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Abstract

Full-waveform inversion (FWI) is a powerful method for estimating subsurface properties

that govern seismic wave propagation, and it is increasingly recognized as a key technology

in the global energy transition. Despite its potential, the practical deployment of FWI is

hindered by several factors, for example, the limited subsurface illumination imposed by

acquisition geometry, the influence of noise, and non-repeatability across repeated seismic

surveys in geo-monitoring with FWI. These challenges reduce both the resolution and the

reliability of FWI results, ultimately limiting confidence in model interpretation. In this

thesis, I present approaches for addressing such issues and mitigating their impact, thereby

improving the robustness and applicability of FWI for energy-transition-related monitoring

and characterization tasks.

Seismic-while-drilling (SWD) is a well-established technique that is widely discussed in

geothermal-related applications. This technique can offer a promising opportunity to en-

hance FWI by providing unique and transmissive ray paths during drilling, and thus can

improve subsurface illumination and enrich FWI models. Conversely, FWI can supply SWD

with auxiliary subsurface images that support real-time monitoring of the drilling process.

An additional need during drilling is the continuous monitoring of drill-bit positions and drill-

bit–rock interactions, which could be incorporated into the FWI framework as additional

inversion variables. In this thesis, I propose novel approaches to integrate source-related

unknowns into FWI and develop algorithms capable of jointly estimating source properties

and subsurface physical models. Using this framework, I investigate how the additional ray

paths from SWD can improve FWI results and how FWI can, in turn, be used to estimate

drill-bit source characteristics in SWD applications.

Due to the inherent nonlinearity of FWI, the resulting models carry a substantial degree

of uncertainty. This uncertainty becomes even more pronounced in time-lapse FWI, which is
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increasingly recognized as a vital tool for geophysical monitoring. The amplified uncertainty

poses a significant challenge for accurately quantifying temporal variations in subsurface

models. I integrate two advanced yet computationally efficient uncertainty quantification

approaches into the time-lapse FWI framework. One of them is from the sample-based

family, and the other is from the variational inference realm. Using synthetic experiments

with varying acquisition geometries and noise levels in the time-lapse seismic surveys, I

evaluate and compare the performance of these two methods. Based on these comparisons, I

provide recommendations regarding their practicality and applicability in realistic monitoring

scenarios.

Finally, I develop a 3D FWI framework for delineating more spatial changes in the sub-

surface. Compared to 2D approaches, 3D FWI incorporates more realistic wave physics,

enabling an improved representation of subsurface changes over time. I validate this frame-

work through numerical experiments designed using a widely studied time-lapse dataset. In

addition, I extend the targeted nullspace shuttle method to 3D FWI to suppress inversion

artifacts arising from non-repeatability in time-lapse seismic surveys, and thus reduce the

challenges in the interpretation. The results demonstrate the strong potential for achieving

reliable 3D time-lapse FWI under realistic and relatively sparse acquisition constraints.
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ω Angular frequency

ω0 Reference angular frequency

Φ Objective function in full waveform inversion

Φb Baseline objective function in full waveform inversion

Φm Monitor objective function in full waveform inversion

Ψ Objective function in the targeted nullspace shuttle

ρ Density

σ The standard deviation

τ A time when a seismic source is activated

xxi



θ The inclination angle of the drilling trajectory

ε An acceptable misfit threshold

ξ A location where a seismic source is activated

N The normal distribution symbol

Im Imaginary part

Re Real part∑
Summation symbol

∇ The derivative operator

||.|| The L2 norm operator

< ., . > The inner product operator

xxii



Chapter 1

Introduction

1.1 Full waveform inversion in energy transition

The global energy landscape has undergone a profound transformation in recent decades,

driven by the urgent need to mitigate climate change and accelerate the transition toward

sustainable energy systems. This shift is characterized by a gradual reduction in reliance on

fossil fuels and a growing emphasis on renewable and low-carbon alternatives. However, the

path to a low-carbon future introduces significant technological challenges that require inno-

vative solutions. Among the most promising approaches are geothermal energy and carbon

capture, utilization, and storage (CCUS). Geothermal energy harnesses the internal heat of

the Earth, providing a reliable, sustainable, and carbon-neutral resource with the potential

to diversify energy portfolios and strengthen energy security (Barbier, 2002). In parallel,

CCUS seeks to reduce greenhouse gas emissions from fossil fuel infrastructure by capturing

carbon dioxide (CO2) and storing it underground, thus mitigating the environmental im-

pact of conventional energy systems and offering a critical tool for achieving climate goals

(Lawton et al., 2019; Dziejarski et al., 2023).

Both geothermal energy and CCUS offer significant benefits but face distinct technical

challenges. Geothermal energy extraction requires drilling deep into the interior Earth to

harness heat from hot water or steam. Although the process resembles conventional resource

extraction techniques, such as oil and gas drilling, it presents its own set of complications.

The rock formations encountered are sometimes complicated, demanding advanced control

methods to effectively manage the drilling processes. Moreover, deviated drilling trajectories

are frequently employed, requiring careful optimization to avoid zones with natural fractures

and faults in the rock (Archer, 2020). Effective monitoring during geothermal operations
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is thus crucial, ensuring both safety and maximizing resource extraction efficiency (Auriol

et al., 2019; Sharmin et al., 2023). In contrast, CCUS focuses on securely storing captured

CO2 in underground reservoirs. Ensuring containment and operational conformance requires

advanced modeling, measurement, and monitoring technologies to delineate the subsurface

accurately and guarantee the integrity of the storage site (Lawton et al., 2019). A key

component of this process is time-lapse seismic monitoring, which verifies that stored CO2

remains trapped underground and does not migrate into unintended areas (Lumley, 2001;

Arts et al., 2004; Chadwick et al., 2010).

Seismic waves, generated either by natural events or artificial sources, contain valuable

information about the subsurface properties. However, accurately predicting the internal

structures of the interior Earth remains a complex challenge. While traditional seismic in-

version techniques, such as travel-time tomography (Bregman et al., 1989), migration (Stolt,

1978; Nemeth et al., 1999), and AVO inversion (Ostrander, 1984; Innanen, 2014) have been

useful for retrieving certain subsurface characteristics, they utilize a limited portion of the

available seismic data, thus limits the comprehensive depiction of the resulting models. Full

waveform inversion (FWI) offers a solution by leveraging all recorded seismic data types,

including reflections, refractions, diving waves, and multiple-scattered waves (Virieux and

Operto, 2009), to produce high-resolution subsurface models by iteratively minimizing the

difference between the observed and synthetic seismic data (Tarantola, 1984, 2004; Fichtner,

2010), either in 2D or 3D spaces, and in time or frequency domains (Marfurt, 1984; Pratt,

1990; Brossier et al., 2009).

Despite the promise of FWI, its integration into geothermal energy and CCUS appli-

cations presents challenges that demand tailored strategies. In drilling environments, the

seismic energy generated by the drill bits offers a unique opportunity to enhance subsurface

illumination, yet accounting for the dynamic positions of the drilling-related sources and the

evolving formation properties introduces significant inversion complexity and thus increases
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the risk of data leakage, where physical properties may be misattributed. In CCUS monitor-

ing, a central challenge lies in quantifying uncertainty in time-lapse FWI. Non-repeatability

between baseline and monitor surveys, combined with acquisition noise, can propagate into

the inversion results and undermine the confidence in delineating CO2 plumes. Robust and

efficient uncertainty quantification strategies are thus essential to ensure reliable and risk-

aware monitoring. Finally, because CO2 plumes evolve in three dimensions, extending FWI

into the 3D domain is necessary. However, the added dimension intensifies non-uniqueness

and inversion ambiguities, underscoring the need for advanced strategies to extract mean-

ingful time-lapse variations.

1.2 Incorporation of seismic-while-drilling and FWI

The foundations of FWI were established through early acoustic formulations based on sim-

plifying assumptions, such as isotropic density (Lailly, 1983; Tarantola, 1984), which provided

the first framework for seismic imaging. However, these approaches often proved insufficient

to reproduce the full complexity of observed seismic data. This limitation motivated the

development of more advanced FWI formulations, incorporating elastic (Innanen, 2014; Pan

et al., 2018), viscoacoustic (Métivier et al., 2015; Plessix et al., 2016), and viscoelastic physics

(Keating and Innanen, 2020), which have progressively improved the reliability and resolu-

tion of subsurface models. In environments where a new class of drilling-related parameters

is introduced, multiparameter FWI is particularly promising, as it can exploit the complex

wavefields generated during the drilling process.

However, a persistent challenge in multiparameter FWI is the cross-talk, which arises

when residual data are misattributed to parameters that only appear responsible for the ob-

served discrepancies. This problem intensifies as the number of parameters in the inversion

increases (Bunks et al., 1995; Operto et al., 2013; Innanen, 2014; Métivier et al., 2015; Pan

et al., 2016; Keating and Innanen, 2020), especially when drilling-induced seismic sources are
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themselves treated as inversion variables. Beyond parameter coupling, limitations in acqui-

sition geometry further exacerbate cross-talk. Traditional seismic surveys often suffer from

incomplete spatial sampling and restricted energy coverage of the subsurface (Jannane et al.,

1989; Mothi et al., 2014; Kerrison et al., 2021). Because seismic waves preferentially refract

toward high-velocity zones (e.g., salt bodies) and away from low-velocity anomalies (e.g.,

overpressure zones) (Cheadle et al., 1991; Kazemi et al., 2018, 2020), these acquisition gaps

produce poorly constrained “shadow zones” where parameter estimates become unreliable.

Although wide-aperture acquisition designs can improve ray coverage and mitigate some

of these limitations, achieving a fully constrained subsurface model remains a fundamental

challenge (Virieux and Operto, 2009; Vigh et al., 2021).

As mentioned, using dynamic sources generated by the drilling process offers a promising

solution, a technique known as seismic-while-drilling (SWD). In SWD, the drill bit acts as a

continuous seismic source, producing energy as it interacts with the surrounding rock. A key

advantage of this approach is that it eliminates the need for downhole instrument installation,

thereby reducing costs associated with deploying additional seismic sources. Furthermore,

SWD operates simultaneously with drilling, enabling seismic data acquisition without in-

terrupting operations and allowing for real-time monitoring or depth measurements after

processing.

Although the idea of using drill-bit sources dates back to the 1930s, it was not until

the 1980s that researchers began systematically studying such signals to produce reliable

geophysical results (Klaveness, 1980; Katz, 1984; Staron et al., 1988). Since then, numerous

studies have explored the potential of SWD for seismic imaging. For example, early work

by James W. Rector and Hardage (1992) focused on the source signatures and wavefields

generated by roller-cone bits, while Poletto and Miranda (2004) later addressed challenges

like incorrect deconvolution due to drill-bit multiples. Other studies have examined the

influence of drill-bit boundary conditions based on varying rock properties (Richard et al.,
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2004; Germay et al., 2009).

In the field of seismic imaging, SWD has shown promise in both synthetic models and

field tests. For example, Kazemi and Sacchi (2014) applied a multichannel sparse blind

deconvolution (SMBD) algorithm to recover the drill-bit signature and integrate SWD data

with surface seismic images, enhancing subsurface illumination. Further developments by

Kazemi et al. (2018) demonstrated the feasibility of using SWD source variability to improve

migration results, while Kazemi et al. (2021) developed a modeling framework for the drill-

bit source signature that could be applied to successive FWI. These studies highlight that

the transmissive ray paths generated by SWD can extend seismic coverage, especially in

regions poorly illuminated by traditional surface acquisitions. As shown in Figure 1.1, such

additional paths have the potential to improve FWI resolution and mitigate cross-talk by

providing the missing data required to better constrain the subsurface.

Figure 1.1: Schematic figure of the radiation patterns of SWD sources (modified after James

W. Rector and Hardage (1992)).
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Despite its potential, integrating SWD into FWI presents challenges. Accurately recov-

ering both the subsurface properties and the seismic source characteristics generated by the

drill bits is a complex task. To effectively integrate SWD data into the inversion, it is crucial

to parameterize the moving source locations and radiation patterns. This process requires

the simultaneous recovery of both the subsurface model and the source parameters, which

is further complicated by the uncertainties inherent in the drilling environment. Although

unique transmissive energy can enhance the subsurface illumination, cross-talk between the

subsurface properties and the unknown source parameters could lead to errors and misinter-

pretations of the subsurface model if the inversion is not properly managed (Willacy et al.,

2019).

1.3 Time-lapse FWI and its role in CCUS

The global CCUS sector has undergone remarkable expansion with a combined annual capac-

ity exceeding millions of metric tons of CO2. This growth is evidenced by the proliferation

of over 100 projects at various stages of development, including the Shute Creek project in

the USA (Parker et al., 2011), the Sleipner CCUS project in Norway (Furre et al., 2017),

and the QUEST project in Canada (Duong et al., 2019). Another pilot-scale project is the

Containment and Monitoring Institute (CaMI) project launched under Carbon Management

Canada (CMC), and various monitoring research projects are ongoing in the Field Research

Station (FRS), aiming at advancing monitoring technologies for CCUS. The FRS site is

located 200 km southeast of Calgary in Newell County. Some details of this facility and

recent research can be found in Lawton et al. (2019); Macquet and Lawton (2019); Wang

and Lawton (2023).

Monitoring the injection and depletion of fluids in subsurface reservoirs is essential for

understanding the dynamic processes that occur during fluid migration. These processes lead

to changes in reservoir saturation, pressure, and temperature, which in turn affect seismic
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velocities and densities in the subsurface. Time-lapse seismic is a well-established method

that captures such changes over time by conducting repeated seismic surveys of the same

area. This allows for continuous monitoring of reservoir evolution, with the assumption

that geological structures remain static and any observed seismic variations are attributed

to temporal changes within the reservoir—typically caused by fluid injection or depletion

(Lumley, 2001).

Time-lapse seismic has long been a key tool in oil reservoir management, where it is used

to monitor the changes in reservoirs caused by fluid injection and subsequent production.

It plays a crucial role in identifying bypassed oil for infill drilling, helping to extend the

economic life of oil fields (Lumley, 2001). Over time, its application has expanded to include

monitoring long-term CO2 sequestration in CCUS projects. Typically, a baseline survey is

conducted before fluid injection begins, followed by a series of monitoring surveys over time

to track the evolution of the reservoir. The insights from time-lapse seismic are often derived

through qualitative analysis, which focuses on visualizing changes in amplitude maps and

time shifts at specific horizons. For example, impedance contrasts and changes in seismic

response, such as amplitude variations and tuning effects, have been used to characterize CO2

accumulations in thin layers. Additionally, velocity pushdown effects, where seismic waves

slow down as they pass through CO2-saturated zones, have been identified (Arts et al., 2004).

While useful, these qualitative approaches are often limited by their reliance on post-stack

data and simplified convolution models. As a result, they may fail to capture more subtle

changes, particularly when seismic variations visible at certain angles are obscured in stacked

data. Furthermore, amplitude changes may not be well-preserved if the velocity model is

not updated between surveys.

FWI, with its capacity to maximize data information and resolve detailed velocity mod-

els, is increasingly regarded as optimal for tracking CO2 plumes (Nakata et al., 2022; Hu

et al., 2022). This capability is critical for distinguishing velocity perturbations caused by
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CO2 migration from irrelevant background noise, a challenge magnified by the dynamic na-

ture of storage sites. Different FWI schemes have been proposed for time-lapse monitoring.

These include parallel FWI, where baseline and monitoring datasets are inverted separately

and then compared (Plessix and Perkins, 2010); sequential FWI, where the baseline model

is used as the initial model for monitor surveys to improve consistency (Asnaashari et al.,

2015); and double-difference FWI, which focuses on inverting only the differences between

baseline and monitor datasets, reducing the impact of artifacts and noise (Zhang and Huang,

2013). Additionally, joint inversion, which simultaneously inverts multiple datasets, ensures

consistency and reduces uncertainty across time-lapse surveys (Rittgers et al., 2016). Sev-

eral successful FWI applications have been demonstrated in the Sleipner project, including

high-resolution velocity and thickness characterization of CO2-bearing subsurface structures

(Romdhane et al., 2014), the reconstruction of a finely resolved velocity model revealing at

least seven distinct layers within the CO2 distribution chimney (Mispel et al., 2019), and

the effective use of sparse ocean-bottom node (OBN) data in FWI to obtain an accurate

velocity model capturing plume evolution (Stock et al., 2024). Despite its advantages, time-

lapse FWI faces challenges. Non-repeatability between baseline and monitor surveys, due to

acquisition or environmental variations, can introduce inconsistencies that complicate data

interpretation and may lead to false subsurface changes if not properly managed (Mosegaard

and Tarantola, 1995; Kotsi et al., 2020; Keating and Innanen, 2021). Additionally, the inher-

ent complexities of FWI, such as sparse data coverage, noise, and imperfections in forward

modeling, contribute to uncertainty in the inversion process (Parker, 1977). Such uncertainty

will get further amplified in a time-lapse context.
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1.4 Uncertainty quantification in FWI: sample-based methods and varia-

tional inference

Uncertainty quantification has thus become an important aspect of time-lapse FWI, partic-

ularly in the context of CCUS projects where the complexity of FWI is increased because of

the consecutive inversions. Quantifying uncertainty helps assess the reliability of the inver-

sion results and ensures that decision-makers can confidently interpret the changes observed

in the subsurface. Thus, addressing these uncertainties is vital for successfully applying FWI

in CCUS projects, where accurate and reliable monitoring is crucial for operational safety

and regulatory compliance.

One commonly employed set of approaches for assessing uncertainty in FWI problems

is the realm of Monte Carlo (MC) based sampling methods within a Bayesian framework.

These techniques involve proposing various combinations of model parameters and evalu-

ating their acceptance probabilities, ultimately generating one or multiple Markov chains

comprising numerous eligible models (Dosso et al., 2014; Fu and Innanen, 2022). This pro-

cess aids in estimating crucial statistical information, such as the posterior distribution of

model parameters (Brooks et al., 2011). MC-based methods have found widespread appli-

cation in uncertainty quantification across various geophysical domains, including seismic

tomography (Zhang et al., 2018), gravity and magnetic inversion (Zunino et al., 2022), and

FWI (Gebraad et al., 2020; Fichtner et al., 2021), where more efficient MC variants are often

employed. However, it is important to acknowledge that the sampling process may become

computationally demanding due to the repetitive simulation of datasets, especially when

dealing with higher-dimensional problems (Bellman, 2003). This high computational ex-

pense can hinder the practical application of MC approaches, particularly in scenarios where

computational resources are limited. Additionally, sample-based methods may encounter

difficulties when dealing with highly complex distributions. Hamiltonian Monte Carlo, or

HMC, (Duane et al., 1987), initially conceptualized as a hybrid MC method, integrates el-
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ements from two distinct methodologies: (1) gradient-based optimization, which efficiently

identifies optima but lacks comprehensive uncertainty information, and (2) derivative-free

MC methods, which may overlook potentially valuable derivative information. HMC en-

deavors to harness the strengths of both approaches by simulating a Hamiltonian dynamics

system (Hamilton, 1834), wherein the Hamiltonian function encompasses the cumulative po-

tential and kinetic energy of the system. Leveraging derivatives from both the potential and

kinetic energy components, HMC facilitates targeted exploration of plausible regions within

the model space, ultimately resulting in more efficient sampling in high-dimensional param-

eter spaces in complex Bayesian inference problems (Neal, 1993; Brooks et al., 2011). This

approach has found widespread application in diverse fields, ranging from neural networks

and machine learning (Neal, 1996; Bishop and Nasrabadi, 2006; Gutmann and Hyvärinen,

2012) to molecular simulations (e.g., (Dubbeldam et al., 2016)), nuclear physics (e.g., (El-

hatisari et al., 2015)), genomics (e.g., (Honkela et al., 2015)), signal processing (e.g., (Wei

et al., 2015)), and quantum mechanics (e.g. (Seah et al., 2018)). Discussions of HMC in FWI

can be found in Fichtner et al. (2018); Gebraad et al. (2020); Kotsi et al. (2020); de Lima

et al. (2023).

Variational inference methods (Jordan et al., 1998) present another alternative, recently

gaining traction in various fields including statistical physics (Regier et al., 2015), data mod-

eling (Tabouy et al., 2020), and machine learning (Kucukelbir et al., 2016). Essentially, this

ensemble of methods can frame the problem as an optimization task aimed at acquiring an

approximation that best represents the posterior probability density of model parameters

(Blei et al., 2017). This aspect makes them particularly attractive for addressing larger-

scale Bayesian problems where the computational effort of traditional sampling methods

becomes a limiting factor. Several studies have sought to balance accuracy and computa-

tional tractability through approaches such as the evidence lower bound (ELBO) approx-

imation and the mean-field variational family, which assumes independent latent variables
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(Blei et al., 2017; Zhang and Curtis, 2020). Extensions that introduce dependencies among

variables have also been explored (Jaakkola and Jordan, 1997). Additionally, automatic dif-

ferentiation variational inference (ADVI) offers an efficient approximation using a sequence

of invertible transformations, making it applicable to a wider range of inversion problems

(Kucukelbir et al., 2016). The Stein variational gradient descent (SVGD) (Liu and Wang,

2019), which also performs transforms but does not require their analytical forms, provides

insights into this area and has the potential to be more practically applied to tasks such as

FWI. In the field of geophysics, researchers have pioneered in demonstrating the effectiveness

of variational inference methods across diverse applications, spanning from seismic tomogra-

phy (Zhang et al., 2018) to the intricate domain of FWI problems (Zhang and Curtis, 2020).

Other applications can be found in Nawaz and Curtis (2018, 2019).

1.5 Targeted nullspace shuttles

While the methods discussed in the previous section characterize FWI uncertainty through

global model-space sampling, an alternative and computationally efficient strategy targets

the inversion nullspace, which is formed by a model subset that produces equally acceptable

data misfits near convergence (Deal and Nolet, 2007). Instead of exhaustively exploring the

entire solution space, this approach focuses on identifying model variations that preserve the

data fit while revealing the structural ambiguity inherent in nonlinear inverse problems.

The concept of nullspace analysis is first introduced in seismic tomography by Deal and

Nolet (2007), exploring how an inverted model could be altered without affecting the ob-

jective function. By projecting a predefined model perturbation onto the nullspace of the

forward modeling operator, this approach is able to identify the closest update that leaves

the misfit unchanged. This technique, then referred to as nullspace shuttling, is originally

proposed as an alternative to conventional regularization. Building on this idea, more recent

studies (e.g., Fichtner and Zunino (2019); Liu and Peter (2020)) have employed nullspace-
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based methods to investigate uncertainty and non-uniqueness in nonlinear geophysical in-

versions.

Before the introduction of this technique in FWI, it is important to clarify the terminology

here. In strict linear algebra, the nullspace refers to the exact kernel of a linear operator,

containing directions that map to zero under that operator. In nonlinear FWI, however,

the term is adopted in a more approximate sense. The “nullspace” commonly denotes

directions in the model space that exhibit very weak sensitivity to the data misfit. Although

this usage departs from the classical definition, the concept remains practically valuable.

