show results for the PS-wave 

regridding inversion.  
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Figure A1-1Resultant ε values when error was added to δ. 5, 10, 15 and 25% error was added to the 
input δ value while all other parameters were held constant at their true values.  It is seen that the 
deviation in the resultant ε is proportional to the error on the input value.  The actual amount of 
error however is layer dependant 
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Figure A1-2 Resultant ε values when error was added to the shift parameter. 5, 10, 15 and 25% error 
was added to the input shift value while all other parameters were held constant at their true values.  
It is seen that the deviation in the resultant ε is proportional to the error on the input value.  The 
actual amount of error however is layer dependant. 
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Figure A1-3 Resultant ε values when error was added to the velocity. 5, 10, 15 and 25% error was 
added to the input velocity value while all other parameters were held constant at their true values.  
It is seen that the deviation in the resultant ε is proportional to the error on the input value.  The 
actual amount of error is layer dependant. 
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Figure A1-4 Resultant ε values when error was added to δ. 5, 10, 15 and 25% error was added to the 
input δ values while all other parameters were held constant at their true values.  It is seen that the 
deviation in the resultant ε is proportional to the error on the input value.  The actual amount of 
error is layer dependant. 
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Figure A1-5 Resultant ε values when error was added to the interval velocity. 5, 10, 15 and 25% 
error was added to the input interval velocity values while all other parameters were held constant at 
their true values.  It is seen that the deviation in the resultant ε is proportional to the error on the 
input value.  The actual amount of error is layer dependant. 

 
For P-wave regridding inversion errors in the calculated ε are linearly 

proportional to errors in δ and the shift parameter but not linearly proportional to errors in 

the velocity. Further P-wave regridding inversion is most sensitive to erroneous 

velocities. For PS-wave regridding inversion errors in the calculated ε are linearly 

proportional to errors in δ and the velocity. The PS-wave inversion algorithm is also most 

sensitive to errors in the velocity and is more sensitive to errors than is the P-wave 

regridding inversion. All results are layer dependent.  

The RMS errors in the resultant ε values are tabulated in Table A1-1 and Table 

A1-2 
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Table A1-1 RMS errors in the calculated ε values from P-wave regridding inversion when the 
indicated amount of error is added to either δ, the shift parameter or the velocity 

 5% error 10% error 15% error 25% error 
δ 0.0087 0.0174 0.0261 0.0433 

shift parameter 0.0075 0.0150 0.0224 0.0374 
velocity 0.0234 0.0419 0.0566 0.0781 

 
 
Table A1-2 RMS errors in the calculated ε values from PS-wave regridding inversion when the 
indicated amount of error is added to either δ or the velocity 

 5% error 10% error 15% error 25% error 
δ 0.0121 0.0242 0.0362 0.0602 

velocity 0.0445 0.0912 0.1400 0.2441 
 
 

These tables reinforce the notion that PS-wave regridding inversion is most sensitive to 

errors and that both algorithms are most sensitive to errors in the velocity 

 

A2.2 Neural Network Inversion 

 To test the sensitivity of neural networks to erroneous velocities error was added 

to the input interval velocity in the P-wave inversion neural network that estimates δ and 

in the P-wave inversion neural network that estimates ε and δ. Results are displayed 

below in Figure A2.6 for δ estimation and in Figure A2.7 for ε estimation.  
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Figure A1-6 Resultant δ values when error was added to the velocity. 5, 10, 15 and 25% error was 
added to the input velocity value while all other parameters were held constant at their true values.  
It is seen that the deviation in the resultant δ is proportional to the error on the input value.  The 
actual amount of error is layer dependant. 
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Figure A1-7 Resultant ε values when error was added to the interval velocity. 5, 10, 15 and 25% 
error was added to the input velocity values while all other parameters were held constant at their 
true values.  It is seen that the deviation in the resultant ε is not proportional to the error on the 
input value and is layer dependant. 

 
Results demonstrate that errors in the calculated δ are linearly proportional to the error in 

the interval velocity; the relation was not linear for the calculation of ε. Again the errors 

are layer dependant as in the case of regridding inversion. ε is more sensitive to errors in 

the input velocity than is δ. 

RMS errors for the calculation of ε and δ when the velocity is in error are 

tabulated in Table A1-3 and Table A1-4 

Table A1-3 RMS errors in the calculated δ values from P-wave neural networks when the indicated 
amount of error is added to the velocity 

 5% error 10% error 15% error 25% error 
velocity 0.06751 0.13548 0.19789 0.28977 
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Table A1-4 RMS errors in the calculated ε values from P-wave neural networks when the indicated 
amount of error is added to the velocity 

 5% error 10% error 15% error 25% error 
velocity 0.02298 0.065849 0.11041 0.15963 

    

Examination of RMS errors indicates that δ is most susceptible to error when the velocity 

is erroneous. 