Modern implementations, such as those discussed later in this section, leverage these weakly

constrained directions to refine model updates and improve structural consistency to enhance

some desired features, even though the method is not intended as a probabilistic measure of

uncertainty.

In the context of FWI, Keating and Innanen (2021) have formulated a structured nullspace

shuttle method to perform targeted uncertainty quantification. Instead of attempting to fully

characterize the high-dimensional posterior, this approach evaluates uncertainty with respect

to specific hypotheses or features of the post-inversion model. This approach has also shown

the potential in mitigating the cross-talk issues in multi-parameter FWI. In time-lapse FWI,

Keating and Innanen (2024) have extended the concept of the targeted nullspace shuttle

to actively address one of the core challenges in seismic monitoring, which is distinguishing

genuine subsurface changes from artifacts introduced by non-repeatable factors such as ac-

quisition, data processing, and noise. The method operates through an iterative optimization

framework that identifies the optimal direction of model perturbation within the nullspace.

This is done by minimizing a secondary objective function designed to enforce structural sim-

ilarity between baseline and monitor models, while still preserving fidelity to the recorded

data. In doing so, the algorithm produces time-lapse differences that are not only physi-

cally plausible but also more robust to acquisition-related inconsistencies and noise. This
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approach serves as a post-inversion correction mechanism, refining inversion results without

altering the data fit.

Subsequent validations by Pike et al. (2024a) and Pike et al. (2024b) have further con-

firmed the resilience of this method across a variety of challenging scenarios, including varia-

tions in acquisition geometry, signal-to-noise levels, and inversion parameterizations. These

studies highlight the targeted nullspace shuttle as an effective and computationally efficient

strategy for improving the interpretability and reliability of time-lapse FWI results, par-

ticularly in operational monitoring contexts such as CO2 sequestration and fluid migration

detection.

1.6 3D frequency-domain FWI

Many FWI applications and explorations rely on 2D wavefield approximations, which assume

a simplified 2D subsurface model (e.g., Brossier et al. (2009); Groos et al. (2017); Keating

and Innanen (2020)). This is largely due to the substantial computational demands that

3D FWI requires. However, 2D approximations may be inadequate for accurately capturing

the complex scattering effects from 3D subsurface structures, resulting in a simplified rep-

resentation of the actual 3D subsurface. In CCUS applications, azimuthal variations in the

subsurface must be considered to ensure the success of accurate FWI monitoring. Achieving

accurate seismic wavefield modeling in these cases necessitates full 3D simulations, which

can provide a comprehensive view of the wavefield interactions and subsurface dynamics.

While research into 3D FWI has been expanding (e.g., Fichtner (2010); Castellanos et al.

(2011); Guasch et al. (2012); Butzer et al. (2013); Butzer (2015)), it remains computationally

expensive and is less commonly applied. While incorporating multiple physical parameters,

such as density and shear wave velocities, makes the simulations more comprehensive, it

also increases computational demands and can lead to data leakage between parameters,

further complicating the inversion process. This added complexity makes 3D elastic FWI
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challenging to implement on a large scale. By contrast, 3D acoustic FWI, which mainly

captures the acoustic variations of the subsurface, is computationally less intensive, has seen

wider adoption. Several notable examples of successful 3D acoustic FWI applications can be

found in works such as Plessix (2009); Sirgue et al. (2010); Warner et al. (2013); Park and

Oh (2023).

As mentioned, FWI can be performed in either the time or frequency domain. In contrast

to time-domain FWI, which models the entire wavefield across all frequencies, frequency-

domain FWI focuses on inverting a selected set of discrete frequencies. This targeted ap-

proach reduces the overall data volume and improves computational efficiency, particularly by

excluding problematic data that may arise from acquisition errors in real-world applications.

Frequency-domain FWI also offers advantages in managing frequency-dependent parameters

(Toksöz et al., 1981) and helps mitigate the cycle-skipping issues often encountered in time-

domain data matching (Bunks et al., 1995). The development of frequency-domain FWI

began in the 1990s, spearheaded by Pratt (1999); Pratt and Shipp (1999). More recently,

advancements in frequency-domain finite-difference modeling, as demonstrated by Operto

et al. (2007), have proven the effectiveness of this method in addressing complex subsurface

imaging challenges.

In FWI, forward modeling, namely solving the wave equation, is performed at each it-

eration of the optimization process. Various numerical approaches can be used for this

purpose, including volumetric methods such as finite-element (Marfurt, 1984; Min et al.,

2003), finite-difference (Virieux, 1986; Jo et al., 1996; Stekl and Pratt, 1998; Operto et al.,

2007), finite-volume (Brossier et al., 2008), and pseudospectral methods (Danecek and Seri-

ani, 2008). Among these, finite-difference methods are widely employed in FWI due to their

computational efficiency and relative simplicity. In the frequency domain, finite-difference

methods typically require solving large, sparse linear systems, which can be approached using

either direct or iterative solvers. While direct solvers provide exact solutions and are often
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more computationally efficient, their primary drawback compared to well-preconditioned it-

erative methods or time-domain formulations is the significant memory overhead associated

with matrix factorization (e.g., L-U decomposition). This process requires substantial mem-

ory or disk space to store the lower and upper factors, making large-scale computations

challenging (Operto et al., 2007; Virieux and Operto, 2009). In 3D applications, the storage

and computational demands of frequency-domain finite-difference methods can thus become

prohibitively expensive, limiting their practicality for large-scale inversions. Research has

increasingly focused on developing preconditioners for iterative solvers in the 3D Helmholtz

equation (e.g., Riyanti et al. (2006)). However, numerical stability remains a challenge, as

the system matrix evolves throughout the inversion process, making effective precondition-

ing difficult to track and adapt. Advances in high-performance computing and computer

hardware have significantly improved the feasibility of larger-scale 3D applications of the

direct solvers. For example, the development of massively parallel direct solvers, such as

the MUltifrontal Massively Parallel Sparse (MUMPS) solver (Amestoy et al., 2001) and the

Intel Parallel Direct Sparse Solver (PARDISO) (Schenk and Gärtner, 2011), has enhanced

the practicality of 3D frequency-domain FWI.

1.7 Thesis objectives

As discussed earlier, FWI has the potential to become a critical tool in the energy transi-

tions. This thesis aims to advance FWI for subsurface imaging in these contexts through

three primary research directions. The main objectives and contributions of the thesis are

summarized as follows:

• Development of an model-source FWI framework.

I develop an effective SWD-FWI methodology that incorporates the unique

characteristics of drilling-generated seismic data. This includes modeling the

drill-bit source signature, handling its non-impulsive nature, and designing an
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inversion workflow that fully leverages SWD data for imaging while drilling.

• Uncertainty quantification for time-lapse FWI.

I propose uncertainty quantification frameworks for time-lapse FWI using

HMC and SVGD. The contribution includes a systematic approach to eval-

uating confidence in time-lapse changes and quantifying data-to-model un-

certainty propagation that is relavent to acquisition geometries in dynamic

subsurface monitoring.

• 3D acoustic frequency-domain FWI and the implementation of targeted nullspace

shuttles.

I extend the 2D frequency-dimain FWI to 3D computation that is tractable.

In addition, I extend the targeted nullspace shuttle method to 3D acoustic

frequency-domain FWI and demonstrate its application to time-lapse monitor-

ing scenarios. This contribution improves the recoverability of subtle production-

or injection-induced changes by systematically re-injecting nullspace energy in

a controlled and computationally efficient manner.

Together, these contributions advance both the methodological and practical aspects of ap-

plying FWI to energy-transition problems, with particular emphasis on complex acquisition

settings, uncertainty quantification, and time-lapse subsurface change detection.

The structure of the thesis is as follows:

In Chapter 2, I will introduce fundamental concepts utilized in this thesis, including

modeling techniques for wave propagation (acoustic, elastic, viscoelastic, and 3D), drill-

bit source simulation, inversion methodologies, essential terms from objective functions,

numerical optimization techniques, Bayesian inversion, and the targeted nullspace shuttle.

In Chapter 3, I will detail the development of the SWD-FWI framework and demonstrate

its effectiveness through synthetic examples. I will emphasize the advantages of integrating
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SWD data with FWI, highlighting the improvements in subsurface imaging. Additionally,

I will showcase how this integration enables the simultaneous retrieval of drill-bit source

radiation patterns and locations while enhancing the subsurface image.

In Chapter 4, I will focus on uncertainty quantification in time-lapse FWI, specifically

through the implementation of HMC and SVGD techniques. Using synthetic studies based

on a simulated time-lapse scenario, I will demonstrate how these methods can effectively

quantify uncertainties and their implications for inversion results. This framework will facil-

itate more reliable interpretations of plume migration over time by assessing the impact of

uncertainties in subsurface properties.

In Chapter 5, I will showcase a 3D extension of the targeted nullspace shuttle within

the framework of acoustic FWI. Discussions are based on a synthetic time-lapse experiment

based on the Snowflake dataset from the CaMI project, which simulates CO2 injection and

enables assessment of the 3D targeted nullspace shuttle under various acquisition scenarios.

In Chapter 6, I will conclude the thesis with a summary of the novel contributions made

throughout the research, addressing the challenges of integrating FWI techniques into the

energy transition landscape. Additionally, I will outline potential future research directions

that could further advance this field.
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Chapter 2

Theories of frequency-domain full waveform inversion

Before detailing the novel contributions of this thesis, I will introduce several essential tools

that are foundational to my work. In this chapter, I will cover key concepts, including

the formulation of FWI as an optimization problem, the frequency-domain finite-difference

concepts employed for wave propagation, the L2 objective function I aim to minimize in FWI,

and the corresponding derivatives, including the gradient and Hessian terms, the numerical

optimization methods, the Bayesian theorem, and the targeted nullspace shuttle approach.

2.1 Viewing FWI as an optimization problem

FWI can be fundamentally viewed as an optimization problem (Lailly, 1983; Tarantola,

1984). The objective of FWI is to estimate a set of model parameters that can generate

synthetic data that closely matches the observed data. This optimization problem is generally

expressed as:

m̂ = a
m
rgmin = Φ(u,m,d) , s.t. C (u,m) = 0, (2.1)

where m̂ represents the optimal model, Φ is the objective function quantifying the mismatch

between the observed data d and the synthetic data generated by the current model m,

and C (u,m) = 0 denotes the constraint, which is typically the wave equation governing

wave propagation physics. In this context, FWI strives to iteratively refine the initial model

until an optimal solution is reached, where the synthetic data adequately matches the ob-

served data within acceptable limits. The objective function value decreases as the model

m produces synthetic data that better aligns with the observed data. Conversely, a greater

mismatch between the two datasets results in a higher objective function value.
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2.2 Forward modeling

In FWI, generating synthetic data to compare with real-world observations is essential. This

process, called forward modeling, involves simulating data based on a proposed subsurface

model and the acquisition setup. The choices made during forward modeling are critical,

as they directly influence the accuracy of the inversion. One key decision is the complexity

of the wave physics to be modeled, which dictates the range of data features that can be

captured. For example, acoustic models fail to account for converted or shear wave arrivals.

While incorporating more complex wave physics improves the fidelity of the data match,

it also introduces additional parameters, increasing the risk of cross-talk during inversion.

Additionally, more complex models raise computational demands, a factor that must be

weighed for practical applications.

In this thesis, I employ several forward modeling approaches tailored to different appli-

cation scenarios, with a focus on frequency-domain modeling due to its notable advantages.

Specifically, it helps mitigate the cycle-skipping problem common in waveform matching

(Bunks et al., 1995), facilitates the implementation of frequency-dependent effects such as

attenuation and dispersion (Aki and Richards, 2002; Keating and Innanen, 2020), and typ-

ically requires a relatively small dataset. Although the computational cost of large-scale

frequency-domain forward modeling remains a challenge, it is manageable within the exper-

imental scope of this thesis when appropriate settings are selected.

2.2.1 Acoustic modeling

The frequency-domain acoustic wave propagation can be represented by:

∇2u (r, rs, ω) +
ω2

c2 (r)
u (r, rs, ω) = f (ω) δ (r− rs) , (2.2)

where u (r, rs, ω) is the pressure field, ω is the angular frequency, r = (x, z) is an arbitrary

location with 2D Cartesian coordinates, ∇2 is the Laplacian operator, and c is the phase
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velocity. On the right-hand side of equation 2.2, f (ω) is the source signature of a certain

frequency, and δ (r− rs) is a Dirac function which is a spike at source location rs.

Replacing the velocity term with its reciprocal in equation 2.2, and slightly reorganizing

the left-hand side leads to:

[
(∇2 + ω2s2 (r)

]
u (r, rs, ω) = f (ω) δ (r− rs) , (2.3)

where s is regarded as slowness. There is no analytical solution to equation 2.3 for an arbi-

trary medium. Generally, a finite-difference approach, where the spatial partial derivatives

are replaced with finite-difference approximations is applied. Specifically, I use a centered

second-order finite-difference approximation for the ∇ operator. This approach leads to a

differential equation that approximates equation 2.3 at a grid point centered at the location

with indices i in the x-direction and j in the z-direction. Here, the subscripts refer to the

spatial grid indices in the x and z directions, while ∆x and ∆z represent the spatial incre-

ments in those respective directions. Applying this finite-difference scheme across the entire

2D spatial grid results in the following discretized form:

ω2si,jui,j +
ui−1,j − 2ui,j + ui+1,j

∆x2
+

ui,j−1 − 2ui,j + ui,j+1

∆z2
= fi,j. (2.4)

The general form of the above equation after applying it to the entire 2D space is:

S (m, ω)u (m, ω)− f (ω) = 0, (2.5)

where u represents the pressure wavefields at a specific frequency, with each column corre-

sponding to a different seismic source and each row capturing the wavefield at various spatial

locations. The matrix f contains the source terms using the same indexing scheme, while

S operates as the matrix that applies the finite-difference approach outlined in equation

2.4. Known as the Helmholtz equation, this formulation enables a direct computation of

u. Even though it involves solving a large system of equations, the sparsity of S makes it

computationally feasible, particularly for 2D models.
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When approaching the boundaries of the spatial domain, applying equation 2.4 becomes

problematic because values outside the grid are required. To overcome this, I employ a per-

fectly matched layer (PML) at the model edges following the method described by Zhang

and Ballmann (1997), which simulates an infinite extension of the model by absorbing out-

going waves and preventing unwanted reflections. The same boundary treatment is applied

at the top of the model to avoid surface reflections. Once the impedance matrix is set up, it

exhibits a band-diagonal structure with some fringe elements. The values of the impedance

matrix are complex numbers. Figure 2.1 illustrates an example of this impedance matrix,

showing a grid of 50 by 50 points in the x- and z-directions, with a 3-point boundary layer.

Note that the real part is displayed.
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Figure 2.1: An example pattern of the acoustic impedance matrix from a 50×50 model with

3 grid cells as boundary width. The real part is displayed.

The size of the impedance matrix is [(nx+ 2× nPML)× (nz + 2× nPML)]2, where
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nPML denotes PML boundary width. The non-zero entries depend on the specific grid

implementation of the finite-difference discretization. In the finite-difference scheme I em-

ploy in this thesis, the non-zero entries consist of five diagonal components: one with

(nx+ 2× nPML)×(nz + 2× nPML), two with (nx+ 2× nPML)×(nz + 2× nPML)−2,

and two with (nx+ 2× nPML)× (nz + 2× nPML)− 2× nz entries. These represent the

main diagonal and the four sub-diagonals corresponding to the on-site, up/down, andleft-

/right entries. Without boundary conditions, this matrix will be a symmetric pattern because

of the reciprocity of Green’s functions. However, in the example shown by Figure 2.1, this

matrix is unsymmetric.

2.2.2 Viscoelastic modeling

In frequency-domain modeling, the complex structure of the impedance matrix provides a

natural framework for incorporating frequency-dependent effects like attenuation (Toksöz

et al., 1981), which plays a critical role in scenarios where amplitude information is essential.

Viscoacoustic simulations, which account for attenuation, generally offer improvements over

purely acoustic models by better matching measured seismic data. However, viscoacoustic

modeling might not be sufficient in capturing the complete dynamics of the waveforms.

To address this limitation, viscoelastic modeling is introduced as it more comprehensively

accounts for the factors influencing seismic amplitudes.

The equations representing isotropic viscoelastic wave propagation in a 2D medium can

be written as (Pratt, 1990; Brossier et al., 2010):


ω2ρux +

∂
∂x

[
λ̃
(
∂ux

∂x
+ ∂uz

∂z

)
+ 2µ̃∂ux

∂x

]
+ ∂

∂z
µ̃
(
∂uz

∂x
+ ∂ux

∂z

)
+ fx = 0,

ω2ρuz +
∂
∂z

[
λ̃
(
∂ux

∂x
+ ∂uz

∂z

)
+ 2µ̃∂uz

∂z

]
+ ∂

∂x
µ̃
(
∂uz

∂x
+ ∂ux

∂z

)
+ fz = 0,

(2.6)

where ρ is the density of the medium. The displacement components in the horizontal and

vertical directions are denoted as ux and uz, while fx and fz refer to the source terms in
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those respective directions. The parameters λ̃ and µ̃ are the complex, frequency-dependent

Lamé parameters, which account for attenuation and are linked to the quality factors Qp

and Qs through the Kolsky-Futterman attenuation model (Kolsky, 1956; Futterman, 1962):


λ̃ = V 2

p

{
1 + 1

Qp

[
1
π
log

(
ω
ω0

)
+ i

2

]}2

ρ− 2µ̃,

µ̃ = V 2
s

{
1 + 1

Qs

[
1
π
log

(
ω
ω0

)
+ i

2

]}2

ρ,

(2.7)

where ω0 is the reference frequency. This system captures both the compressional and shear

wave behaviors in a viscoelastic medium, providing a more detailed and accurate repre-

sentation of wave propagation. By including shear deformations and frequency-dependent

attenuation effects, viscoelastic modeling is especially valuable for scenarios that require

accurate amplitude and phase information, making it a key tool in the analysis of seismic

waveforms, especially those generated by sources with a more complex mechanism, which I

will talk about in later sections.

Similar to the acoustic case, the viscoelastic wave equations are discretized using a finite-

difference method, applying second-order centered finite-difference approximations for the

spatial derivatives. The detailed formulation of these finite-difference equations follows the

work of Pratt (1990). The key distinction in the viscoelastic case is the definition of the

impedance matrix and source terms, where the dimensions of the impedance matrix are

doubled to account for the two displacement components in x- and z-directions, and the first

dimension of the source matrix is also doubled to represent both directional components,

leading to a resultant wavefield with two directional components. Figure 2.2 provides an

example of the viscoelastic impedance matrix, showing only the real part, based on a grid

of 100 by 100 points in the x- and z-directions, with a 3-point boundary layer applied.

It is evident in Figure 2.2 that both dimensions of the impedance matrix are doubled

because each interior grid point contributes two coupled equations to the overall system,

leading to each element of the impedance matrix being represented as a 2 × 2 complex-
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valued submatrix. The number of non-zero entries in this case is 9 × (nx+ 2× nPML) ×

(nz + 2× nPML) because nine diagonal components are involved in the construction of the

Helmholtz matrix. These components are similar to the acoustic case but include additional

corner diagonal elements, reflecting the coupling between different displacement directions.
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Figure 2.2: An example pattern of the viscoelastic impedance matrix from a 100×100 model

with 3 grid cells as boundary width.

2.2.3 3D acoustic modeling

In the preceding sections, I have explained how the inclusion of more complex wave phe-

nomena increases the dimensionality and complexity of the impedance matrix in frequency-

domain modeling. This growing complexity poses considerable challenges in terms of compu-

tational resources, which I will discuss at the end of this chapter. Although a full 3D elastic

modeling approach in the frequency domain would offer the most accurate representation of
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wave propagation, it is prohibitively expensive for most practical applications. To conduct

3D experimental surveys within the scope of this thesis, a 3D acoustic modeling scheme is a

more feasible choice.

In the frequency domain, simulating 3D acoustic wave propagation follows principles

similar to the 2D case but with an additional extension in the y-direction. Here I discretize

the Helmholtz equation using a second-order finite-difference approach on a staggered grid

within a 3D Cartesian coordinate system as expressed in equation 2.8, where the indices 1
2

indicate intermediate positions relative to the reference grid points i, j, k.

∂2u

∂x2
|i,j,k =

ui− 1
2
,j,k − 2ui,j,k + ui+ 1

2
,j,k

∆x2
,

∂2u

∂y2
|i,j,k =

ui,j− 1
2
,k − 2ui,j,k + ui,j+ 1

2
,k

∆y2
,

∂2u

∂z2
|i,j,k =

ui,j,k− 1
2
− 2ui,j,k + ui,j,k+ 1

2

∆z2
.

(2.8)

Figure 2.3: 3D finite difference stencils in staggered grid method. Red circles are pressure

grid points, blue triangles are pressure grid points in the stencil, and black rectangles are

the interpolated model parameters.
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The staggered grid method places different variables at offset locations to improve accu-

racy and reduce numerical dispersion errors (Hustedt et al., 2004). While more advanced

stencil definitions for 3D modeling exist (e.g., Stekl and Pratt (1998); Operto et al. (2007)),

for this thesis, I employ a conventional approach by applying a 7-stencil on the classical

Cartesian coordinate system. In such a setup, pressure values are positioned at the center of

grid cells, and spatial derivatives are calculated using values at the cell edges, as illustrated

in Figure 2.3.
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Figure 2.4: An example pattern of acoustic impedance matrix from a 10 × 10 × 10 model

with 2 grid cells as boundary width.

Again, the resulting matrix exhibits a band-diagonal structure with additional fringe

elements. As shown in Figure 2.4, where a 10× 10× 10 model with 2 grid cells as boundary

width is adopted, each row and column of the matrix contains 6 non-zero entries. The

coefficients are also of complex values, whereas in Figure 2.4 I show the real values.
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2.2.4 Source modeling with moment tensors

To this point, various modeling techniques centered on constructing the Helmholtz matrix

using model parameters are explored. However, when it comes to forward modeling for

specific applications, such as drilling-related seismic modeling, accurately simulating the

source mechanism is essential. The directional characteristics and complexities of seismic

sources, such as those generated by drill-bit operations, require the incorporation of at

least elastic wave equations within the modeling framework. Given the high computational

demands of full 3D elastic wave propagation modeling, as previously mentioned, this thesis

will focus on source modeling within a 2D space.

According to the representation theorem described by Aki and Richards (2002), which

explains how elastic waves are generated by forces and influenced by medium responses, the

sources can be represented as dipole forces along a fault whose dimension is much smaller

than the dominant seismic wavelength and whose distance from the observation point is large

enough for the far-field approximation to hold. Under these assumptions, it can be shown

that

ui (r, t) =

∫ +∞

−∞
M̂kl (τ)

∂

∂ξl
Gik (r, t; ξ, τ) dτ, (2.9)

where ui = ui (r, t) is the observed displacement field at position r at time t from a source

at ξ and time τ , and Gik = Gik (r, t; ξ, τ) is Green’s tensor, which is defined as the i th

displacement component when a force is applied in the k th direction. Mkl is the moment

tensor elements, which imply that a source is a summation of three force couples (see Figure

2.5). The above equation also shows that the recorded seismic waveforms can be regarded

as a summation of the derivatives of Green’s function weighted by entries in the moment

tensor matrix:

M0


M11 M12 M13

M21 M22 M23

M31 M32 M33

 , (2.10)
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where M̂0 is the seismic moment scalar that denotes the relative energy.

In this thesis, for modeling the source mechanisms, I use a finite-difference solution of

the 2D isotropic viscoelastic wave equation in the frequency domain (equation 2.6) and 2D

moment tensors (e.g., Aki and Richards, 2002; Vavrycuk, 2005; Tape and Tape, 2013) to

represent source radiation. The source terms fx and fz in equation 2.6 are simulated with

general 2D isotropic moment tensors, which have 3 independent components M11, M12, and

M22 representing the derivative in the jth direction of the ith component of displacement.

The moment tensor values lie between -1 to 1.

Figure 2.5: Moment tensor and the associated dipole forces. x1, x2, and x3 denote the three

directions on a Cartesian coordinate.

It is also necessary to approximate derivatives in the vicinity of the source in the finite-
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difference model since source positions can deviate from the fine grid points. (Keating and

Innanen, 2020). Figure 2.6 illustrates the first-order difference approach to the calculation of

source-related derivatives. For a point source located midway between two finite-difference

cell centers as Figure 2.6 (a), the finite difference approximation of M11 = 1 can be repre-

sented with differences formed between two adjacent cells by summing with weights −1
∆x

and

1
∆x

. If the source position is not equidistant between finite-difference cell centers, which is

the general case shown by Figure 2.6 (b), I use three continuously-weighted members to ap-

proximate the first-order spatial derivatives. The finite-difference weights used for a source

location between two finite-difference grid lines is a weighted average of the amplitudes used

for a source at either of the bounding grid lines, as shown in Figure 2.6 (b).

(a)

0 1 2 3 4 5
-1

0

1

(b)

0 1 2 3 4 5
-1

0

1

Figure 2.6: Scaled weights for approximating an example of M11 = 1 in one dimension. (a)

weights for source location x = 2. (b) weights for source location x = 2.25.

Extending this concept to the 2D case, the finite difference approximation can be defined

by weighting between intersections of nine grid cells in a small surrounding region. Specif-

ically, for a point source shown by the red dot in Figure 2.7, I define stencil variables with

indices of the four cells. The top-right cells (0, −z, +x− z, +x) make the northeast stencil,
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and the southeast, southwest, and northwest stencils can be represented by the bottom-right,

bottom-left, and top-left four-cell sections following the same indexing rule.

With the stencils well defined, the finite difference approximation of moment tensors can

be defined on each of the four stencils. In my formulation, fx and fz in equation 2.6 are

defined by nine grid cells surrounding an arbitrary source position, considering a weighted

summation of moment tensor components in each stencil based on the specific locations of

a source within the center cell:
fx =

∑
rw (r) [M11wdx (r) +M12wdz (r)] ,

fz =
∑

rw (r) [M12wdx (r) +M22wdz (r)] ,

(2.11)

where w (r) is the spatial weighting term considering the skewing of a point source to the

middle of a grid cell. r is a position vector pointing in directions in a stencil which can be

chosen from northeast-southwest-southeast-northwest. wdx (r) = 1 or −1 when r contains

eastward (right) or westward (left) direction; wdz (r) = 1 or −1 when there is southward

(down) or northward (up) in the stencils.

This treatment makes it possible to represent a point source in arbitrary locations pre-

cisely. Figure 2.8 demonstrates an approximation example based on the assumption of

M11 = 1, while it is also applicable for a point source with a more general moment tensor

combination. Small changes in the source locations simply correspond to a small re-weighting

of the source term values. In such a case, the gradient of the objective function with respect

to these variables is well defined, thus making the inversion more efficient. Additionally, the

modeling of moment tensor sources provides the insight that wavefields generated by specific

moment tensors can be simulated, if the mechanism is acquired, or can be approximated.

2.2.5 Solving the frequency-domain wave equations

Solving the frequency-domain wave equations is essentially inverting the impedance matrix

on the left-hand side of equation 2.5 by a solver to get the wavefield u. This inversion
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Figure 2.7: Stencil variables definition. The red dot in the center cell is the source location.

can be accomplished using either direct or iterative solvers. Direct solvers, such as those

based on lower-upper (LU) factorization, are effective for 2D forward problems (Jo et al.,

1996; Hustedt et al., 2004). However, their time and memory complexities, along with their

limited scalability on large-scale distributed memory systems, render them discouraging for

large-scale 3D problems (Virieux and Operto, 2009). Figure 2.9 illustrates the amount of

LU factors as a function of the grid cell number for reference.
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Figure 2.8: Scaled weights for approximating an example of M11 = 1 in two dimension with

source location x = 2.25 and z = 2.25.
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Figure 2.9: Amount of LU factors as a function of the grid cell number.
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In contrast, iterative solvers offer a viable alternative for solving the time-harmonic wave

equation (Riyanti et al., 2006; Plessix, 2009). These solvers typically employ Krylov subspace

methods and are preconditioned using the dampened time-harmonic wave equation, which

is solved with one multigrid cycle (Saad, 2003). Iterative methods are advantageous due to

their lower memory requirements; however, their effectiveness is limited by the challenge of

designing an efficient preconditioner for the indefinite impedance matrix. The extension of

these methods to elastic wave equations remains an area for future research. Additionally, the

time complexity of iterative solvers scales linearly with the number of sources, in contrast to

direct solvers. A hybrid direct-iterative approach, utilizing domain decomposition methods

(Saad, 2003), represents a middle ground between direct and iterative methods. However,

this approach requires a more complex design and implementation, which is currently beyond

the scope of this thesis.

After testing out cases between iterative and direct solvers, I decide to use a direct solver

that is potentially more efficient and stable, as iterative solvers often require good precondi-

tioners that are dependent on model patterns. Additionally, by using direct solvers, solving

for multiple columns becomes more efficient as the computational cost scales sublinearly,

approximately proportional to the log of the number of sources. The solver I use in the

scope of this thesis is the Intel PARDISO solver (Schenk and Gärtner, 2011) incorporated

with an Eigen (Guennebaud et al., 2010) environment. For solving an experimental-scale

problem, such an incorporation is tested to be more computationally efficient.

Since numerical approximations are employed in the forward modeling process, ensuring

numerical stability is crucial, as it directly affects both the accuracy and even the overall

success of the simulation. Poor stability can lead to errors such as numerical dispersion, which

distorts the wavefield and diminishes the precision of the results. To minimize numerical

dispersion, careful attention must be paid to selecting appropriate grid spacing. In my
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forward modeling approach, the criterion I follow for grid spacing is:

∆h <
cmin

6max(frequency)
, (2.12)

where ∆h is the grid interval in an arbitrary dimension, and cmin is the minimum wave

velocity.

2.3 Inverse problem of FWI

In this section, I will outline the fundamental components of the inverse problem in FWI,

focusing on the L2 objective function, which is widely used and also adopted in this thesis.

Additionally, I will discuss the gradient term, which is derived from the objective function

and is essential for guiding the inversion process, as well as the Hessian term, which represents

the second-order derivative of the objective function with respect to the inversion variables

and plays a critical role in enhancing the efficiency of the inversion.

2.3.1 L2 objective function

The objective function, or cost function in FWI, is a critical metric to quantify the differ-

ence between modeled and observed datasets, as introduced earlier around equation 2.1. It

is pivotal in guiding the inversion process by driving model updates to minimize this mis-

match. Numerous studies, such as those by Engquist and Froese (2014), Chi et al. (2015),

and Yang and Engquist (2018), have explored alternative objective functions to address spe-

cific challenges in FWI, beyond the conventional formulation proposed by Tarantola (1984).

These alternatives aim to improve robustness, account for noise, or mitigate cycle-skipping.

However, each introduces its own complexities and trade-offs, often requiring careful cus-

tomization for particular scenarios.

In this thesis, I adopt the original objective function because it captures both the ampli-

tude and phase information in the seismic data, providing a comprehensive metric for model
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evaluation. Given that the focus of this thesis lies elsewhere, such as in acquisition design

and strategy assessment, designing specialized objective functions is not within the scope of

this thesis. The classical objective function, widely used in FWI research, offers a reliable

and well-established framework for my applications. It is expressed as:

Φ =
Nω∑
j=1

Ns∑
k=1

1

2
∥Ruj,k − dj,k∥22, (2.13)

where s denotes the source index, and R is the sampling matrix representing the measure-

ments of receivers.

Another part of the objective function may focus on the prior model fitting, as explored

in Kamath et al. (2017); Esser et al. (2018); Wang et al. (2024). However, this part is highly

case-dependent and can be modified to meet different models and objectives. In this thesis,

I focus on the general FWI method rather than a specific application scenario, so this part

will not be discussed in more detail.

Another component of the objective function often addresses the incorporation of prior

model information, as discussed in works like Kamath et al. (2017), Esser et al. (2018), and

Wang et al. (2024). This regularization term encourages the inversion to stay consistent with

prior knowledge, which can help stabilize the solution and guide the model updates toward

realistic results. However, the design of this term is highly case-specific, varying based on the

nature of the problem, available prior models, and intended goals. Since this thesis focuses

on evaluating the general FWI framework rather than tailoring it to a particular scenario,

a detailed exploration of prior-model fitting is beyond the scope. Instead, I emphasize core

elements of the FWI methodology, while leaving the adaptation of prior model regularization

for future studies or context-specific implementations.
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2.3.2 Gradient

The objective function of the FWI approach in this thesis is then:

Φ (m) =
Nω∑
j=1

Ns∑
k=1

1

2
∥Ruj,k − dj,k∥22, s.t. S(m)u = f, (2.14)

In the gradient derivation, I assume that the wavefield only has one source and frequency

component for simplicity. In practice, contributions from multiple sources or frequencies can

be obtained by summing their respective gradients.

The adjoint state method (e.g., Plessix, 2006) is used to determine the gradient through

a combination of forward and backward propagated wavefields, the latter of which has the

residual wavefield as the source. The Lagrangian of the current problem is

L (m) =
1

2
∥Ru− d∥22 + ⟨S (m)u− f, λ⟩ , (2.15)

where λ is a vector of Lagrange multipliers, and ⟨·, ·⟩ represents the inner product.

Assume that a wavefield u satisfies L (u) = Φ. The derivative of Φ with respect to the

model parameter is then:

dΦ

dm
=

dL (u)

dm
=

∂L

∂u

∂u

∂m
+

∂L

∂m
. (2.16)

By choosing λ such that ∂L
∂u

= 0, the otherwise expensive calculation of the Jacobian matrix

∂u
∂m

, can be avoided. The λ is determined through backpropagation of data residuals, after

which it can be derived that:

∂L

∂u
= RT (Ru− d) + S†λ = 0, (2.17)

where † denotes the conjugate transpose. After calculating λ with the above equation,

equation 2.18 can be reduced to:

dL

dm
=

∂L

∂m
=

〈
∂S

∂m
u, λ

〉
. (2.18)
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2.3.3 Gauss-Newton Hessian

The gradient in FWI is often poorly scaled due to geometric spreading and can be further

distorted by spurious correlations caused by finite-frequency effects and doubly-scattered

energy (Pratt et al., 1998). This makes it challenging to accurately update the model with

just the gradient. The Hessian operator, defined as the second-order partial derivative of

the objective function with respect to the model parameters, provides critical information

about the curvature of the misfit surface, thereby offering more precise directions for model

updates (Pratt et al., 1998).

Incorporating the inverse Hessian to precondition the gradient can significantly improve

the scaling of the model update, leading to more efficient convergence and ensuring faster

quadratic convergence rates. However, computing the exact Hessian matrix is computa-

tionally prohibitive, especially for large-scale problems, as it involves an enormous number

of second-order derivatives. To address this limitation, approximate Hessian formulations,

such as the Gauss-Newton Hessian, are often employed. The Gauss-Newton approximation

ignores the second-order terms that arise from nonlinear interactions between wavefields,

focusing instead on the terms related to the data residuals. This reduces the computational

burden while still providing significant improvements over pure gradient-based updates. The

resulting Gauss-Newton Hessian retains important curvature information, making it a prac-

tical choice for large-scale FWI applications.

In the Gauss-Newton approximation, it is assumed that the residual of the objective

function, namely Ru − d, is sufficiently small. This approximation simplifies the Hessian

by neglecting higher-order terms, resulting in a positive-definite matrix. A positive-definite

Hessian ensures that the updates are well-scaled, promoting stable and efficient optimization.

As suggested by Métivier et al. (2013), this property can accelerate the convergence of FWI.

Applying the second-order derivative to equation 2.14 yields the following expression:

∂2Φ

∂m2
=

∂2 (Ru− d)T

∂m2
(Ru− d) +

∂ (Ru− d)T

∂m

∂ (Ru− d)

∂m
. (2.19)

37



The Gauss-Newton approximation assumes the first term in equation 2.19 is small enough

to be neglected. Thus, the above equation can be represented as:

HGN = J†RTRJ, (2.20)

where J = ∂u
∂m

represents the Jacobian matrix, which describes the sensitivity of the wavefield

u to changes in the model parameters m. Similar to the gradient computation, the Jacobian

can be efficiently evaluated using the adjoint state method, avoiding the need to explicitly

form this matrix and thereby reducing computational costs.

Again making use of the adjoint state method, the Lagrangian can be set as:

L̃ = ⟨u (m) ,w⟩+ ⟨S (m)u− f, µ⟩ , (2.21)

where w = RTRJv, and v is the vector to be multiplied by the Hessian. The Lagrange

multiplier µ represents the adjoint field, and satisfies:

S†µ+w = 0. (2.22)

Directly solution for w still involves computing the Jacobian matrix J , but the product of

J with the vector v is possible via the derivative of the forward problem with respect to

variables mp multiplied by vector elements vmp (Métivier et al., 2013; Keating and Innanen,

2020):

∂ (Su− f) vmp

∂mp

= 0. (2.23)

This allows us to acquire w and thus derive the Lagrange multiplier µ in equation (2.22).

The Gauss-Newton Hessian vector product HGNv is then ∂L̃
∂m

.

As discussed in Section 2.2.5, the primary computational burden in evaluating the deriva-

tives arises from solving wave-propagation equations. In the context of the FWI frame-

work I present, this process involves solving linear systems to obtain the wavefield. Given
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the complexity of wave propagation, these computations dominate the total cost, render-

ing other derivative-related operations relatively insignificant. For gradient evaluation, two

wave-propagation problems must be solved: one for computing the forward wavefield and an-

other for the adjoint field. Similarly, the Gauss-Newton Hessian-vector product also requires

two such propagations.

2.4 Numerical optimization

The previously derived components, such as the gradient and the Gauss-Newton Hessian, are

integrated into an optimization framework to iteratively update the model. In this section, I

will provide a brief overview of key optimization strategies commonly employed in FWI and

highlight the specific approaches used in this thesis.

2.4.1 Steepest descent

The steepest descent (SD) or gradient descent optimization strategy was the first proposed

optimizer for the FWI problem (Tarantola, 1984). In this optimization strategy, the objective

function is supposed to decrease at each iteration by updating the model in directions that

are anti-parallel to the gradient with respect to the model parameters. In an arbitrary

iteration k, such a process can be expressed as:

mk+1 = mk − α
∂Φ (mk)

∂mk

, (2.24)

Here, mk represents the current model, mk+1 is the updated model, and α is the step size that

controls the magnitude of each update—details of which will be discussed in later sections.

The SD approach offers simplicity in implementation and requires only a few evaluations

of the objective function or its derivatives per iteration, making it computationally attrac-

tive. However, as noted earlier, the gradients in FWI are often poorly scaled, leading to

slow convergence towards an optimal solution (Métivier et al., 2013). Moreover, the SD

39



method struggles with cross-talk between parameters in multiparameter FWI, limiting its

effectiveness in more complex inversion scenarios.

2.4.2 L-BFGS optimization

The steepest descent method assumes that the second-order term in the misfit function,

such as the Hessian or its approximation, is negligible. Newton methods offer an effective

approach to include the second-order information of the objective function by:

mk+1 = mk − αH−1 (mk)
∂Φ (mk)

∂mk

, (2.25)

This approach effectively incorporates second-derivative information, which can dramatically

improve the ability of the inversion to anticipate how changing one variable will alter the

derivative of another. This allows for substantial cross-talk reduction (Innanen, 2014).

Computing the exact Hessian in large-scale or 3D FWI problems is often prohibitively

expensive. To address this, descent directions that incorporate curvature information are

typically obtained using an approximate Hessian. Quasi-Newton methods, such as the Broy-

den, Fletcher, Goldfarb, and Shanno (BFGS) optimization strategy (Broyden, 1970; Fletcher,

1970; Goldfarb, 1970; Shanno, 1970), provide approximations to the Hessian and its inverse

(Nocedal and Wright, 2006). The BFGS method involves explicitly updating the approx-

imation of the Hessian or its inverse at each iteration during the inversion process. I will

briefly discuss this method in this section, while more details can be found in Nocedal and

Wright (2006). I start rewriting equation 2.25 with an approximation of the hessian matrix:

mk+1 = mk − αB (mk)
∂Φ (mk)

∂mk

, (2.26)

where B is the inverse of the approximated Hessian matrix.
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Consider two iterations k − 1 and k, Bk should be consistent with the change in the

gradient of the objective function, such that:

B−1
k (mk −mk−1) =

∂Φ (mk)

∂mk

− ∂Φ (mk−1)

∂mk−1

. (2.27)

The equation above forms the core of the BFGS method, indicating that the inverse of the

approximate Hessian can be iteratively estimated using information from both the current

and previous gradient terms. Additionally, the estimated inverse Hessians from consecutive

iterations must remain sufficiently similar to ensure stable updates. This closeness helps

maintain convergence and prevents abrupt model changes during each step.

Applying the BFGS method efficiently in FWI is challenging due to memory limitations,

as storing the full Hessian approximation, Bk, becomes impractical. For reference, the size

of Bk in 2D FWI is (Nx ×Ny) by (Nx ×Ny), and in 3D FWI it grows to (Nx ×Ny ×Nz) by

(Nx ×Ny ×Nz), where Nx, Ny and Nz are grid point numbers in each dimension. Moreover,

Bk is a complex-valued matrix, further increasing memory demands.

An effective alternative is the limited-memory BFGS (L-BFGS) approach, which bypasses

the need to store or compute Bk explicitly (Nocedal and Wright, 2006). Instead, L-BFGS

approximates the Hessian indirectly by retaining a limited number of past model updates

and gradient vectors. These stored vectors are used to calculate the products of Bk with

other vectors as needed, without forming the entire matrix. This feature makes L-BFGS

specifically well-suited for FWI, as such vector products can be efficiently calculated by

backpropagations, as discussed in Section 2.3.3. Thus, the L-BFGS in FWI drastically

reduces memory usage while still maintaining efficient convergence properties.

The initial guess in the L-BFGS method is suggested by Nocedal and Wright (2006), that

the model and gradient vectors in the last two iterations can be utilized, such that:

Bk
0 = I

∆mT
k∆gk

∆gT
k∆gk

= I
(mk −mk−1)

T (
gk − gk−1

)(
gk − gk−1

)T (
gk − gk−1

) . (2.28)

A key challenge with the L-BFGS method lies in storing intermediate vectors. However,
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based on my tests, using practical iteration counts between 5 and 20 introduces minimal

overhead in both runtime and storage, with the algorithm performing similarly to the full

BFGS method. While Nocedal and Wright (2006) acknowledge that L-BFGS may converge

more slowly than BFGS, research by Brossier et al. (2009, 2010) shows that L-BFGS de-

livers superior convergence rates and model resolution compared to the conjugate gradient

method in FWI applications. In addition, research from Keating and Innanen (2020) also

demonstrates that the L-BFGS method is very helpful in suppressing the cross-talk issues,

which is a stubborn challenge in FWI. Its efficient balance between computational cost and

scalability makes it well-suited for large-scale 3D FWI, where managing memory usage and

processing time is crucial.

2.4.3 Truncated Gauss-Newton method

An alternative to the L-BFGS approach employed in this thesis is the truncated Gauss-

Newton (TGN) method. Rather than directly estimating the full Hessian, the TGN method

iteratively solves the Newton system over a limited number of iterations. In such a way, the

TGN approach allows for a chosen level of approximation to the Hessian in each updating

step. In each iteration k, the update direction is determined by:

Dk = a
D
rgmin

1

2
DTH (mk)D+DTg (mk) , (2.29)

where D is the update direction, and g represents the gradient of the objective function

with respect to the model parameters (∂Φ(m)
∂m

). The optimization process halts when either

a predefined maximum number of iterations is reached or the solution falls below a specified

tolerance threshold—justifying the ”truncated” nature of the method.

The model is then updated in a Newton update fashion with the D in the above equation:

mk+1 = mk + αDk, (2.30)
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Taking derivatives with respect to α from the Taylor expansion of the objective function

gives an explicit solution of the step size in the TGN method:

α = − [H (mk)D+ g (mk)]
T D

DTH (mk)D
(2.31)

Equation 2.29 can be solved by simply taking first derivatives with respect to D, leading to

a linear system:

H (mk)D = −g (mk) , (2.32)

which can be solved by the conjugate gradient method (e.g., Métivier et al. (2013)) or other

iterative linear solvers. In this thesis, I use the L-BFGS method, which typically provides

faster convergence, and I employ the well-tested implementation from Keating and Innanen

(2020).

2.4.4 Line-search

In the non-TGN methods employed in this thesis, the update step size is determined after

obtaining the update direction. For this purpose, I utilize a line search method, which is

relatively efficient as outlined in detail by Nocedal and Wright (2006). Here, I will provide

a brief overview of the approach.

In the line-search approach, refer to the update step size as α, the following optimization

problem in each model updating process is solved:

αk = m
α
inΦ (mk + αk∆mk) . (2.33)

However, in practice, the solution is often obtained within the required accuracy because it

is too costly to solve this problem exactly. In this work, I use the following conditions:

c1Φ (mk) ≤ Φ (mk + αk∆mk) ≤ Φ (mk) + c2αk∆mT
k g (mk) , (2.34)

where c1 and c2 are constant factors which satisfy 0 ≤ c2 ≤ c1 ≤ 1. In this thesis, c1

is chosen to be 0.9, and c2 is 0.001. The first inequality in equation 2.34 is the Armijo
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condition constrains the increment of model parameters is not too small (Armijo, 1966),

while the second one is known as the weak Wolfe condition that guarantees the objective

function can be decreased sufficiently (Wolfe, 1969).

2.5 Bayesian theorem

In the Bayesian framework, the solution of inverse problems is a probability density function

of plausible models that reasonably represent the observations. Such probability density is

called the posterior distribution P (m|d). According to Bayes’ theorem:

P (m|d) = P (m)P (d|m)

P (d)
, (2.35)

where P (m) is the prior probability distribution of model parameters, P (d) is the probabil-

ity distribution of the observed data, which is often regarded as a normalization factor and

can be omitted in most cases. Additionally, P (d|m) in equation 2.35 is called the likelihood

function that represents the conditional probability of a dataset generated by a model fol-

lowing some physics rules, for example, acoustic/elastic wave equations in FWI problems.

The likelihood and the prior can be shown by (Tarantola, 2004):

P (d|m) ∝ exp

[
−1

2
(dsyn − dobs)

T C−1
D (dsyn − dobs)

]
, (2.36)

P (m) ∝ exp

(
−1

2
mTC−1

M m

)
, (2.37)

where dsyn is the synthetic data, C−1
D in equation 2.36 is the inverse covariance matrix of

the observed data, and C−1
M in equation 2.37 is the inverse covariance matrix of the model.

Conventionally, the posterior distribution outlined in equation 2.35 is typically estimated

through the exploitation of numerous representative models generated via MC sampling

processes. Notable instances of such approaches in geophysical inverse problems can be

observed in recent studies by Dosso et al. (2014); Gebraad et al. (2020); Kotsi et al. (2020);

Fichtner et al. (2021); Fu and Innanen (2022). However, the reliance on frequent sampling
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attempts may lead to inefficiencies and excessive utilization of computational resources.

Variational inference offers an alternative approach to approximating the aforementioned

posterior distribution by formulating the sampling process as an optimization problem that

is potentially more efficient than the sampling approaches. In this section, I will provide a

brief overview of two key approaches used in this thesis for uncertainty quantification: HMC

from the MC family and SVGD from the variational inference methods. These methods

represent significant components of my research and contribute to the overall understanding

of uncertainty quantification in the context of FWI.

2.5.1 Hamiltonian Monte Carlo

HMC takes inspiration from the Hamiltonian dynamics (Hamilton, 1834), which can be

conceptually understood by fictitiously visualizing a frictionless particle moving along a 2D

surface with varying heights. In this scenario, the state of this system is described by the

position of this particle q (2D vector) and its generalized momentum p (also a 2D vector).

While moving, the potential energy of this particle can be represented by U (q), and its

kinetic energy is given by pTM−1
massp/2, where Mmass is the mass matrix of this particle.

A generalization of this matrix is making the off-diagonal entries zeros while keeping the

diagonal members equal to some preset values, but there are more constrained settings in

some more complex problems (Fichtner et al., 2021). In any situation, the mass matrix is

positive definite. When the surface is flat, the particle moves at a constant velocity equal

to M−1
massp. However, if the surface inclines, the momentum allows the particle to continue,

resulting in decreased kinetic energy and increased potential energy. Eventually, when the

kinetic energy reaches zero, this particle will slide back down the slope, increasing kinetic

energy and decreasing potential energy. During the whole process, this particle is governed

by a ”gravitational” force that is parallel to −∇U (q), which is regarded as the steepest

descent direction. Such mechanics can be described by a Hamiltonian equation H (p,q),
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such that

H (p,q) = U (q) +K (p) . (2.38)

This equation describes the total energy of a mechanic system. It holds for any coordinate

systems as long as their link to a Cartesian set of coordinates is independent of time or

velocity (Morin, 2008).

The partial derivatives of the Hamiltonian determine how q and p change over time, t,

according to Hamilton’s equations:

dqi
dt

=
∂H

∂pi
, (2.39)

dpi
dt

= −∂H

∂qi
, (2.40)

where i = 1, 2, ..., n denotes the index in the n-dimensional vector.

The derivatives can be further represented as:

dqi
dt

=
[
M−1

massp
]
i
, (2.41)

dpi
dt

= −∂U

∂qi
. (2.42)

The fundamental idea behind HMC involves sampling from an auxiliary distribution in a

phase space with twice the original dimensions. The auxiliary distribution is known as the

canonical distribution (Davey, 2009), and this extended phase space is denoted as (p,m),

where p represents momentum variables and m represents the variables of interest (e.g.,

model parameters). For convenience, in the following discussions, I will replace the vector

q in equations 2.38, 2.39, and 2.41 by the model vector m as I call it in forming the FWI

problem. Additionally, artificial momentum variables are usually introduced to align with the

quantity of position variables. In a more intuitive sense, the concept of HMC views a model

m as analogous to a particle in mechanics. This particle moves from its present position to a

new position following a Hamiltonian trajectory (Brooks et al., 2011; Betancourt, 2017). The
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geometry of the trajectory is controlled by the misfit that is interpreted as potential energy

U , as well as the kinetic energy K and mass Mmass of the particle, namely the artificially

introduced auxiliary quantities (Fichtner et al., 2018).

The potential energy is derived by negating the logarithm of the probability density

linked to the inversion variables:

U (m) = −logP (m|d) . (2.43)

In many inversion problems, including FWI, a plausible assumption of the prior information

is the Gaussian uncertainties (e.g., (Tarantola, 2004; Dosso et al., 2014; Fichtner et al., 2018;

Fu and Innanen, 2022)). Assuming that both the model and data covariances are known,

Gaussian, and uncorrelated, the posterior distribution (or potential energy in HMC) can be

acquired by ignoring the practically expensive term P (d) in equation 2.35, and combining

equation 2.36 and equation 2.37:

U (m) = −logP (m|d) = 1

2
(dobs − dsyn)

T C−1
D (dobs − dsyn) +

1

2
mTC−1

M m+ const. (2.44)

The HMC algorithm for an inversion problem can be summarized as follows. Initially, the

momentum vector p is sampled from a multivariate normal distribution with zero mean and

covariance matrix Mmass, denoted N (0,Mmass). The algorithm then transitions from the

current state (pcur,mcur) to a new state (pnew,mnew) using the Leapfrog method (Iserles,

1986). The new state is accepted with a probability determined by a variant of the Metropolis

rule (Metropolis et al., 1953):

Pacceptance = min [1, exp (H (pcur,mcur)−H (pnew,mnew))] . (2.45)

Figure 2.10 illustrates the trajectories of a sampler in a 2D problem at the beginning, middle,

and end of the HMC process, showing how the gradient information facilitates a thorough

exploration of the model space. Initially, particles are distributed according to an arbitrary

initial distribution. Over successive iterations, the positions of these particles are updated
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progressively toward the optimal distribution while ensuring that they remain sufficiently

spaced from one another. The final arrangement of these particles provides an estimate of

the posterior distribution.
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Figure 2.10: HMC mechanism. Dashed arrows show the gradient directions pointing to the

next sampler position. (a) Model space with initial sampler position. (b) Model space with

sampler trajectories in the middle of the sampling process. (c) Model space with sampler

trajectories after the sampling process is finished.

2.5.2 Stein Variational Steepest Descent

Variational inference provides a powerful alternative to traditional sampling methods for ap-

proximating complex posterior distributions by framing the problem as an optimization task

that seeks to minimize the KL divergence Kullback and Leibler (1951). The KL divergence,

also referred to as relative entropy, quantifies the statistical distances between two posterior

density functions: the approximate distribution generated by the inference process and the

true posterior distribution (Blei et al., 2017). The KL divergence is explicitly expressed as:

KL [q (m) ||P (m|d)] = Eq [logq (m)]− Eq [logP (m|d)] , (2.46)
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where q (m) is the current distribution, and Eq means taking expectations with respect to

q. The objective in a variational Bayesian inference problem is:

q∗ (m) = argminKL [q (m) ||P (m|d)] , q ∈ Q, (2.47)

where Q is a computationally tractable family of distributions.

The SVGD method operates as an incremental-transform-based gradient descent tech-

nique aimed at minimizing the KL divergence and guiding a collection of particles represent-

ing the initial parameter distributions (Liu and Wang, 2016). Through performing smooth

transforms, the derivative of the KL divergence concerning the magnitude of a small pertur-

bation can be iteratively computed. Thus, the final posterior can be gradually constructed

from an arbitrary initial distribution. One of the advantages of this approach is its capa-

bility to approximate various geometries of a posterior distribution (Blei et al., 2017). This

versatility makes SVGD particularly promising in practical applications, as it can effectively

handle a wide range of distributional complexities. The smooth transform can be shown as:

T (m) = m+ αV (m) , (2.48)

where α is a magnitude that controls the magnitude of update with a smooth transform

direction V (m). Accordingly, the objective of the SVGD approach becomes as follows:

q∗T (m) = argminKL [qT (m) ||P (m|d)] , qT ∈ Q. (2.49)

where qT (m) denotes the transformed distribution from the initial distribution q (m). The

gradient of the KL divergence with respect to the perturbation magnitude α can be computed

with Stein’s operator (Liu and Wang, 2016):

∇αKL [qT (m) ||P (m|d)] |α=0 = −Eq [trace (APV (m))] , (2.50)

where

APV (m) = ∇mlogP (m|d)V T (m) +∇mV (m) , (2.51)
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means applying Stein’s operator (Stein, 1972) to the transform function.

Equation 2.50 suggests that by maximizing the right-hand side, the steepest descent

direction of the KL divergence can be obtained. The choice of the optimal function set V ∗

can be simplified by using Stein’s identity (Liu et al., 2016; Chwialkowski et al., 2016). This

optimal function can be formulated as:

V ∗ (m) ∝ Eq

[
APk

(
m,m

′
)]

, (2.52)

where k
(
m,m

′)
is the kernel function controlling the interaction between two sets of model

parameters m and m
′
. A commonly used kernel is the radial basis function (RBF) kernel:

k
(
m,m

′
)
= exp

(
− 1

hm

||m−m
′||2

)
, (2.53)

where hm is a scale factor that intuitively controls the interaction intensity among distribu-

tions of different model parameters.

Combining the aforementioned elements with the optimization problem, an iterative pro-

cess can be built to approximate the initial distribution to the target distribution. In the

ith iteration for a set of model parameter m, this process can be briefly illustrated below:

Ti (m) = m+ αiV
∗
i (m) ,

qi+1 = qi[Ti].

(2.54)

In Figure 2.11, I demonstrate the schematic mechanism of the SVGD method. Initially, parti-

cles are distributed according to an arbitrary initial distribution. Over successive iterations,

the positions of these particles are updated progressively toward the optimal distribution

while ensuring that they remain sufficiently spaced from one another. The final arrangement

of these particles provides an estimate of the posterior distribution.
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Figure 2.11: SVGD mechanism. (a) Model space with initial particle positions. (b) Model

space with particle positions in the middle of the optimization process. (c) Model space with

particle positions after the optimization process.

2.6 Targeted nullspace shuttles

In this section, I have a brief review of the targeted nullspace shuttle approach that is first

invented and described in more detail by Keating and Innanen (2021). The optimal model

from equation 2.1 in FWI generally takes the best waveform match, and can thus best

approximate the true subsurface properties. In fact, such a definition of the ideal model is

ambiguous in real data applications, but the assumption here is that this is the best solution

to this inverse problem. In practice, several fundamental limitations prevent attainment

of the best solution, such as the computational tractability in wavefield simulations, the

data limitations, and the nonlinearity of the inverse problem. Assume that FWI typically

converges to a m̂ satisfying:

Φ (m̂) ≤ ε, (2.55)
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where ε represents an acceptable misfit threshold. The set of all such models forms the

ε-equivalence class:

Mε = m|Φ(m)≤ε, (2.56)

Such a class defines a computationally tractable subspace containing significantly fewer mod-

els than the full solution space. However, even within this reduced subspace, systematic

exploration remains impractical due to the high dimensionality of typical FWI problems

(often over 106 model parameters for 3D surveys). The nullspace shuttle method addresses

this challenge by operating on a carefully selected subset of models that maintain data fit

consistency and preserve a priori structural constraints. The approach is regarded as a

post-inversion process, where the model m∗ is defined as lying near a minimum and taking

Φ (m∗) = σ. Taking this point, probing the model space along a direction ∆m such that

Φ (m∗ +∆m) ≈ Φ (m∗) + g (m∗)∆m+
1

2
∆mTHGN (m∗)∆m, (2.57)

where g (m∗) is the gradient at m∗, and HGN (m∗) is the Gauss-Newton approximation of

the Hessian matrix at m∗.

The model perturbation ∆m is a direction vector, with the basis vector being:

δm =
∆m

||∆m||
. (2.58)

The target is now finding the possible updating direction of model updates without violating

the objective function for which Φ (m∗ +∆m) ≈ Φ (m∗). The direction can be defined as

∆m
′
, and it is formed by scaling the basis vector in equation 2.58 such that

∆m
′
= αδm, (2.59)

with the scalar being a stepsize such that

α =
−2g (m∗) δm

δmTHGN (m∗) δm
. (2.60)
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The targeted nullspace shuttle method can then be formed to test specific hypotheses about

features of the inversion results by constructing a hypothetical objective function over pos-

sible updates that can preserve the FWI objective, such that

∆m
′
= argmin

∆m′
Ψ
(
m∗ +∆m

′
)
, s.t.Φ

(
m∗ +∆m

′
)
≈ Φ (m∗) . (2.61)

The hypothetical scalar function Ψ can be minimized through gradient-based approaches,

where the gradients can be derived and calculated following the chain rules. Readers can

refer to Keating and Innanen (2021) for more detailed derivations of these terms.

2.7 Conclusions

In this chapter, I provide an overview of the general FWI framework that underpins most im-

plementations, including those adopted in this thesis, and outline key methodological choices

tailored to my research. For forward modeling, I employ a viscoelastic frequency-domain

finite-difference approach for computationally manageable tasks. For more computationally

intensive problems, including 3D FWI, sampling-based methods, and variational inference, I

use isotropic acoustic frequency-domain modeling. While some forward-modeling strategies

could benefit from advanced spatial gridding techniques, the conclusions in subsequent chap-

ters are not strongly dependent on the specific implementation described here. Although the

results presented are based on these methodologies, variations in parameterization, objective

functions, or forward-modeling techniques would not fundamentally alter the nature of the

inversion problem or the primary findings, particularly for numerical experiments. The ob-

jective function throughout this thesis follows the standard L2 data-fitting formulation, and

optimization approaches are selected according to the practical demands of each problem, as

illustrated in the following chapters. While the methodologies discussed here are not entirely

novel, they provide the foundation for the original contributions presented in later chapters.
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Chapter 3

Simultaneous waveform inversion of

seismic-while-drilling data for P-wave velocity, density,

and source parameters

3.1 Summary

FWI as an optimization-based approach to estimating subsurface models, is limited by in-

complete acquisition and illumination of the subsurface. The incorporation of additional

data from new and independent ray paths should be expected to result in significant in-

crease in the accuracy of FWI models. In principle, the SWD technology can supply these

additional ray paths; however, it introduces a new suite of unknowns, namely precise source

locations (i.e., drilling path), source signature, and radiation characteristics. Here I formu-

late a new FWI algorithm in which source radiation patterns and positions join the velocity

and density values of the grid cells as unknowns to be determined. I then conduct several

numerical inversion experiments with different source settings, using a synthetic model. The

SWD sources are supplemented by explosive sources and multi-component receivers at the

surface, simulating a conventional surface acquisition geometry. The subsurface model and

SWD source properties are recovered and analyzed. The analysis is suggestive that SWD

involvement can enhance the accuracy of FWI models, with varying degrees of enhancement

depending on factors such as trajectory inclination, source density, and drill path exten-

sion. The impact of SWD-FWI over standard FWI is reduced when low-frequency data are

missing, but improvements over the models constructed with no subsurface sources remain.

This formulation permits general source information, such as position and moment tensor

components, to be independently obtained. This inversion scheme may lead to a range of
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potential applications where both medium properties and source information are required.

3.2 Introduction

In the application of FWI to field data, insufficient acquisition geometry has become a

major challenge. In particular, the limited spatial sampling and aperture of the seismic

experiment (Jannane et al., 1989; Mothi et al., 2014). In general, the complicated and

non-uniform ray paths associated with incomplete acquisition and complex heterogeneous

media introduce shadow zones, regions of the geological medium that are poorly constrained.

Physical properties in those regions are inaccurately recovered unless additional a priori

subsurface information is used to fill in the gaps in ray path coverage (Schuster et al., 2004).

The unavailability of low and intermediate model wavelengths from datasets associated with

short-offset surface acquisitions is perhaps the best-known issue arising from acquisition

limitations −− wide-aperture acquisition, which increases the number of overlapping ray

paths, is essential in these cases (Virieux and Operto, 2009; Vigh et al., 2021).

A clear, but often practically difficult, solution is to include additional, e.g., subsurface,

sources or receivers in the seismic survey, which introduce unique ray paths supporting

estimation of underground media. Acquisition geometries which include sources or receivers

in the subsurface, for instance, cross-well (Pratt et al., 1996; Pratt, 1999; Pratt and Shipp,

1999) and VSP (Pan et al., 2018; Podgornova et al., 2018) naturally supply these, and lead

to different, and in some respects better, FWI model estimates. Generally, improvements are

tied to the appearance of ray paths which interact with the medium through transmission-

like geometries; in reflection surveys, these are for the most part limited to diving waves,

which explains the need for long offsets (Virieux and Operto, 2009; Brittan and Jones, 2019).

SWD is a longstanding auxiliary tool in exploration and monitoring seismology (e.g.,

James W. Rector and Hardage, 1992; Miranda et al., 1996; Naville et al., 2004; Rocca et al.,

2005; Poletto et al., 2020; Auriol et al., 2021; Poletto et al., 2022; Silvestrov et al., 2023). In
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SWD settings, the drill bit acts as a seismic source, and sensors arrayed in a range of possible

geometries produce an experiment similar to a reverse VSP (Khaled et al., 1996; Miranda

et al., 1996). The approach is attractive in that it generates a range of important extra seismic

information without interrupting drilling processes (Poletto and Miranda, 2022). SWD has

attracted interest in recent years, taking advantage of advances in the understanding of

drill-string dynamics and the use of neural networks for data analysis (e.g., Auriol et al.,

2021). It has been pointed out that the introduction of SWD ray paths, which begin at the

drill bit and end at surface or borehole receivers, can in principle constrain velocity models

(Bertelli and di Cesare, 1999; Auriol et al., 2019), and that this could further impact imaging

(Vasconcelos and Snieder, 2008; Kazemi et al., 2018; Goertz et al., 2020) and FWI (Kazemi

et al., 2021; Li et al., 2022) by partially addressing the issues discussed above.

The use of SWD data in conjunction with other seismic data assists model construction

via FWI, which means it will contribute to the optimization of drilling. A drilling project can

in principle be de-risked when better estimates of physical parameters near the drill bit are

available (Poletto et al., 2004; Martinez et al., 2020). Reducing uncertainty in, for instance,

locations of formation tops, and heterogeneities in general within a complex stratigraphy, is

helpful for de-risking in SWD projects (e.g., the avoidance of zones of high pore pressure).

Further, near-real-time updating of drilling parameters requires accurate seismic velocity

estimates within the formations interacting with the drill bit (Auriol et al., 2021). Models

deriving from FWI would in principle address both of these issues.

Bertelli and di Cesare (1999) discussed the potential of SWD for seismic imaging and in-

version. This was accomplished by employing near-real-time reprocessing techniques on the

SWD dataset, which allowed for the continuous modification and refinement of the velocity

model used for migration. Rocca et al. (2005) developed a migration approach wherein a

circular line of receivers is deployed to apply 3D migration in the angular frequency domain,

and this method successfully recovered the position of reflectors in a horizontally layered
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medium. Vasconcelos and Snieder (2008) applied deconvolutional interferometry in SWD

field data to generate an interferometric image of a fault zone at depth within the study

area, and Poletto et al. (2012) tested SWD with seismic interferometry and migration to

map a geothermal field around wells. Kazemi et al. (2018) formulated an illumination com-

pensation for imaging of surface data using SWD data processed with a sparse multichannel

blind deconvolution (SMBD) algorithm, originally built for other applications (Kazemi and

Sacchi, 2014). Similar arguments led to the formulation of a two-stage sequential SWD-FWI

algorithm, in which inversion of data from SWD sources was followed by inversion from

conventionally-acquired surface data (Kazemi et al., 2021). These studies provide strong

evidence that the ray paths associated with SWD do have a marked impact on model esti-

mation when used in combination with other data sets. However, the assumption of acoustic

wave physics, the estimation of a single unknown model parameter class (i.e., P-wave veloc-

ity), and the assumption that the radiation characteristics of the drill bit are known (or can

be accommodated through preprocessing), are all idealizations that make proper feasibility

analysis difficult.

The vertical and horizontal components of the SWD signal are affected by changes in

borehole inclination and azimuth, in part because of drill bit radiation patterns (Figure 1.1 in

Chapter 1), which makes the SWD signal strongly mult-component in nature. It follows that

explanations of the SWD signal requires an elastic as opposed to acoustic theory. Further,

the complicated interaction of the continuously-radiating source drill bit and the formation

rock will induce strong modeling errors in an FWI scheme formulated with a static, known,

and simply-radiating point source.

In this chapter, I introduce and examine a 2D elastic multi-parameter FWI approach that

aims at recovering both source-related variables (positions and moment tensor components)

and multiple unknowns associated with medium properties (P-wave velocity and density). In

the theory section, I first show the formulation of seismic sources defined with moment tensors
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and the treatment of arbitrary source locations. The inversion algorithm is then introduced,

including the derivations of inversion terms used for subsurface models and unknown source

parameters. Finally, I show several numerical experiments with various acquisitions, with

subsequent analysis of the results.

3.3 Theory

3.3.1 General FWI objective function

For incorporation of source unknowns in the FWI problem, I present the reformed objective

function as a more general form than equation 2.16:

Φ (x) =
Nω∑
j=1

Ns∑
k=1

1

2
∥Ruj,k − dj,k∥22, s.t. S(x)u = f, (3.1)

where x is a vector of inversion variables (which will ultimately comprise both subsurface

and source unknowns), and other terms remain the same as equation 2.16. For simplicity, in

the following derivations, I also assume that the wavefield only has one source and frequency

component.

The adjoint state method (e.g., Plessix, 2006) is used to determine the gradient through

a combination of forward and backward propagated wavefields, the latter of which has the

residual wavefield as the source. The Lagrangian of the current problem is

L (x) =
1

2
∥Ru− d∥22 + ⟨S (x)u− (fR + ifI) , λ⟩ , (3.2)

where λ is a vector of Lagrange multipliers, fR and fI are the real and imaginary parts of

the source term f, and ⟨·, ·⟩ represents the inner product. The λ is determined through

backpropagation of data residuals, after which we have:

∂Φ

∂x
=

∂L
(
u, λ

)
∂x

. (3.3)

The incorporation of the Hessian matrix in the optimization procedure accelerates conver-

gence and improves the resolution of the inversion. However, as discussed earlier, the full
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Newton approach is generally too computationally expensive to be practical (Pratt et al.,

1998), especially in this case I have enlarged the subset of known parameters. In the method-

ology of this chapter, I make use of a TGN Hessian calculation with several fixed iterations.

Hessian-vector products are derivable similarly to the gradient, where details can be found in

Section 2.4.3 from equation 2.22 to equation 2.25. Differently, the Lagrangian can be set to

a more general form to make both the derivation for model and source parameters available:

the Lagrangian

L̃ = ⟨u (x) ,w⟩+ ⟨S (x)u− (fR + ifI) , µ⟩ , (3.4)

where w = RTRJv, and v is the vector to be multiplied by the Hessian. The Lagrange

multiplier µ is defined in the same manner as in Chapter 2 and satisfies the same adjoint

relation (see equations 2.21 and 2.22). The Lagrange multiplier µ satisfies the same with

equation 2.24. The product of the Jacobian J with the vector v is possible via the deriva-

tive of the forward problem with respect to variables xp multiplied by vector elements vxp

(Métivier et al., 2013; Keating and Innanen, 2020):

∂ (Su− f)vxp

∂xp

= 0. (3.5)

This allows to derive the Lagrange multiplier µ in equation (3.4). The Gauss-Newton Hessian

vector product HGNv is then ∂L̃
∂x
.

3.3.2 Incorporation of source unknowns

Now suppose that the model unknown vector x includes both medium property unknowns,

contained in the vector m, and source unknowns, contained in the real vectors fR and fI ,

such that the full source vector in equation (3.1) is f = fR + ifI , as seen in equations (3.2)

and (3.4). Equation (3.3) then contains terms of the form

∂L

∂mp

=

〈
∂S

∂mp

u, λ

〉
, (3.6)
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where p labels the pth component of model parameters, and of the form

∂L

∂fRp

= −Re
(
λp

)
, (3.7)

and

∂L

∂fIp
= Im

(
λp

)
. (3.8)

Both fR and fI are in general vectors of very high dimension, with numbers of elements

equal to the number of wavefield grid cells multiplied by the number of the unknown sources

considered. In practice it is necessary therefore to formulate the inverse problem with a

restricted set of source-related variables being solved for. I use the variable fr to parameterize

the moment tensor or the position of a point source, in which case the derivative of the

objective function is

∂Φ

∂fr
=

∑
p

[
−Re

(
λp

) ∂fRp

∂fr
+ Im

(
λp

) ∂fIp
∂fr

]
, (3.9)

where the first part within the summation on the right-hand side is the derivative of the real

component of the source term with respect to fr, and the second part is the derivative of the

imaginary component of the source term with respect to fr.

This concept also holds in the Hessian-vector products. Using the relation in equation

3.5, it can be shown that

S (Jmvm) = −u
∑
p

(
∂S

∂mp

vmp

)
, (3.10)

S (JfRvfR) =
∑
p

(
vfRp

)
, (3.11)

and

S (JfIvfI ) =
∑
p

(
vfIp

)
, (3.12)
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where vmp is the element of v corresponding to the pth element of m, vfRp
is the element

corresponding to the pth element of fR and vfIp
is the element corresponding to the pth

element of fI . This completes the source-medium waveform inversion formulation.

This method for inverting source parameters differs in several ways from other wave-

based methods used in standard seismological applications (e.g., Kim et al., 2011). Firstly,

I focus on determining effective moment tensor combinations that describe general motions

caused by external mechanisms such as SWD, whereas in seismology one typically seeks

a more comprehensive description of centroid moment tensors. I also assume that any

partially or fully unsettled sources occur instantaneously, and thus, I do not consider the

source-time function (moment rate function) that is used in the centroid moment tensor

inversion. Instead of simplifying the problem by ignoring variations in structural properties,

this inversion framework explicitly considers how the moment tensor and source location

jointly affect the wavefield.

3.4 Numerical experiments

The numerical testing summarized in this section, involving simulated models, drilling paths,

signatures, and wavefield data, is designed to validate the inverse formulation and to explore

the potential benefits and limitations of combining SWD and surface seismic datasets in FWI.

I adopt a single, fixed pair of true and initial models, plotted in Figure 3.1. The models are

300 by 150 grid points in the x and z directions, respectively, with each grid cell 20 meters

on a side. Although this multi-parameter FWI has the capacity to recover other parameters,

I would like to focus on the simultaneous inversion for P-wave velocity, density, and the

source terms in the test sections. This is because the estimation of all physical parameters

at the same time can become complex and beyond the scope of this medium-source FWI.

Moreover, P-wave velocity and density are especially important in many application scenarios

as they provide significant insights into subsurface features (Sheriff and Geldart, 1995). To
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accomplish this, I used 1D background models for S-wave velocity based on the general

relationship between P- and S-wave velocities, and homogeneous models for quality factors

in the viscoelastic modeling.

In this section, I present examples based on three main assumptions. Firstly, the drill

trajectory can be treated as if it occupies a discrete sequence of quasi-static positions along

it. Secondly, the radiation patterns of the SWD sources are represented by independent and

general moment tensors, which means the drill-bit-rock interaction can be approximated

by force couples. Thirdly, the SWD source signature can be decomposed into individual

frequencies which overlap with the frequencies used in surface FWI. The plausibility and the

problem of transformation of SWD signals into useable seismic data have been discussed by

Kazemi et al. (2021). Nevertheless, our inversion scheme can be customized to suit datasets

with varying spectral content of diverse kinds of sources. This can be achieved by modifying

the elements within the wavefield matrix. Specifically, I can assign weights to the wavefields

generated by different sources based on the frequency spectrum of their respective signatures.

I can then combine these weighted wavefields to form a new wavefield that can be used in

the inversion process.

The multi-scale approach (Bunks et al., 1995) is utilized to avoid local minima during the

inversion process throughout all the tests. I simplify the treatment of frequencies for synthetic

data by assuming a constant and known frequency spectrum for each source, extended to

the frequency bandwidth typically used in FWI. The frequency range is divided into 10 total

frequency bands, with 12 equally-spaced sub-frequencies in each band. The lowest frequency

in each band is set at 1 Hz, while the highest frequency increases linearly from 3 Hz to 15

Hz. The final model for each frequency band is generated using two levels of iteration: 3

outer iterations for updating models, and 20 inner iterations for approximating the inverse

Hessian matrix by the L-BFGS algorithm (Nocedal and Wright, 2006).
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Figure 3.1: The true and initial models for synthetic tests. (a) True P-wave velocity model.

(b) True density model. (c) Initial P-wave velocity model. (d) Initial density model.

3.4.1 Simultaneous inversion for subsurface parameters and moment tensors

In this section, I examine the simultaneous estimation of VP models, density models, and

borehole (drill) source moment tensors, assuming known surface source positions and radia-

tion patterns, and borehole source positions. On the surface, 72 explosive sources, separated

by 2 grid points, are placed along a line also occupied by 144 multi-component receivers

separated by 1 grid point. A drill path is occupied by sources of known positions and un-

known moment tensors. The drill path, the source numbers, and the positions are varied, to

test the inversion as the effective aperture of the new sources changes. The simulated data

I use in the inversions include those from the surface sources and those from the borehole

sources. The surface sources are assumed to be stronger and to produce less noisy data. To

mimic this, the borehole source amplitudes are scaled by 1/2, and Gaussian noise is added

to the data such that the surface data has a signal-to-noise ratio (SNR) of 10 dB and the
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drill-generated data has SNR = 5 dB. In this set of experiments, I first demonstrate with

numerical examples that the problem as a whole is basically well-posed. A key feature of

our approach is that data from a more or less continuously-radiating drill bit are parsed and

treated as if the drill occupied a discrete set of fixed points along the path. Some number of

such positions, which are not fixed by any theoretical or prior information, must be selected,

and investigation is needed to understand whether or not this degree of freedom has a serious

impact on the approach.

Figure 3.2 shows the schematic acquisition geometry of the source number test. Our main

inversion focus is the area indicated by the black dashed rectangle in the model’s lower-right

part. The surface acquisition, as schematically shown by the red and blue markers, covers the

right-hand side surface of the model. A drilling trajectory is then added in the deeper section

of the left-hand side of our model, and unknown sources are indicated by the black stars.

The drilling site on the ground has around 1.5 kilometers offset from the ground receivers,

and various SWD sources are arranged along a deviated trajectory of 900 meters. The large

distance between the drill site and the surface acquisition is based on the following two

considerations: (1) in practical applications, there is usually a distance between the drilling

sites and the surface sensors; (2) the far-field assumption should be satisfied in representing

force-couple-defined sources with a point approximation (Aki and Richards, 2002). I have

tested the cases where NS = 10, 15, 20, 25, and 30. The initial and true radiation patterns

for each unknown independent point source are set by random moment tensors in a range of

-1 to 1.

I first show the results of subsurface properties with the surface-only acquisition in Figure

3.3 as a baseline inversion for further comparison with the cases where SWD sources are

included. This baseline inversion is noise-free. The estimation of both P-wave velocity and

density is crude, as shown by the indistinct structures in the recovered models. The right-

hand side portions of the models are slightly updated, but the other parts where no extra
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Figure 3.2: Schematic acquisition system in source number test. Surface sources and receivers

are displayed by blue and red markers, respectively. Drilling trajectory and discrete sources

are schematically shown by the black line and markers. The major inversion focus is indicated

by the black dashed rectangle.

source exists are poorly recovered.
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Figure 3.3: Inversion of VP and ρ with surface acquisition. (a) VP inversion with surface

acquisition. (b) ρ inversion with surface acquisition.

The inversion results in Figure 3.4 undergo a significant positive change upon inclusion

of the SWD data, even though there are only a few drilling sources involved (Figure 3.4
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(a) and (b)). Not only is the structure below the surface acquisition well-resolved, but the

intermediate medium between the extra sources to the receivers is also more accurately

estimated. Although visually subtle, the continuity of the lower high velocity and density

layers indicates small variations in each case.

For the misfit calculation, I use the root mean square error normalized by the difference

between the maximum and minimum values of the true data in the focused area (shown by

the portion in the dashed rectangle in Figure 3.2):

NRMSE =
RMSE

|max (datatrue)−min (datatrue)|
. (3.13)

In the inversion tests presented in this chapter, a 1% variation in the error term means

approximately 40m/s change in P-wave velocity, and 30 kg/m3 in density within the focused

area. The analysis of the NRMSE values reveals that the accuracy of the model recovery for

VP and the number of sources is not necessarily linked. However, for the density estimation,

there is a positive correlation between the accuracy of the recovery and the number of sources.

I use 3 vertical profiles in the x-position of 3.6, 4.6, and 5.6 kilometers to quantify the

improvement when combining the SWD data. The comparisons are shown in Figure 3.5,

where the black lines are from true models, the dark green lines are from the baseline

models, and N10-N30 denote five cases in which NS increases from 10 to 30. The NRMSE

is also calculated in each profile. The profiles of all the SWD-FWI cases are much closer

to the true cross-sections. In the first profile, the optimal velocity inversion occurs with a

source number of 20, while the optimal density inversion occurs with a source number of

30. However, this trend does not hold in all profiles, indicating a weak correlation between

source number and inversion results in local profiles.

The moment tensor inversion results, however, do not necessarily change in accordance

with the number of unknown sources. The cross plots in Figure 3.6 show generally good

convergence in all cases. Each black circle in the plot corresponds to a source with different

initial moment tensor values, which are adjusted during the inversion process to approach the
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Figure 3.4: Inversion of VP and ρ with surface and SWD acquisitions with different source

number. Drilling trajectory and discrete sources are schematically shown by the yellow line

and markers. The black arrow denotes the gradual increment of NS. (a), (b) inversion with

NS = 10. (c), (d) inversion with NS = 15. (e), (f) inversion with NS = 20. (g), (h) inversion

with NS = 25. (i), (j), inversion with NS = 30.
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true values, as indicated by their proximity to the red line denoting a high level of agreement.

A change of 1% in the error term results in an approximate variation of 0.02. Combining the

inversions of models and source terms, it is reasonable to infer that the contribution from

the increase of SWD sources outweighs the risk of larger nonlinearity introduced by more

unknown radiation patterns.
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Figure 3.5: Vertical profiles in source number test. (a), (c), and (e) are P-wave velocity

cross-sections, while (b), (d), and (f) are density cross-sections. BL denotes baseline.
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Figure 3.6: Inversion of moment tensors. The x-axis in each subplot represents the initial

values, while the y-axis in each subplot represents the true values. The black arrow denotes

the gradual increment of NS, and the green arrows are from initial data points (black circles)

to final data points (blue circles). The red line in cross plots represents the line of perfect

agreement. (a)-(c) NS = 10. (d)-(f) NS = 15. (g)-(i) NS = 20. (j)-(l) NS = 25. (m)-(o)

NS = 30.

The next test I present here examines the influence of deviation of drilling trajectory

from vertical. I implement a drilling path with a fixed length of 900 m same as the previous

test, with 30 sources with unknown moment tensor settings. The angle θ in Figure 3.7 varies
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from 0◦ (vertical) to 90◦ (horizontal), with an increment of 22.5◦.
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Figure 3.7: Schematic acquisition system in trajectory inclination test. Surface sources and

receivers are displayed by blue and red markers, respectively. Drilling trajectory and discrete

sources are schematically shown by the black line and markers. The major inversion focus

is indicated by the black dashed rectangle.

As shown in Figure 3.8, the layered structures and the low-value region of both the P-

wave velocity and density models are depicted after the FWI, emphasizing the help from

additional sources when compared to the baseline inversion. The error is relatively lower in

inversions with a horizontal drilling path, and the deeper layers with higher VP and ρ values

are better reconstructed because of a higher horizontal resolution.
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Figure 3.8: Inversion of VP and ρ with surface and SWD acquisitions with different trajectory

inclinations. Drilling trajectory and discrete sources are schematically shown by the yellow

line and markers. The black arrow denotes the gradual increment of θ. (a), (b) inversion

with θ = 0◦. (c), (d) inversion with θ = 22.5◦. (e), (f), inversion with θ = 45◦. (g), (h)

inversion with θ = 67.5◦. (i), (j) inversion with θ = 90◦.
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The profiles in Figure 3.9 also display steady FWI results with different deviations, and

all cases with extra SWD sources are better consistent with the true values. The positive

correlation between the inversion results and the increase in θ is generally maintained.
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Figure 3.9: Vertical profiles in trajectory inclination test. (a), (c), and (e) are P-wave velocity

cross-sections, while (b), (d), and (f) are density cross-sections. BL denotes baseline.

In the cross plots of moment tensor inversion, the overall NRMSE gets smaller when the

trajectory deviates, and reaches its lowest in the case where θ = 22.5◦, but enlarged again

as it becomes closer to horizontal. Generally, the inversion is consistent and accurate.
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Figure 3.10: Inversion of moment tensors. The x-axis in each subplot represents the initial

values, while the y-axis in each subplot represents the true values. The black arrow denotes

the gradual increment of θ, and the green arrows are from the initial data points (black

circles) to the final data points (blue circles). The red line in cross plots represents the line

of perfect agreement. (a)-(c) θ = 0◦. (d)-(f) θ = 22.5◦. (g)-(i) θ = 45◦. (j)-(l) θ = 67.5◦.

(m)-(o) θ = 90◦.

The experiments in the next phase aim at the possible effect of the change of drilling

path extension. Figure 3.11 shows the schematic acquisition used in this test. I keep the

inclination to be 45◦ and NS to be 30, while going through five cases with different trajectory
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lengths. The extension L in the first case is 450 meters with clustering sources, while the

drilling length in the last case is 1500 meters with a relatively sparse source distribution.
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Figure 3.11: Schematic acquisition system in trajectory extension test. Surface sources and

receivers are displayed by blue and red markers, respectively. Drilling trajectory and discrete

sources are schematically shown by the black line and markers. The major inversion focus

is indicated by the black dashed rectangle.

From the overall view in Figure 3.12, we can see a downgoing trend of the misfit in the

ρ models, but this trend does not apply to the VP estimation. In Figure 3.13, the profile

that goes through the shallower body with low velocity and density values shows the best

result when I use the largest extension, as it gets more comprehensive illumination when I

enlarge the extension. However, it is hard to see a clear misfit tendency for the other profiles.

The moment tensor inversions (see Figure 3.14) are stable as the cross plots present similar

consistency between estimated and actual values. There seems to be little clear correlation

between the misfits and drilling path length.
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Figure 3.12: Inversion of VP and ρ with surface and SWD acquisitions with different tra-

jectory extensions. Drilling trajectory and discrete sources are schematically shown by the

yellow line and markers. The black arrow denotes the gradual increment of L. (a), (b)

inversion with L = 450 m. (c), (d) inversion with L = 710 m. (e), (f) inversion with L = 975

m. (g), (h) inversion with L = 1250 m. (i), (j) inversion with L = 1500 m.

75



2747 3130

V
P

 (m/s)

0

0.5

1

1.5

2

2.5

3

D
e
p
th

 (
k
m

)

True

BL-Err:13.469%

L
1
-Err:6.282%

L
2
-Err:6.707%

L
3
-Err:7.467%

L
4
-Err:8.363%

L
5
-Err:9.004%

1786 2034

 (kg/m
3
)

0

0.5

1

1.5

2

2.5

3

True

BL-Err:13.547%

L
1
-Err:6.523%

L
2
-Err:6.399%

L
3
-Err:6.366%

L
4
-Err:6.317%

L
5
-Err:6.582%

2149 3125

V
P

 (m/s)

0

0.5

1

1.5

2

2.5

3

True

BL-Err:12.330%

L
1
-Err:8.681%

L
2
-Err:8.568%

L
3
-Err:8.420%

L
4
-Err:8.222%

L
5
-Err:7.984%

1397 2031

 (kg/m
3
)

0

0.5

1

1.5

2

2.5

3

True

BL-Err:10.763%

L
1
-Err:4.673%

L
2
-Err:4.659%

L
3
-Err:4.633%

L
4
-Err:4.646%

L
5
-Err:4.590%

2738 3119

V
P

 (m/s)

0

0.5

1

1.5

2

2.5

3

True

BL-Err:13.820%

L
1
-Err:6.133%

L
2
-Err:6.163%

L
3
-Err:6.040%

L
4
-Err:6.273%

L
5
-Err:6.328%

1780 2027

 (kg/m
3
)

0

0.5

1

1.5

2

2.5

3

x = 3.6 km x = 4.6 km x = 5.6 km

(a) (b) (c) (d) (e) (f)

True

BL-Err:13.333%

L
1
-Err:5.300%

L
2
-Err:5.280%

L
3
-Err:5.110%

L
4
-Err:5.292%

L
5
-Err:5.223%

Figure 3.13: Profiles in trajectory extension test. (a), (c), and (e) are P-wave velocity

cross-sections, while (b), (d), and (f) are density cross-sections. BL denotes baseline.
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Figure 3.14: Inversion of moment tensors. The x-axis in each subplot represents the initial

values, while the y-axis in each subplot represents the true values. The black arrow denotes

the gradual increment of L, and the green arrows are from the initial data points (black

circles) to the final data points (blue circles). The red line in cross plots represents the line

of perfect agreement. (a)-(c) L = 450 m. (d)-(f) L = 710 m. (g)-(i) L = 975 m. (j)-(l)

L = 1250 m. (m)-(o) L = 1500 m.
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3.4.2 Simultaneous inversion for subsurface parameters, moment tensors and source posi-

tions

In some drilling programs, there are deviations between the planned and the actual wellbores

because of the dip angle, hardness, and other formation or designing properties (Ma et al.,

2016). In this section, I consider recovering P-wave velocity, density, source radiations, and

positions with the above simultaneous inversion scheme in a more realistic situation. The

estimated discrete source positions will be connected to depict the estimated drilling path.

The same synthetic models and major inversion target are kept in this experiment. I

use a larger offset from the drilling site to surface sensors for the geometry to eliminate the

potential mistakes from misupdated source positions. The initial well trajectory is shown by

the purple line, while the true path deviates from it as the yellow line in Figure 3.15. This

test assumes that the SWD sources are radiating independently from their positions. 30

discrete sources with unknown moment tensors and positions are used in this experiment.
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Figure 3.15: Schematic acquisition system considering source positions. Surface sources and

receivers are displayed by blue and red markers, respectively. The true and initial trajectories

are shown by the yellow and purple lines, respectively. The major inversion focus is indicated

by the black dashed rectangle.
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As shown in Figure 3.16, the inversion results for P-velocity and density models are

also significantly enhanced with the intervention of SWD sources, suggesting the robustness

of the FWI is kept despite the more nonlinear inverse problem with the involvement of

unknown positions. Reliable recovery of moment tensors is shown in Figure 3.17. Figure

3.18 illustrates that the real drilling trajectories can also be depicted.
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Figure 3.16: Inversion of VP and ρ with surface and SWD acquisitions with SWD radiation

and position unknowns. (a) VP model. (b) ρ model.
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Figure 3.17: Inversion of moment tensors when positions join as source unknowns. The x-

axis in each subplot represents the initial values, while the y-axis in each subplot represents

the true values. The green arrows are from the initial data points (black circles) to the final

data points (blue circles). The red line in cross plots represents the line of perfect agreement.

(a) M11 results. (b) M12 results. (c) M22 results.
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Figure 3.18: Inversion for SWD source positions. The blue line denotes the initial trajectory,

the yellow line shows the true trajectory, and the red and black markers are the discrete initial

and estimated source positions, respectively.

3.4.3 Inversion with frequency variations

The multi-band inversion investigated thus far involves random moment tensors with con-

stant impulsive energy at each frequency, and in general the treatment of frequencies is

necessarily somewhat idealized. The experiments in this section are designated to test the

FWI performance in several scenarios where lower frequencies are missing. I use the most

consistent acquisition in which there is a deviated trajectory with fixed inclination, exten-

sion, and source numbers (case 3 in the extension and inclination test, last case in the source

number test). The varying parameter is the frequency spectrum. Figure 3.19 shows four

frequency settings, where F1 - F4 denote weaker energy of the lower frequencies. I conduct

the simultaneous inversion for P-wave velocity, density, and moment tensor values, while

excluding source positions in the inversion variables to simplify this problem.
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Figure 3.19: Frequency components in this section’s tests.

As shown in Figure 3.20, poorer recovered models are acquired when the inversion is

conducted with mainly relatively higher frequencies, but the shallower small region with low

velocity and density is still characterized because of the increased illumination. Compared

with the baseline inversion, which uses a sufficiently broad frequency range, the contribu-

tion from the SWD-generated datasets is self-evident. The results are gradually refined when

more low-frequency components are included, although major errors cluster around unknown

sources. The radiation inversions in Figure 3.21 show a similar correlation with the inter-

vention of lower frequency components. This section suggests that, in practical applications,

the SWD is also supportive even with a lack of low frequencies.
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Figure 3.20: Inversion of VP and ρ with surface and SWD acquisitions with different source

spectra. Drilling trajectory and discrete sources are schematically shown by the yellow line

and markers. The black arrow denotes spectra with less comprehensive low frequencies. (a)

and (b) correspond to F1 in Figure 3.19. (c) and (d) correspond to F2 in Figure 3.19. (e)

and (f) correspond to F3 in Figure 3.19. (g) and (h) correspond to F4 in Figure 3.19.
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Figure 3.21: Inversion of moment tensors with different frequency datasets. The x-axis in

each subplot represents the initial values, while the y-axis in each subplot represents the

true values. The black arrow denotes spectra with less comprehensive low frequencies, and

the green arrows are from the initial data points (black circles) to the final data points

(blue circles). The red line in cross plots represents the line of perfect agreement. (a)-(c)

correspond to F1 in Figure 3.19. (d)-(f) correspond to F2 in Figure 3.19. (g)-(i) correspond

to F3 in Figure 3.19. (j)-(l) correspond to F4 in Figure 3.19.

3.5 Discussion

The synthetic examples show that a simultaneous inversion for recovering the subsurface

models and unknown source terms is feasible in a surface + SWD acquisition setting. The
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simulations allow the impact of the additional ray paths to be understood and analyzed by

comparing the FWI results with surface-only and surface-well acquisitions. In this SWD-

FWI algorithm, I mitigate the nonlinearity by assuming known isotropic source radiation in

the conventional acquisition, thus reducing the number of inversion variables, which helps the

inversion of VP and ρ. More accurate VP and ρ models can be obtained with explosive surface

sources with generally radiating SWD sources. The drilling path can also be depicted with

the estimation of discrete sources via this inversion approach, which suggests the potential

in managing the drilling programs.

As illustrated in Figure 3.4, Figure 3.8, and Figure 3.12, the upper-middle portion of

the models displays well-resolved features of low-velocity and low-density lenses across most

examples. However, the lower layer continuity with higher values exhibits more distinguish-

able variations, particularly in the angle test section. To investigate this phenomenon, a

ray-tracing test was conducted on the model. Results in Figure 3.22 (a) indicate that when

the angle is fixed at 45◦, the ray paths from the subsurface sources to the ground cannot

effectively convey information about that layer, suggesting that a variation of source num-

bers or drill path extension may not be effective. However, Figure 3.22 (b) demonstrates

that high-velocity and high-density layers can cause some ray paths to bend upwards and

become detectable, which helps to reduce the discontinuity of those layers by providing the

inversion with information about the high-velocity and density layers between 3 − 4 km.

The ray-tracing outcomes imply that underground models may play a significant role in

implementing SWD-FWI. It is worth noting that while ray-tracing provides only first-order

information about the wavefield and applies a high-frequency approximation to demonstrate

the paths the energy follows, the FWI uses full waveform information that includes both

first and higher-order reflections, also the lower-frequency components. This explains why

the model portions not covered by the ray paths are also well recovered.
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Figure 3.22: Ray-tracing with different SWD settings. (a) θ = 45◦. (b) θ = 90◦.

While it is possible to formulate a time-domain FWI scheme, I made a thoughtful decision

to prioritize the frequency-domain approach. This choice stems from its notable compatibil-

ity with multi-parameter inversion and its demonstrated effectiveness in handling vectorized

parameters, as evidenced in previous studies (e.g., Métivier et al., 2013). Moreover, for our

specific application involving SWD datasets, the frequency-domain approach brings inher-

ent convenience by seamlessly integrating data with diverse frequency components into the

inversion process, offering a significant advantage for our research.

I believe in this formulation that the critical elements needed to explain the SWD sig-

nature and begin to use it are in place. This study also suggests some important directions
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for further research. First, although I have not allowed it to be a free unknown yet, this

framework can estimate source-related unknowns, thus enabling SWD-FWI technology to

help refine drill position estimates. Moment tensor decomposition can also be applied to

analyze the mechanisms of the bit-rock interaction if force couples can describe the discrete

SWD sources. Such inversion has the potential to help the ahead-of-the-bit estimation in

SWD, though computational speed and expense would need to be reduced for this to be

practically realized. Another challenge is the source frequency spectrum in this problem.

The dominant frequencies of SWD sources with the bit penetration could be higher than the

typical frequency band in FWI, and there are some related issues, as previously discussed,

to be considered in this simultaneous inversion approach since it is currently conducted with

lower frequencies. However, it is possible to design a more realistic representation consid-

ering both the drill-bit-rock mechanism with moment tensors and frequency dependence.

Promisingly, this methodology can be potentially used for jointly inverting active surface

seismic and passive microseismic data, beyond just SWD. For instance, previous studies

(Wagner et al., 2007; Vesnaver et al., 2010; Goertz-Allmann et al., 2017) have introduced

joint inversion methods of multiple data types to enhance subsurface imaging. Hence, this

adapted FWI scheme can be a valuable tool for improving the imaging of complex geologic

structures and identifying hydrocarbon reservoirs in the subsurface.

3.6 Conclusions

In this chapter, I explore the potential of taking advantage of the SWD data to compensate

for the incomplete surface acquisition in simultaneous FWI. Numerical examples demon-

strate that the additional ray paths provided in an SWD dataset help to provide a better

FWI result. The inclusion of SWD data improves the inversion of elastic properties, and

this leads to conclude that SWD data offers the potential to enhance inversion results. Be-

sides, the radiations and positions of the underground sources can also be precisely depicted,
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which shows a promising possibility that the drilling application can be monitored while

implementing its datasets to the FWI. Further research is still required to provide more

comprehensive conclusions, especially concerning a more precise moment tensor represen-

tation of the drill-bit-rock interaction mechanisms and an advanced inversion strategy that

will fit a more practical case. Additionally, the source signature of various types of drill bits

should be quantified to detail the P and S-wave components.
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Chapter 4

Uncertainty quantification in time-lapse full waveform

inversion of vertical seismic profiling data: contrasting

Hamiltonian Monte Carlo and Stein Variational

Gradient Descent methods

4.1 Summary

Time-lapse FWI is increasingly important in energy-transition applications, particularly for

monitoring CO2 geological storage. Due to the nonlinearity of the FWI problem, the presence

of diverse sources of uncertainty between baseline and monitor surveys, and the typically

sparse or variable data coverage in practical deployments, incorporating robust uncertainty

quantification strategies is essential. Two promising approaches are HMC and SVGD, each

offering distinct advantages. HMC leverages Hamiltonian dynamics to explore the model

space more efficiently than traditional Monte Carlo Markov Chain (MCMC) methods, while

SVGD approximates the posterior distribution by iteratively updating a finite set of particles

to minimize the KL divergence. In this chapter, I conduct a feasibility analysis of 2D TL-FWI

using VSP acquisition, comparing HMC and SVGD under equivalent computational budgets.

The results indicate that, while both approaches provide meaningful uncertainty quantifi-

cation, they exhibit distinct trade-offs. HMC produces more global posterior estimates and

potentially more comprehensive model updates, but the risk of accepting erroneous model pa-

rameters in poorly illuminated regions increases. This challenge can further be exacerbated

in TL-FWI scenarios. In contrast, SVGD, although sensitive to survey non-repeatability

due to its deterministic nature, achieves faster convergence and better scalability, making it

88



well-suited for rapid or large-scale uncertainty assessments. The findings underscore the im-

portance of aligning algorithmic choice with inversion goals and computational constraints,

especially in real-world TL-FWI monitoring applications.

4.2 Introduction

The effectiveness of FWI is hindered by several inherent complexities. As explored in previous

chapters, uncertainties in FWI arise from various sources, including sparse and noisy obser-

vational data, errors in acquisition, and limitations in forward modeling theories (Parker,

1977). These factors contribute to a fundamental ambiguity: multiple sets of model parame-

ters can produce similar seismic responses, leading to non-uniqueness in the inversion results.

This issue reflects the ill-posed nature of FWI, where subtle variations in subsurface proper-

ties may not be distinguishable given the available data, complicating the interpretation of

the estimated models through FWI.

The complexity of FWI further escalates in time-lapse studies, where consecutive inver-

sions are conducted on baseline and monitor datasets to track changes in subsurface proper-

ties over time. These surveys introduce additional challenges due to inconsistencies in data

acquisition, such as non-repeatability caused by environmental factors or equipment varia-

tions, and differences in the geometry of surveys conducted at different times (Mosegaard

and Tarantola, 1995; Kotsi et al., 2020). Time-lapse FWI also inherits the uncertainties

inherent in individual inversions, compounding the difficulties of building reliable models of

temporal change. In such scenarios, it becomes crucial to move beyond a single “best” model

by assessing a spectrum of plausible solutions that fit the data—known as the ensemble of

solutions. Properly characterizing this ensemble requires strategies for quantifying the un-

certainties in FWI models and identifying the range of possible subsurface configurations

that align with the data (Backus and Gilbert, 1967, 1968).

Given the inherent uncertainties in FWI, probabilistic frameworks are important for cap-
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turing the full range of potential solutions. MC-based methods represent one of the most

widely used approaches for uncertainty quantification in FWI. However, the computational

cost of this realm of methods becomes prohibitive for large-scale problems, particularly in

time-lapse FWI, where two full sampling processes—one for each dataset—must be con-

ducted (Bellman, 2003). The scalability challenge limits the direct application of traditional

MC methods in practical 3D or time-lapse studies, necessitating more efficient alternatives.

A promising alternative is the HMC method (Duane et al., 1987), which combines gradient-

based optimization with sampling techniques. HMC leverages Hamiltonian dynamics (Hamil-

ton, 1834) to explore the model space efficiently, and reduces the chances of getting trapped

in local minima, facilitating a more targeted exploration of the parameter space (Neal, 1993;

Brooks et al., 2011). This makes it well-suited for FWI applications, where complex, high-

dimensional parameter spaces are common. More discussions of HMC in FWI can be found

in Fichtner et al. (2018); Gebraad et al. (2020); Kotsi et al. (2020); de Lima et al. (2023,

2024).

In addition to MC-based methods, variational inference techniques offer another path

for uncertainty quantification. These methods reformulate the Bayesian problem as an op-

timization task, where the goal is to approximate the posterior distribution of the model

parameters with a simpler, tractable distribution (Jordan et al., 1998). This transforma-

tion reduces computational demands, making variational inference particularly attractive

for large-scale FWI problems where traditional sampling methods are impractical. Vari-

ational inference methods aim to minimize the difference between the true posterior and

the approximating distribution, typically measured using divergence metrics such as the

KL divergence (Blei et al., 2017). Among various methods for minimizing the KL diver-

gence, the SVGD method has gained prominence in geophysical applications. Unlike other

methods that require explicit analytical transformations between distributions, SVGD uses

kernel-based transformations to iteratively adjust model parameters toward regions of high
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posterior probability (Liu and Wang, 2019). This property makes SVGD flexible and well-

suited for FWI, where the analytical forms of posterior distributions are often unavailable.

Applications of SVGD in geophysical studies include works by Zhang et al. (2018); Nawaz

and Curtis (2018, 2019); Zhang and Curtis (2020); Zhang et al. (2023), demonstrating its

potential in handling complex inversion problems with improved efficiency and scalability.

While there is a comparison between these two methods in elastic FWI with transmissive

acquisition (e.g., (Zhang and Curtis, 2020; Gebraad et al., 2020)), it is generally difficult

to make broad claims about the comparative strengths of methods like HMC and SVGD,

case-specific synthetic experiments can reveal meaningful differences in their behavior. I

assume that, given a sufficiently well-defined setup, lessons can be drawn that are relevant

not only to the tested scenario but also to others of similar structure. The problem of

time-lapse VSP-FWI for CO2 plume monitoring provides such a context. de Lima et al.

(2024) have demonstrated the use of HMC for uncertainty assessment in seismic monitoring

with FWI, while Zhang and Curtis (2024) have explored stochastic SVGD for monitoring

applications. Related Bayesian approaches include physics-structured variational inference

that shows promise for 4D FWI (Zhao and Curtis, 2024), and sparse seismic survey design

(Zhao and Curtis, 2025). In this chapter, I first briefly review the theoretical foundations of

Bayesian FWI, HMC, and SVGD, emphasizing their role in probabilistic inversion. I then

design synthetic experiments to evaluate HMC and SVGD within a near-parallel acoustic

TL-FWI framework. The setup simulates CO2 injection using a permanent VSP receiver

array and varying surface source geometries between baseline and monitor surveys. Varying

levels of noise are then added to both datasets to further amplify the non-repeatability in TL-

FWI. The results include a comparative analysis of the two methods in terms of uncertainty

structure, convergence behavior, and sensitivity to acquisition geometry.
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4.3 Theory

4.3.1 Pseudo-code for HMC- and SVGD-based FWI

The core steps involved in both HMC and SVGD have been outlined in Chapter 2. Building

on those descriptions, I summarize the workflows for these methods in the following algo-

rithms. All relevant formulations and theoretical foundations are also discussed in detail in

Chapter 2.

Algorithm 1 provides a pseudo-code representation of a single iteration of the HMC

algorithm in FWI, with the input data denoted as d. The current and proposed states are

indicated by the subscripts cur and new, respectively. The gradient of the potential energy

is calculated by the adjoint method, which is also presented in Chapter 2.

Algorithm 1: HMC iterations

1: for M = 1 to nsamples do
2: Randomly generate pcur ∼ N (0,Mmass);
3: pnew = pcur

4: mnew = mcur

5: U (mcur) = −logPmcur (mcur|d)
6: K (pcur) =

pT
curM

−1
masspcur

2

7: H (pcur,mcur) = U (mcur) +K (pcur)

8: pnew = pnew − δt∇U(mnew)
2

9: for N = 1 to Leapfrog iterations - 1 do
10: mnew = mnew + δt∇K (pnew)
11: pnew = pnew − δt∇U (mnew)
12: end for
13: mnew = mnew + δt∇K (pnew)

14: pnew = pnew − δt∇U(mnew)
2

15: pnew = −pnew

16: U (mnew) = −logPmnew (mnew|d)
17: K (pnew) =

pT
newM−1

masspnew

2

18: H (pnew,mnew) = U (mnew) +K (pnew)
19: if randnum ≤ exp (− (Hnew −Hcur)) then
20: mcur = mnew

21: else
22: mcur = mcur

23: end if
24: end for
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In practice, the distribution is approximated using a collection of particles. I summarize

this method in Algorithm 2 below. The gradient of the likelihood function is also acquired

by the adjoint method.

Algorithm 2: Variational Inference with Stein Variational Gradient Descent

1: Draw a set of N particles m0 =
[
m0

j

]N
j=1

∈ q0(m), where q0(m) is the initial

distribution;
2: for i = 1 to iterations do
3: Φ∗

i (m) = 1
N

∑N
j=1

[
k
(
mi

j,m
)
∇mi

j
logρ

(
mi

j|d
)
+∇mi

j
k
(
mi

j,m
)]

4: mi+1
j = mi

j + αiV ∗
i

(
mi

j

)
5: end for

Generally, parameters have natural constraints in many geophysical inverse problems.

Those constraints complicate the SVGD optimization processes because the algorithms must

respect these boundaries, which can be challenging. Thus, I encode parameters to an un-

constrained space by equation 4.1, and transfer these back after the SVGD process using

equation 4.2, where i denotes the parameter index, and ai and bi are the lower and upper

boundaries on model parameters mi. An example can be seen in Figure 4.1.

mT
i = T (mi) = log (mi − ai)− log(bi −mi), (4.1)

mi = T−1
(
mT

i

)
= ai +

(bi − ai)

1 + exp (−mT
i )

, (4.2)
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Figure 4.1: An example of the constrained and unconstrained parameter space.

4.4 Numerical Experiments

4.4.1 Configurations and workflow

In this section, I present several acoustic time-lapse FWI experiments conducted in the

frequency domain using HMC and SVGDmethods with comparable computational workload,

which is set to 1 day on the same workstation. The experiments focus on estimating P-wave

velocity variations in a synthetic model both before and after the CO2 injection (refer to

Figure 4.2). The horizontal and vertical grids contain 300 and 100 points, respectively, with

a grid interval of 10 meters. Across all numerical tests, I deploy 40 permanent VSP receivers

in the middle of the model, simulating the observation well for CO2 sequestration. For

the baseline inversion, there are 80 explosive sources separated by 4 grid intervals on the

surface. The number of sources is halved in the monitor inversion. The synthetic datasets
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are discretized into a set of 8 frequencies, ranging from 5 to 25 Hz. I adopt a parallel time-

lapse inversion strategy in this research, thus, as illustrated in Figure 4.3, the initial models

for all HMC-FWI and SVGD-FWI tests are selected from a uniform distribution configured

from a smoothed version of the true baseline model. The upper and lower boundaries of the

uniform distribution are set to be ±600 m/s.
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Figure 4.2: P-wave velocity models and schematic acquisition geometry. The source layout is

represented by white stars, and the observation well is shown by the black line with receivers

indicated by red triangles. (a) true baseline model. (b) true monitor model.

(a)

0 1 2

Distance (km)

0

0.5

D
e
p
th

 (
k
m

)

2000

2900

3800

V
P
 (m/s)

x = 1.5 km

U
m

 in x = 1.5 km(b)

2000 3000 4000

V
P
 (m/s)

0

0.5

D
e
p
th

 (
k
m

)

Figure 4.3: The initial model for baseline and monitor surveys. (a) Smoothed baseline model.

(b) An example of the range of the uniform distribution.

The workflow consists of two main phases. In phase 1, the baseline inversion is performed

using both HMC and SVGD under consistent parameter settings but with the surface source
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coverage reduced by half to simulate sparser monitoring conditions. Phase 2 involves in-

versions using the same methods but different noise levels added in baseline and monitor

datasets to enhance the non-repeatability. Noise with SNR of 8 is applied to the baseline

data and an SNR of 6 to the monitor data. To address the scale dependency of standard

deviation in uncertainty visualization and to enable a fair comparison between the baseline

and monitor inversion results, I use the coefficient of variation (CV), which normalizes the

standard deviation σ (m) by the corresponding mean model m as below:

CV (m) =
σ (m)

m
. (4.3)

CV values are presented specifically when comparing the baseline and monitor inversions.

For the time-lapse results, however, I present the standard deviation directly, as it more

effectively highlights the absolute uncertainty in the estimated time-lapse changes. This

relative metric, used for both baseline and monitor results, is positively correlated with the

level of uncertainty. The time-lapse differences are then analyzed using the model mean and

standard deviation of the changes, expressed as mm −mb and σ (mm −mb), respectively.

4.4.2 Time-lapse FWI with HMC

Consistent with the adaptive tuning strategy (Fichtner et al., 2018) in HMC, I employ

dynamic integration lengths, randomly selected from the range of 9 to 15. I initialize the

starting time step, denoted as δt, to be twice the maximum value within the model vector,

scaled by dimension−1/4 multiplied by the iteration number in the Leapfrog method. The

adjustment of the time step is contingent on the acceptance rate within the sampling subset.

If the acceptance rate falls below 45%, I decrease δt by a factor of 0.8. Conversely, if the

acceptance rate within a subset exceeds 75%, I increase the time step by the reciprocal of

0.8. The mass matrix in HMC is set to be the identity matrix.

In Figure 4.4, I present the HMC-FWI results for both the baseline and monitor inversions

under noise-free conditions. A total of 54, 322 samples are generated for the baseline, with an
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acceptance rate of 67.04%, resulting in 36, 417 accepted samples. For the monitor inversion,

which uses half the number of sources and thus is faster, 77, 596 samples are generated

with a slightly lower acceptance rate of 65.21%, producing 50, 600 accepted samples. The

posterior means of the baseline and monitor models are shown in panels (a) and (d), while

the corresponding uncertainty estimates at three reference points are displayed in panels (b)

and (e). These reference points include one near the VSP array and two located farther

away (a shallow and a deep point; see Figure 4.2). The full posterior distributions at these

locations are given in panels (c) and (f). The results highlight a dependence of posterior

behavior on illumination. The first two points from both the baseline and monitor inversions

exhibit near-Gaussian distributions with mild skewness. In contrast, multi-modal patterns

are presented in the deeper point (purple star) where the illumination is limited. This

indicates the low reliability of the uncertainty estimation of such poorly illuminated areas.

Figure 4.4: Baseline and monitor HMC-FWI results with noise-free data. (a) and (d) are

baseline and monitor model means mb and mm. (b) and (e) are coefficient of variation plots

of the baseline and monitor models. (c) and (f) are histograms of the posterior distribution

of the model parameters on three reference points shown by the three stars in (b) and (e).

The three dashed lines denote the true values.

I present the time-lapse results in Figure 4.5. As shown in panel (a), the time-lapse mean
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model successfully captures the P-wave velocity changes in the injection area, indicating

good resolution of the velocity variation. Panel (b) displays the standard deviation of the

changes in time lapse, calculated as

σ(mTL) = sqrt[variance(mm) + variance(mb)]. (4.4)

In interpreting these results, I assume independence between the baseline and monitor en-

sembles, consistent with the parallel inversion strategy adopted here. Figure 4.5(c) displays

the posterior distributions of the time-lapse velocity differences at the selected reference

points. For the two points closer to the VSP array, the distributions deviate only slightly

from Gaussianity, with mild skewness, and thus provide reasonable uncertainty estimates.

In contrast, the distribution at the deeper purple point exhibits pronounced multi-modality,

reflecting the compounded effects of limited illumination and differencing between baseline

and monitor inversions. This behavior highlights that uncertainty quantification becomes

less reliable in poorly illuminated regions, and that the degradation is amplified when as-

sessing time-lapse changes.

I then present the time-lapse results in Figure 4.5. As shown in Figure 4.5 (a), the time-

lapse mean model successfully captures the P-wave velocity changes in the injection area,

indicating good resolution of the velocity variation. Figure 4.5 (b) displays the standard

deviation of the changes in time lapse, calculated as sqrt[variance(mm) + variance(mb)],

assuming independence between the baseline and monitor samples due to the parallel inver-

sion strategy, which results in covariance(mb,mm) = 0. Additionally, Figure 4.5 (c) shows

the distributions of time-lapse differences at the selected locations. These distributions ex-

hibit slight skewness from a standard Gaussian shape but overall reflect the underlying

uncertainty estimates.
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Figure 4.5: Time-lapse HMC-FWI results with noise-free data. (a) and (b) are mean value

and standard deviation plots of the time-lapse variation, and (c) shows the posterior distri-

butions of the reference points, with the true time-lapse changes denoted by the three dashed

lines. Note that the blue and red lines are overlaying each other as they both represent 0.

Three vertical profiles across the reference points are shown in Figure 4.6. In general,

higher uncertainties are observed in the deeper sections of the model, particularly in the

first and third profiles, primarily due to insufficient illumination from the VSP acquisition

in those regions. Despite this, the histograms along all three profiles align well with the true

time-lapse changes, indicating a generally accurate estimation of the subsurface variations.
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Figure 4.6: HMC time-lapse variation profiles with noise-free data. (a) to (c) are profiles

across the three reference points, with their locations shown in Figure 4.5. The dark-green

line is the true time-lapse change, the red line is the time-lapse model mean, and colors along

the profile denote probability values.

Next, I evaluate the performance of HMC-FWI using noisy datasets. With the same com-

putational budget as in the noise-free case, the total number of sample attempts remains

comparable. However, due to the added noise, the acceptance rates decrease to 59.92% for

the baseline and 58.44% for the monitor. Figure 4.7 presents the HMC-FWI results under

the noisy condition. Compared to the noise-free case, the mean models display increased

artifacts, and the associated uncertainties are higher. However, the estimated model means

still show good agreement with the true models, demonstrating the robustness of the in-

version framework. The posterior distribution at the bottom-right reference point becomes

skewed and exhibits a multi-modal structure, especially in the monitor inversion, reflecting

the compounded challenges of noise and acquisition non-repeatability.
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Figure 4.7: Baseline and monitor HMC-FWI results with noisy data. (a) and (d) are baseline

and monitor model means mb and mm. (b) and (e) are coefficient of variation plots of the

baseline and monitor models. (c) and (f) are histograms of the posterior distribution of the

model parameters on three reference points shown by the three stars in (b) and (e). The

three dashed lines denote the true values.

Without a more detailed analysis, the influence of noise does not appear to be signifi-

cantly amplified. In the model mean shown in Figure 4.8 (a), the primary velocity anomaly

remains clearly identifiable, despite the presence of additional artifacts. Larger uncertainties

and more irregular posterior distributions emerge in regions poorly constrained by the VSP

acquisition, yet around the injection zone the uncertainty levels remain comparable, as illus-

trated in Figures 4.8 (b) and (c). However, the compounded effects of noise and acquisition

non-repeatability become evident when examining the time-lapse variations through the ver-

tical profiles in Figure 4.9. While Figure 4.9 (b) demonstrates good agreement between the

true and estimated time-lapse changes, along with their associated uncertainties, stronger

deterioration is observed in panels (a) and (c), where the estimated posterior distributions

deviate considerably from the true variations.
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Figure 4.8: Time-lapse HMC-FWI results with noisy data. (a) and (b) are mean value and

standard deviation plots of the time-lapse variation, and (c) shows the posterior distributions

of the reference points, with the true time-lapse changes denoted by the three dashed lines.

Note that the blue and red lines are overlaying each other as they both represent 0.
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Figure 4.9: HMC time-lapse variation profiles with noisy data. (a) to (c) are profiles across

the three reference points, with their locations shown in Figure 4.8. The dark-green line is

the true time-lapse change, the red line is the time-lapse model mean, and colors along the

profile denote probability values.

4.4.3 Time-lapse FWI with SVGD

In SVGD-FWI, 400 particles are set in the SVGD method. I apply the Adam optimization

(Kingma and Ba, 2014), and the master stepsize is set to be 0.01. The computational

budget allows approximately 450 iterations for the baseline SVGD-FWI and around 700

iterations for the monitor inversion. The noise-free results are shown in Figure 4.10, which

highlight several differences compared to HMC-FWI. The baseline model mean appears

generally less noisy, yet artifacts emerge in the monitor inversion due to the reduced number

of sources. The CV values are consistently higher than those in the HMC-FWI results,

reflecting greater estimated uncertainty. The uncertainty maps also reveal a dependence on
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acquisition geometry, as uncertainties remain low near the VSP receiver array but increase

with distance. In the monitor case, zones of higher uncertainty appear in the shallow region,

likely caused by the reduced number of sources. The posterior distributions at the three

reference points are approximately Gaussian, though often with long tails on both sides.

This behavior can be attributed to the repulsive property of the SVGD kernel, which pushes

particles apart when they cluster too closely.

Figure 4.11 shows the corresponding time-lapse results from SVGD-FWI, which exhibit

different behavior from those obtained with HMC-FWI. The model mean in panel (a) success-

fully captures the main anomaly, although the recovered time-lapse changes appear smoother.

While the central anomaly is well resolved, artifacts are present across the model, especially

inside the VSP illumination zone. The uncertainty map in panel (b) indicates generally

higher values than those from HMC, with the largest uncertainties concentrated in the top-

left and bottom-right corners. Sensitivity to acquisition geometry is also observed, as uncer-

tainty is lower near the VSP array and increases with distance on both sides of the model.

As shown in panel (c), the posterior distributions at the selected reference points generally

follow Gaussian-like shapes, but are broader and occasionally exhibit long tails. This be-

havior suggests that SVGD-FWI maintains a wider particle spread, which can provide more

faithful uncertainty estimates when the true distribution is complicated (Liu and Wang,

2016). However, this same characteristic may limit its ability to resolve fine-scale features

or deliver high-confidence estimates in regions strongly constrained by the data, such as

the injection area around the VSP receiver array in this study. Consequently, the selection

of kernel functions and hyperparameter tuning remains a case-dependent challenge and an

important direction for further investigation.

104



Figure 4.10: Baseline and monitor SVGD-FWI results with noise-free data. (a) and (d) are

baseline and monitor model means mb and mm. (b) and (e) are coefficient of variation plots

of the baseline and monitor models. (c) and (f) are histograms of the posterior distribution

of the model parameters on three reference points shown by the three stars in (b) and (e).

The three dashed lines denote the true values.
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Figure 4.11: Time-lapse SVGD-FWI results with noise-free data. (a) and (b) are mean

value and standard deviation plots of the time-lapse variation, and (c) shows the posterior

distributions of the reference points, with the true time-lapse changes denoted by the three

dashed lines. Note that the blue and red lines are overlaying each other as they both represent

0.

The time-lapse profiles in Figure 4.12 show that SVGD-FWI generally aligns well with the

true time-lapse P-wave velocity variations, while also highlighting its sensitivity to acquisition

geometry. In panels (a) and (c), which are farther from the VSP receiver array, the posterior

distributions are broader and the model means exhibit larger oscillations. In contrast, panel

(b), located closer to the VSP array, shows that the model mean aligns closely with the true

time-lapse changes, accompanied by lower uncertainty. This confirms the higher confidence

in regions near the injection area.
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Figure 4.12: SVGD time-lapse variation profiles with noise-free data. (a) to (c) are profiles

across the three reference points, with their locations shown in Figure 4.11. The dark-green

line is the true time-lapse change, the red line is the time-lapse model mean, and colors along

the profile denote probability values.

Next, I evaluate the performance of SVGD-FWI under noise conditions. The baseline and

monitor inversion results are shown in Figure 4.13. Compared to the noise-free scenario, the

mean models reveal increased structural artifacts. In addition, the uncertainty becomes more

spatially extensive and prominent, indicating a deterioration due to noise and acquisition

gaps. The posterior distributions at the selected reference points retain an approximately

Gaussian shape but become generally diffused, reflecting reduced confidence in the model

estimates.
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Figure 4.13: Baseline and monitor SVGD-FWI results with noisy data. (a) and (d) are

baseline and monitor model means mb and mm. (b) and (e) are coefficient of variation plots

of the baseline and monitor models. (c) and (f) are histograms of the posterior distribution

of the model parameters on three reference points shown by the three stars in (b) and (e).

The three dashed lines denote the true values.
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Figure 4.14: Time-lapse SVGD-FWI results with noisy data. (a) and (b) are mean value and

standard deviation plots of the time-lapse variation, and (c) shows the posterior distributions

of the reference points, with the true time-lapse changes denoted by the three dashed lines.

Note that the blue and red lines are overlaying each other as they both represent 0.

Figure 4.14 presents the time-lapse inversion results with noisy data. Compared to the

noise-free case, the model mean in panel (a) shows a noticeable increase in artifacts, and

the uncertainty is elevated across the model domain. Despite this degradation, the region

surrounding the VSP array, particularly the injection zone, remains relatively well resolved,

as highlighted in panel (b), where the uncertainty is moderate and the anomaly is clearly

delineated. In contrast, uncertainty increases substantially in areas farther from the VSP

array, reflecting the limited constraint provided by the data. This spatial variation is further

illustrated in panel (c), where the posterior distributions at the reference points that are

located away from the VSP region exhibit greater variance and more dispersed profiles. The

observations in Figure 4.14 are further supported by the time-lapse profiles shown in Figure

4.15.

109



(a)

-600 -400 -200 0

 V
P
 (m/s)

0

0.25

0.5

0.75

1

D
e
p
th

 (
k
m

)

0

0.05

0.1

0.15

0.2

0.25

0.3

Probability (b)

-600 -400 -200 0

 V
P
 (m/s)

0

0.25

0.5

0.75

1

D
e
p
th

 (
k
m

)

0

0.05

0.1

0.15

0.2

0.25

0.3

Probability (c)

-600 -400 -200 0

 V
P
 (m/s)

0

0.25

0.5

0.75

1

D
e
p
th

 (
k
m

)

0

0.05

0.1

0.15

0.2

0.25

0.3

Probability

Figure 4.15: SVGD time-lapse variation profiles with noisy data. (a) to (c) are profiles across

the three reference points, with their locations shown in Figure 4.14. The dark-green line is

the true time-lapse change, the red line is the time-lapse model mean, and colors along the

profile denote probability values.

4.5 Discussion

4.5.1 Convergence behaviors

As discussed earlier, HMC begins from a state of complete uncertainty and gradually con-

structs the posterior distribution through stochastic sampling, while SVGD starts from a

uniform prior and iteratively refines it using deterministic particle-based dynamics. The

evolution of the monitor models with noisy datasets, shown in Figures 4.16 and 4.17 for

HMC-FWI and SVGD-FWI, respectively, reveals notably different convergence behaviors.

Although the model means in both methods remain relatively stable during the middle
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and final stages of inversion, the evolution of uncertainty diverges clearly. HMC exhibits

a more uniform, global estimation of uncertainty without strong spatial focus, reflecting

the stochastic nature of its sampling process. In contrast, SVGD shows a more targeted

evolution, where the uncertainty quickly becomes concentrated around the injection zone

in which data sensitivity is highest. This targeted localization makes SVGD particularly

suitable for time-lapse monitoring applications such as CO2 sequestration.

Both methods, being gradient-based, are sensitive to subsurface illumination. However,

their responses in poorly illuminated zones differ. In these areas, where data provide weak

constraints, HMC tends to accept a wide range of model proposals, resulting in a potentially

chaotic posterior distribution that may be difficult to interpret or unreliable. SVGD, on the

other hand, updates such regions very slowly, or sometimes halts updating, producing wider

posterior distributions while maintaining controlled estimates.

Even with a limited computational budget preventing full convergence, the evolution of

uncertainty maps allows us to predict future behaviors. In HMC (Figure 4.16), the monitor

mean models gradually accumulate a wider range of values in poorly illuminated regions,

especially in the lower-left and lower-right corners of the model, indicating that continued

sampling could yield posterior features that are challenging to interpret. More constrained

HMC variants (e.g., Fichtner et al., 2018) may improve control over the sampling process,

but they require careful tuning and are case-dependent. In contrast, SVGD (Figure 4.17)

tends to gradually fix the uncertainty estimation within a stable range, although this range

depends on the choice of kernel and hyperparameters. Without knowing the true uncertainty

in poorly illuminated areas, it is difficult to determine which method is more accurate.

However, SVGD clearly provides a more controlled and stable estimate of uncertainty.
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Figure 4.16: Model evolutions in HMC-FWI with noisy data. (a) and (b) are the mean model

and the standard deviation from the beginning phase. (c) and (d) are the mean model and

the standard deviation in the middle of the optimization. (e) and (f) are the mean model

and the standard deviation after the optimization is done.
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Figure 4.17: Model evolutions in SVGD-FWI with noisy data. (a) and (b) are the mean

model and the standard deviation from the beginning phase. (c) and (d) are the mean model

and the standard deviation in the middle of the optimization. (e) and (f) are the mean model

and the standard deviation after the optimization is done.

The above discussions, similar to those in Zhang and Curtis (2020); Gebraad et al. (2020),

suggest that, under limited computational budgets, SVGD offers a more efficient and targeted

characterization of time-lapse changes than HMC, particularly around the injection zone

where seismic data exhibit the most significant differences.

4.5.2 Robustness to survey nonrepeatability

Across the numerical tests, the nonrepeatability lies in choosing different acquisition and

noise levels between the baseline and monitor FWI runs. The uncertainty estimations of

time-lapse changes show accordingly different behaviors and robustness. HMC tends to

amplify and propagate the errors, especially in areas that lack sufficient illumination. As

suggested by Figures 4.4, 4.5, 4.7, and 4.8, HMC produces reasonable mean models and
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uncertainty maps when nonrepeatability exists in both the survey design and datasets. How-

ever, the propagated errors escalates the interpretation challenges in evaluating time-lapse

variations. As seen in the vertical profiles in Figures 4.6 and 4.9, some parts, especially

the deeper sections of the HMC posterior tend to deviate from the true time-lapse varia-

tions, likely due to insufficient sampling and incomplete convergence. Although many model

grids exhibit near-Gaussian distributions as a reasonable product from most of MC methods,

these distributions should not be taken as evidence of reliable uncertainty estimates. Such

deviations from the ground truth can be misleading in real-data applications. In contrast,

SVGD profiles in Figures 4.12 and 4.15 demonstrate better alignment with the true model.

Again and admittedly, this improved consistency in SVGD is partly attributed to the use of

predefined value boundaries. However, when these bounds are well chosen to encompass the

true parameter range, SVGD can more effectively capture the posterior and reduce interpre-

tational ambiguity. Additionally, the use of momentum in the Adam optimization algorithm

contributes to an improved convergence, which is an advantage not present in HMC in rapid

assessment contexts.

4.5.3 Computational complexity

I compare HMC and SVGD under comparable computational budgets, specifically, one day of

runtime on 16 CPU cores. Both methods provide reasonable uncertainty estimates, but they

differ significantly in computational behavior, scalability, and optimization flexibility. HMC

builds the posterior through stochastic sampling from arbitrary initial conditions, gradually

exploring the model space via simulated Hamiltonian dynamics. This more thorough sam-

pling, however, is computationally intensive. Achieving sufficient coverage typically requires

over 100, 000 samples (Gebraad et al., 2020). While parallelization across multiple chains

can accelerate sampling, it poses challenges in maintaining diversity. Without proper inter-

chain interaction, chains may converge to a single posterior mode. In the frequency-domain

FWI implementation, I parallelize across frequencies rather than chains, which is simpler but
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limits the extent of model-space exploration. In contrast, SVGD employs a deterministic,

particle-based approach that iteratively transforms an initial ensemble to approximate the

posterior. Its update mechanism, driven by gradient-based interactions, naturally supports

parallelization. In my setup, 4 cores are allocated to particle updates and 4 to frequency

parallelization. It can be reasonably inferred that, as core counts increase, SVGD scales

efficiently, making it a more flexible and resource-friendly alternative for large-scale uncer-

tainty quantification. In 3D FWI applications, SVGD presents greater potential for practical

implementation due to its inherent scalability and efficient parallelization.

4.5.4 Future work

While this study provides a controlled comparison between HMC and SVGD, there remains

substantial scope for further investigation and optimization. Both methods involve several

hyperparameters and features that can influence their performance and convergence behav-

ior. For instance, in HMC, the choice of the mass matrix plays a crucial role in shaping the

sampling trajectory, potentially improving sampling efficiency. An example can be seen in

Gebraad et al. (2020). Similarly, in SVGD, the selection of the kernel function governs the

repulsion and attraction dynamics among particles, impacting the diversity and fidelity of

the approximated posterior ensemble. In this study, default or commonly used values are

employed to maintain a fair and controlled condition for comparison. However, future work

could involve systematic tuning or adaptive strategies to optimize these features, potentially

leading to improved inversion performance and faster convergence for both methods in TL-

FWI. Additionally, while I focus on a parallel inversion strategy where statistical features are

easier to derive, future experiments could explore various time-lapse inversion frameworks,

which may present additional challenges but new findings. Zhang et al. (2023) has presented

a 3D SVGD-FWI, its time-lapse applications might also be worth investigating. Extending

the current framework to elastic TL-FWI would also enable capturing the cross-talk effects,

which are critical in certain monitoring environments. Finally, applying and validating both
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HMC and SVGD on real field datasets will be essential to assess their robustness and prac-

tical utility.

4.6 Conclusions

In this study, I explore the application of HMC and SVGD to time-lapse VSP-FWI through

synthetic experiments simulating a CO2 storage monitoring scenario, with a focus on their ca-

pabilities for uncertainty quantification and their respective strengths and limitations. HMC

demonstrates stronger capabilities in exploring more comprehensive model spaces owing to

its rigorous sampling-based formulation, but its scalability and sampling cost pose practical

limitations. SVGD, although potentially more sensitive to initial distributions and limited in

model-space exploration, presents a more resource-efficient and scalable alternative. When

computational resources are constrained or fast turnaround is required, SVGD offers greater

potential for optimization and real-time deployment in TL-FWI problems. Future research

should aim to systematically explore hyperparameter optimization in both methods, eval-

uate performance across varied time-lapse strategies and elastic wave physics, and advance

toward applications involving real data and 3D time-lapse inversion scenarios.
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Chapter 5

3D targeted nullspace shuttles in 4D FWI: synthetic

time-lapse FWI experiments for CO2 monitoring

configured for the Snowflake dataset

5.1 Summary

FWI is a critical tool for monitoring subsurface CO2 sequestration, an essential component

of CCUS. However, interpreting time-lapse FWI results can be challenging due to artifacts

arising from non-repeatability between baseline and monitor surveys. The targeted nullspace

shuttle technique addresses this issue by enhancing structural consistency between baseline

and monitor inversions without increasing the overall data misfit. Previous studies have

demonstrated its effectiveness in 2D settings, showing improved reliability in the interpre-

tation of time-lapse differences. In this chapter, I extend the targeted nullspace shuttle

framework to 3D time-lapse FWI and assess it in 4D seismic monitoring scenarios through

synthetic acoustic inversion experiments. The synthetic model is derived from the Snowflake

VSP dataset, based on the CaMI FRS of CMC, jointly developed by the Consortium for

Research in Elastic Wave Exploration Seismology (CREWES). The scenario simulates a re-

alistic injection process in which 60-tonnes of CO2 is injected. I evaluate the detectability

of the injected plume using the nullspace shuttle method under varying acquisition sparsity

and aperture conditions and quantify the relationship between CO2 saturation levels and

observable P-wave velocity changes. The results indicate that the targeted nullspace shut-

tle enables effective plume delineation in sparse acquisition scenarios. However, the limited

aperture inherent to VSP-based FWI restricts the resolution of finer-scale plume features,

leading to a suboptimal or failed time-lapse recovery. The findings highlight the potential
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of the targeted nullspace shuttle as a focused and computationally efficient strategy for 4D

FWI applications, particularly in improving the robustness of geo-monitoring.

5.2 Introduction

While FWI offers high-resolution imaging of the subsurface, its time-lapse application presents

several fundamental challenges. Chief among these is the nonlinearity of the inverse prob-

lem, which results in non-uniqueness where multiple velocity models may produce similarly

low data misfits yet differ significantly in structural and physical details. Even after con-

vergence, the obtained FWI model may only represent one of many plausible solutions that

fit the data. Such challenges are especially pronounced when monitoring subtle or spatially

localized variations, such as CO2 migration or small-scale pressure changes. The combined

effects of solution non-uniqueness and acquisition-related inconsistencies give rise to signifi-

cant uncertainty in interpreting time-lapse differences, fundamentally limiting the reliability

of conventional FWI for geo-monitoring. Hence, robust strategies are required to suppress

spurious variations and extract meaningful geophysical signals related to real reservoir dy-

namics.

To address the aforementioned limitations, the targeted nullspace shuttle technique, orig-

inally proposed by Keating and Innanen (2021), offers a novel inversion framework that

systematically explores the inversion nullspace, which is defined as the set of models that

yield similarly acceptable data fits near convergence (Deal and Nolet, 2007). Instead of

relying solely on independent baseline and monitor inversions, this approach probes the in-

version nullspace by minimizing a secondary objective function to identify model updates

that preserve data consistency while generate physically plausible differences and suppress

inversion artifacts in time-lapse models. This technique has demonstrated promising results

in 2D time-lapse FWI studies, with validation under varying acquisition geometries, noise

levels, and inversion strategies (Keating and Innanen, 2024; Pike et al., 2024a,b). However,

118



its practical deployment has thus far been limited to 2D applications. Given the inherent

directional nature of subsurface changes and acquisition configurations in time-lapse FWI,

extending the nullspace shuttle method to 3D FWI represents a crucial step toward making

it viable for field monitoring tasks.

In this chapter, I present a 3D extension of the targeted nullspace shuttle for time-lapse

acoustic FWI in the frequency domain. Building on the theoretical framework established

by Keating and Innanen (2021), I validate this approach using synthetic models derived from

the Snowflake VSP dataset and numerical simulations of a 60-tonne CO2 injection at the

CaMI FRS. The dataset offers a controlled CO2 injection and monitoring environment with

realistic geological changes and acquisition geometry. The numerical experiments demon-

strate that the 3D targeted nullspace shuttle method effectively suppresses non-repeatable

artifacts introduced by survey inconsistencies, while enhancing the detectability of true P-

wave velocity changes associated with CO2 plume migration. The results underscore the

promise of the 3D nullspace shuttle approach as a practical and computationally efficient

solution for 4D seismic monitoring in settings such as geological carbon storage. However,

comparisons reveal that the limited aperture inherent to VSP geometry constrains the lat-

eral resolution of subtle plume features. These limitations persist even when the targeted

nullspace shuttle is applied.

5.3 Theory

In time-lapse applications where the optimal differences between baseline and monitor in-

version outcomes are pursued, the shuttling problem can be framed as the following dual-
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optimization process:

Ψ
(
∆m

′

b,∆m
′

m

)
= argmin

∆m
′
b,m

′
m

Ψ
(
mb +∆m

′
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)
,

s.t.Φb

(
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′

b

)
≈ Φb (mb) ,

Φm

(
mm +∆m

′

m

)
≈ Φm (mm) ,

(5.1)

where the subscriptions b and m refer to baseline and monitor. Following Keating and

Innanen (2024); Pike et al. (2024a,b), I take the Huber norm (Guitton and Symes, 2003) for

the shuttling objective function Ψ:

Ψ
(
∆m

′

b,∆m
′

m

)
=

Ngrid∑
i=1

Eϵ (ei) , (5.2)

where Ngrid is the overall grid points in the entire subsurface space, and

Eϵ (ei) =


e2i
2ε

0 ≤ |ei| ≤ ε,

|ei| − ε
2

ε < |ei|.
(5.3)

In equation 5.3, the threshold ε is a predefined scalar that defines the inversion nullspace of

the baseline and monitor FWI, and

ei = mm,i −mb,i. (5.4)

Such an L1 L2 flexible norm promotes the sparsity in the time-lapse model when there are

large differences and better handles the non-repeatable artifacts with the L1 penalty, and

the L2 transition ensures a better convexity near zeros.

The framework described above is naturally extensible to 3D. The 3D inversion relies on

accurate wavefield modeling, which is achieved by solving the acoustic Helmholtz equation

in the frequency domain using a second-order finite-difference scheme on staggered grids in

Cartesian coordinates. The implementation closely follows the 3D frequency-domain mod-

eling approach detailed in Chapter 2.
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5.4 Numerical experiments

In this section, I present a series of numerical experiments. All examples assume 3D constant-

density acoustic media. For conventional FWI runs, we sequentially invert one frequency at

a time across successive frequency bands ranging from 8 to 72 Hz. The L-BFGS optimization

approach is used in the regular FWI and the nullspace shuttle implementation. In regular

FWI, we use 2 outer iterations to update the models, and 10 inner iterations to calculate the

updating directions. The nullspace shuttle implementation follows the frequency sensitivity

insights of Li et al. (2024), using 3 shuttle iterations within a single band consisting of 4

frequencies between 45 and 70 Hz. A parallel time-lapse inversion strategy is employed

throughout all tests.

5.4.1 P-wave velocity model from FRS

The FRS features a robust VSP monitoring system designed to evaluate time-lapse geophys-

ical responses to injected CO2. To date, more than 85 tonnes of CO2 have been injected

into the Basal Belly River Sandstone (BBRS) formation, a relatively flat-lying unit situated

between 295 and 305 meters depth (Kolkman-Quinn et al., 2024). This mid-level strati-

graphic unit offers favorable conditions for controlled plume migration and high-resolution

monitoring. Following recent studies (e.g., Isaac and Lawton, 2024; Macquet et al., 2019;

Leaney et al., 2019; Hu and Innanen, 2021; Leaney et al., 2022; Kolkman-Quinn et al., 2024),

I simulate a scenario involving the injection of 60 tonnes of CO2. As shown in Figure 5.1, the

resulting saturation model exhibits a spatial gradient, with CO2 saturations decreasing from

approximately 30% near the injection well to about 5% at greater distances. I construct the

baseline, monitor, and initial velocity models as illustrated in Figure 5.2. All models are

discretized on a uniform grid with 5-meter spacing.
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Figure 5.1: CO2 saturation around the injection well. The injection, geophysics, and geo-

chemistry wells are indicated with stars.

Figure 5.2: Initial, baseline, and monitor models. (a)-(c) Initial, baseline, and monitor

models. (d)-(e) Depth slice at 295 meters from (a)-(c).
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5.4.2 Regular time-lapse FWI

Following the design considerations outlined in Hall et al. (2019), the acquisition layout is

simplified by removing practical complexities that could interfere with controlled analysis.

In this configuration, a total of 415 surface sources are deployed, as illustrated in Figure 5.3,

with acquisition lines and source positions indicated.

Figure 5.3: Source layout adapted from real CaMI dataset.

To simulate a realistic monitoring scenario, I begin by characterizing noise levels using

SNRs estimated from pre-processed baseline and monitor field datasets reported in Cai et al.

(2024). As shown in Figure 5.4, the baseline data exhibit notably lower SNRs, especially

in the mid-to-high-frequency range. Based on the observations, I apply artificial Gaussian

noise to the synthetic datasets, scaling the noise levels to match the frequency-dependent

SNRs observed in the field data.

Figure 5.5 shows the baseline and monitor inversion results obtained using full and con-

sistent acquisition geometry. Owing to the lower SNR in the baseline data, the baseline FWI
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Figure 5.4: Signal-to-noise ratios from baseline (red) and monitor (blue) datasets.

model displays more pronounced artifacts, particularly around the VSP receiver locations,

where noise-induced degradation is most evident. In contrast, the monitor model is less af-

fected by noise, yielding a cleaner result that successfully highlights the low-velocity anomaly

near the injection well, corresponding to the CO2 plume. Both models reveal limitations in

subsurface illumination, especially in deeper and lateral regions, suggesting that the VSP

acquisition geometry imposes intrinsic aperture constraints on the inversion quality.
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Figure 5.5: Baseline and monitor inversion results with full acquisition geometry. (a)/(d)

Overview of the estimated baseline/monitor models. (b)/(e) Cross-sections between −200

to 200 meters in Line 7 in baseline/monitor models. (c)/(f) Cross-sections between -200 to

200 meters in baseline/monitor models. The depth range in the cross-sections is 150 to 350

meters.

5.4.3 Feasibility of sparse acquisition for plume monitoring

To evaluate the feasibility of using a sparser source layout for time-lapse FWI, I perform

monitor inversions using the same inversion parameters and azimuthal coverage, while sys-

tematically reducing the source density to 100%, 75%, 50%, 25%, and 12.5% of the original

CaMI acquisition layout. The corresponding acquisition layouts are shown in Figure 5.6. In

the 75% case, the number of sources is halved along the northeast-southwest and northwest-

southeast lines, while in the cases 50%, 25%, and 12.5%, every second, third, and fourth
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source, respectively, is selected.
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Figure 5.6: Surface source layouts with varying densities. (a) to (e) represent results using

100%, 75%, 50%, 25%, and 12.5% source density.

In Figure 5.7, the recovered time-lapse velocity changes for each case are illustrated.

Across all scenarios, the central low-velocity anomaly associated with the CO2 plume re-

mains clearly identifiable, indicating that plume detection is achievable even with reduced

acquisition effort. However, both the resolution and spatial accuracy of the plume delineation

degrade as the source density decreases, with the extent of degradation varying between cases.

In the 100%, 75%, and even 50% cases, the recovered anomalies closely match the expected

plume geometry, with a well-defined outer boundary corresponding to approximately 5%

CO2 saturation. The differences among these three depth slices are minimal. With 25%

source density, the plume remains discernible, although the outer boundary appears more

diffuse. This effect becomes more pronounced at 12.5% source density, where the boundary
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alignment with the 5%–10% saturation contours weakens, suggesting reduced confidence in

resolving low-saturation margins.

Figure 5.7: Depth slices reflecting time-lapse velocity changes in depth of 295 meters with

different source sparsity. The axis is constrained to (−100m,+100m) in X- and Y-directions

to zoom at the plume. (a) to (e) represent results using 100%, 75%, 50%, 25%, and 12.5%

source sparsity.

In all acquisition scenarios, the time-lapse inversion results are affected by noise and

acquisition non-repeatability, with these effects becoming more pronounced as source density

decreases. The reduced number of surface sources amplifies spurious artifacts, resulting

in increasingly noisy estimates of P-wave velocity changes. To address these challenges,

I apply the targeted nullspace shuttling technique as a post-inversion refinement to the

50%, 25%, and 12.5% source density cases where degradation is more evident. This step is

not applied to the full and 75% source cases, as they already yield sufficiently clear time-

lapse results. The resulting time-lapse differences after applying the nullspace shuttle are

shown in Figures 5.8, 5.9, and 5.10 for the three acquisition scenarios, respectively. The
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shuttling process leads to a substantial reduction in overburden artifacts and enhances the

structural coherence of the recovered time-lapse anomaly. In all the cases, the plume becomes

more distinctly identifiable, even in the presence of sparse acquisition, demonstrating the

effectiveness of the shuttling procedure in recovering meaningful time-lapse signals. Despite

these improvements, differences persist across source sparsity levels. As shown in Figure 5.8,

the recovered plume structure with 50% of the sources maintains a shape and extent closely

matching the expected distribution, while Figure 5.9 shows that the result with 25% of the

sources produces a discontinuous plume that could hinder interpretation, particularly along

the plume edges. In the last case (Figure 5.10), the visible plume size is significantly smaller

than in all other scenarios. The above observations suggest that although higher sparsity

(for example, 25%) can still produce coherent plume delineation after shuttling, the velocity

anomaly corresponding to the 5% CO2 saturation becomes less distinct or even undetectable.

This deterioration is even more pronounced at 12.5% of the source density, indicating that

aggressive reduction of sources can substantially reduce the resolvability of the plume, even

with refinement.
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Figure 5.8: Time-lapse inversion and nullspace shuttle results with 50% sources. (a) and (b)

display the models before shuttling, and (c) and (d) show the after-shuttling results. Panels

(a) and (c) are 3D views, and (b) and (d) are depth slices at 295 meters.

Figure 5.9: Time-lapse inversion and nullspace shuttle results with 25% sources. (a) and (b)

display the models before shuttling, and (c) and (d) show the after-shuttling results. Panels

(a) and (c) are 3D views, and (b) and (d) are depth slices at 295 meters.
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Figure 5.10: Time-lapse inversion and nullspace shuttle results with 12.5% sources. (a) and

(b) display the models before shuttling, and (c) and (d) show the after-shuttling results.

Panels (a) and (c) are 3D views, and (b) and (d) are depth slices at 295 meters.

5.4.4 Impact of offsets

As suggested by the results in Figure 5.5, aperture and offset might play a critical role

in the effectiveness of plume delineation in VSP-FWI. To assess the impact of acquisition

aperture, I conduct a series of tests using three different offsets, including 400, 300, and

200 meters. The widths are measured symmetrically from the observation well and are with

100%, 75%, and 50% of the original offsets. To ensure a fair comparison and isolate the offset

effect, the number of surface sources is fixed at 25% of the original layout for all tests. This

configuration maintains consistent fold coverage and is supported by previous results, which

demonstrated that the 25% source density provides a reasonable balance between acquisition

effort and plume detectability. The three layouts can be referred to by Figure 5.11.
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Figure 5.11: Surface source layouts with varying offsets. (a) to (e) represent results using

100%, 75%, and 50% offsets.

The depth slices in Figure 5.12 demonstrate that the ability to resolve fine-scale time-

lapse variations is highly sensitive to acquisition aperture. With a 75% offset, the time-lapse

result shows only minor differences compared to the full-aperture case, as seen in panels (a)

and (b). However, in panel (c), the recovered anomaly is highly ambiguous. Key features

of the plume are lost, and the surrounding area is so severely degraded that interpretation

becomes discouraging. As the nullspace-shuttled results for the full-aperture scenario are

already shown in Figure 5.9, I present the corresponding refinements for the cases with

75% and 50% offsets in Figures 5.13 and 5.14. Although shuttling moderately improves

the 75%-aperture result, yielding partial alignment with the true saturation contours, finer

features remain poorly defined, as indicated by the small and faint outer plume boundary

in panel (d). In the 50%-aperture case, even after nullspace refinement, the plume is barely

visible, and the recovered velocity anomaly fails to correlate with the expected saturation

distribution. These findings suggest that a critical aperture threshold exists for effective

time-lapse monitoring in VSP-FWI for targets of a given spatial extent, below which even

advanced post-inversion techniques provide only limited or no benefit.
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Figure 5.12: Time-lapse velocity changes in depth of 295 meters with different offsets. (a) to

(c) represent results using 400, 300, and 200 meters as one-sided offset from the observation

well.

Figure 5.13: Time-lapse inversion and nullspace shuttle results with 75% offset. (a) and (b)

display the models before shuttling, and (c) and (d) show the after-shuttling results. Panels

(a) and (c) are 3D views, and (b) and (d) are depth slices at 295 meters.
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Figure 5.14: Time-lapse inversion and nullspace shuttle results with 50% offset. (a) and (b)

display the models before shuttling, and (c) and (d) show the after-shuttling results. Panels

(a) and (c) are 3D views, and (b) and (d) are depth slices at 295 meters.

To further assess the relationship between aperture size and spatial illumination range,

I examine cross-sections along Line 1 and Line 7, as shown in Figure 5.15. The results

indicate that the effective horizontal illumination range at the BBRS formation is positively

correlated with the one-sided offset, as FWI becomes less capable of resolving extended lateral

variations in P-wave velocity as the offset decreases. This suggests that while reducing offsets

can lower acquisition costs, it does so at the expense of resolution, particularly in detecting

subtle horizontal velocity changes. As a result, aperture selection must be carefully optimized

to balance cost efficiency with the level of detail required for effective CO2 plume monitoring

using FWI.
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Figure 5.15: Monitor inversion sections with different apertures. (a)/(b) Cross-sections

between -200 to 200 meters in Line 7/Line 1 with 400-meter offset. (c)/(d) Cross-sections

between -200 to 200 meters in Line 7/Line 1 with 300-meter offset. (e)/(f) Cross-sections

between -200 to 200 meters in Line 7/Line 1 with 200-meter offset. The depth range in the

cross-sections is 150 to 350 meters.

5.5 Discussion

5.5.1 Towards the sparse monitoring

As shown in Figure 5.7, accurate plume detection remains possible even when the number of

surface sources is reduced to about 25% of the original layout, provided that both azimuthal

and aperture coverage are preserved. Figure 5.12 further demonstrates that with a moderate
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aperture reduction (e.g., 75% of the original offset range), a reasonable plume delineation can

still be yielded, whereas reducing the offset range to only half its original value causes time-

lapse FWI to fail in recovering the plume. These results demonstrate both the robustness

and the limitations of sparse monitoring under realistic acquisition and noise conditions,

pointing toward a practical route for cost-effective yet reliable monitoring of CO2 plume

evolution in 4D seismic applications.

5.5.2 Role of the post-inversion refinement with targeted nullspace shuttle

Across most of the numerical experiments, the 3D targeted nullspace shuttle approach proves

to be an effective post-inversion refinement strategy for addressing persistent challenges in

4D seismic FWI monitoring. As shown in Figures 5.8, 5.9, 5.10, and 5.13, it consistently

enhances the clarity and spatial coherence of time-lapse velocity anomalies by mitigating

non-repeatable artifacts that remain after conventional inversion. However, its robustness is

not unconditional. When source density is reduced aggressively down to 12.5% of the original

layout, the resulting loss of subsurface illumination leads to a pronounced deterioration in

time-lapse FWI resolution. This effect is most severe at the outer plume boundaries, where

lower CO2 saturation levels (about 5%–10% in some cases) become extremely difficult to

recover. A clear failure case is shown in Figure 5.14, where halving the offset produces an

unsuccessful monitor FWI result. Under such circumstances, the targeted nullspace shuttle

can provide little or no improvement because it will focus on refining the entire model rather

than prioritizing the actual change that produces the most evident data variations. These

findings indicate that while short-offset designs, such as those discussed in Cai et al. (2024),

may suffice for rapid or preliminary assessments, a moderate offset that is capable of resolving

enough lateral changes offers a more reliable basis for confident conformance interpretation.
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5.5.3 Future work

Future research can focus on the refinement of rock physics models to enable more feasibil-

ity assessments. Incorporating more geologically complex models will allow the evaluation

of sparse monitoring under conditions that better reflect real-world scenarios. Alternative

time-lapse inversion strategies should also be investigated, as the present study adopts a

parallel inversion approach that requires minimal tailoring between baseline and monitor

FWI runs. Finally, applying the proposed methodologies to field datasets would provide

critical validation of their practical applicability and performance in operational monitoring

campaigns.

Looking forward, this 3D nullspace shuttle framework also opens several pathways for

future research. One is its extension to time-lapse multiparameter inversion (e.g., Vp-Vs,

or Vp-density), where parameter crosstalk and varying sensitivity may pose additional chal-

lenges. The pivotal discussion in 2D visco-elastic FWI can be found in Keating and Innanen

(2021). Another direction involves integrating formal uncertainty quantification metrics,

such as posterior variance estimation or ensemble spread, into the shuttling framework to

provide quantitative confidence in the refined models. Additionally, this method could be

combined with model similarity constraints or regularizations to further enhance stability

and interpretability. Finally, as aforementioned, choices of the shuttling objective functions

can be explored.

5.5.4 Conclusions

In this chapter, 4D numerical FWI tests are conducted to evaluate sparse monitoring of

CO2 plume migration using the Snowflake dataset from CaMI FRS. The results show that

with moderate reductions in source density, the plume remains observable in most cases.

Aperture appears to be a significant factor influencing plume detectability, and a critical

aperture that is related to the estimated target size should be carefully considered. These
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observations highlight the feasibility of sparse geo-monitoring with FWI. In addition, the

targeted nullspace shuttling framework is extended to 3D FWI and evaluated in synthetic

4D seismic monitoring experiments. Most results demonstrate that the targeted nullspace

shuttle can effectively delineate the plume by removing non-repeatable variations in the

models. However, aperture limitations in VSP-based FWI are still factors that influence the

success of this post-inversion refinement.
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Chapter 6

Conclusions

6.1 Summary

In the context of the ongoing energy transition, FWI plays a crucial role in advancing sub-

surface imaging for various applications. While FWI theories continue to evolve, significant

challenges remain in integrating FWI with energy transition projects. This thesis aims to

address some of these key challenges, as discussed in Chapters 3 to 5. Specifically, I have

proposed strategies for improving FWI accuracy while tracking the mechanisms and posi-

tions of SWD sources, developing uncertainty quantification methods for time-lapse FWI,

and utilizing 4D FWI to capture spatial subsurface changes induced by CO2 injection. These

contributions provide insights that can inform future data acquisition strategies for carbon

sequestration projects. In this section, I will summarize the key findings from my numerical

investigations on these topics.

In geothermal drilling projects, accurately tracking drill bit locations and drill-bit-rock

interactions is essential. While FWI provides high-resolution subsurface imaging, its effec-

tiveness is often constrained by incomplete acquisition and limited illumination. Integrating

the SWD data, which introduces independent ray paths, has the potential to significantly

enhance FWI accuracy. However, incorporating SWD into FWI also introduces new uncer-

tainties that must be carefully addressed. In Chapter 3, I develop a multi-parameter FWI

algorithm that treats source radiation patterns and positions as additional unknowns along-

side velocity and density. Through numerical experiments, I demonstrate that the inclusion

of SWD data improves FWI results by providing additional ray paths that enhance model

accuracy. The integration of SWD data not only refines the inversion of elastic properties but

also allows for precise tracking of subsurface source locations and radiation patterns. These
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findings suggest that SWD data has the dual benefit of improving inversion quality while

enabling real-time monitoring of drilling operations, highlighting its potential for enhanced

subsurface imaging in geothermal applications.

Due to the nonlinearity of the FWI problem, the presence of various uncertainties be-

tween baseline and monitor surveys in time-lapse FWI, and the often sparse or variable data

coverage in these applications, incorporating robust uncertainty quantification methods is

crucial. HMC and SVGD provide effective approaches for assessing uncertainty in FWI, each

with distinct advantages. In Chapter 4, I investigate the feasibility of HMC and SVGD in

time-lapse VSP-FWI through synthetic experiments simulating a CO2 storage monitoring

scenario. The focus is on their ability to quantify uncertainty, as well as their respective

strengths and limitations. HMC excels at exploring complex, nonlinear model spaces due to

its rigorous sampling-based formulation, but its high computational cost and limited scalabil-

ity pose practical challenges. In contrast, SVGD offers a more resource-efficient and scalable

approach, although it can be sensitive to initial distributions and inherent limitations in FWI

as being deterministic. The numerical tests with a comparable computational budget indi-

cate that SVGD is particularly attractive when computational resources are limited or rapid

assessment is required, offering potential for optimization and near real-time deployment in

larger-scale or 3D time-lapse FWI applications.

In Chapter 5, I evaluate the feasibility of 4D seismic monitoring through synthetic acous-

tic frequency-domain FWI experiments. Using the Snowflake VSP framework with walk-

away and walk-around geometries, I refine the CaMI well log and construct synthetic models

incorporating plume migration from a 60-tonne CO2 injection. Synthetic baseline and mon-

itor FWI tests on the Snowflake dataset demonstrate the potential for sparse monitoring.

Furthermore, I extend the targeted nullspace shuttle technique to 3D time-lapse FWI as a

post-inversion refinement, highlighting authentic structural changes while suppressing non-

repeatable artifacts. The results indicate that moderate reductions in source density still
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allow reasonable plume detection, but a critical aperture, estimated from the spatial layout

of the target, must be maintained.

6.2 Future work

Beyond the future work discussed separately in Chapters 3, 4, and 5, there is considerable

potential in combining the approaches presented in this thesis. First, the uncertainty quan-

tification algorithms could be extended to elastic multi-parameter FWI, enabling a robust

assessment of uncertainties within the model–source elastic FWI framework discussed in

Chapter 3, and providing quantitative insights for SWD applications to support improved

decision-making. Second, 3D frequency-domain acoustic FWI can be generalized to a multi-

parameter framework by incorporating frequency-dependent parameters, such as attenua-

tion. Although this increases the number of inversion variables and computational demands,

further development of efficient 3D solvers could mitigate these challenges. Another promis-

ing direction is applying the uncertainty measurement approaches and targeted nullspace

shuttle technique to multi-parameter time-lapse scenarios, where investigating temporal in-

teractions among multiple, inherently coupled parameters in elastic FWI will be challenging

but rewarding. Finally, all methods developed in this thesis have the potential to be applied

to real data, paving the way for practical implementation and field validation.
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2012, Drill-bit SWD and seismic interferometry for imaging around geothermal wells, in

SEG Technical Program Expanded Abstracts 2011, Society of Exploration Geophysicists,

4319–4324.

Poletto, F., Goertz, A., Bellezza, C., Bergfjord, E. V., Corubolo, P., Lindg̊ard, J. E., and

Moskvil, L. M., 2022, Seismic-while-drilling by drill-bit source and large-aperture ocean-

bottom array: Geophysics, 87, No. 2, D33–D45.

Poletto, F., and Miranda, F., 2004, Seismic While Drilling: Fundamentals of Drill-Bit Seismic

for Exploration, Handbook of Geophysical Exploration: Seismic Exploration: Elsevier

Science.

Poletto, F., and Miranda, F., 2022, Seismic While Drilling: Fundamentals of Drill-Bit Seismic

for Exploration: Elsevier.

Poletto, F., Miranda, F., Farina, B., and Schleifer, A., 2020, Seismic-while-drilling drill-bit

source by ground force: concept and application: Geophysics, 85, No. 3, MR167–MR178.

Poletto, F., Petronio, L., Malusa, M., Schleifer, A., Corubolo, P., Bellezza, C., Miranda,

F., Miandro, R., and Gressetvold, B., 2004, Prediction and 3D imaging while drilling by

drill-bit 3D RVSP: World oil, 225.

Pratt, R., 1999, Seismic waveform inversion in the frequency domain, part 1: Theory and

verification in a physical scale model: Geophysics, 64, 888–901.

Pratt, R., Shin, C., and Hicks, 1998, Gauss-Newton and full Newton methods in frequency-

space seismic waveform inversion: Geophysical Journal International, 133, 341 – 362.

Pratt, R., and Shipp, R., 1999, Seismic waveform inversion in the frequency domain, part 2:

Fault delineation in sediments using crosshole data: Geophysics, 64, 902–914.

157



Pratt, R. G., 1990, Frequency-domain elastic wave modeling by finite differences: A tool for

crosshole seismic imaging: Geophysics, 55, No. 5, 626–632.

Pratt, R. G., Song, Z.-M., Williamson, P., and Warner, M., 1996, Two-dimensional ve-

locity models from wide-angle seismic data by wavefield inversion: Geophysical Journal

International, 124, No. 2, 323–340.

Regier, J., Miller, A., McAuliffe, J., Adams, R., Hoffman, M., Lang, D., Schlegel, D., and

Prabhat, 2015, Celeste: Variational inference for a generative model of astronomical im-

ages, arXiv:1506.03127, 1506.03127.

Richard, T., Germay, C., and Detournay, E., 2004, Self-excited stick–slip oscillations of drill
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