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Abstract

Time-lapse full-waveform inversion (FWI) is a powerful technique for seismic analysis, en-

abling high-resolution imaging of subsurface physical properties to monitor reservoir changes

during injection, production, and long-term CO2 storage. However, accurate time-lapse anal-

ysis remains challenging due to the requirement for highly repeatable seismic surveys, includ-

ing consistent acquisition geometry, stable ambient noise conditions, and other environmental

factors. To address these challenges, this thesis develops a target-oriented common-model

strategy (TO CMS) to mitigate non-repeatability issues that conventional parallel strate-

gies (PRS) fail to overcome. TO CMS combines the strengths of target-oriented FWI (TO

FWI)—which improves inversion convergence within the reservoir region—and the common-

model strategy (CMS)—which reduces time-lapse artifacts by guiding both baseline and

monitor inversions along similar convergence paths. Additionally, a multi-source amplitude-

encoding method is employed to significantly reduce computational cost without compro-

mising inversion accuracy. In the context of field-scale CO2 monitoring, vertical seismic

profile (VSP) surveys provide higher vertical resolution and improved signal-to-noise ratio

(SNR) compared to surface seismic methods. When integrated with FWI, VSP data further

enhances the detectability of subtle time-lapse anomalies. Despite these advantages, the

application of FWI to field VSP data has remained limited due to its sensitivity to non-

repeatable acquisition and noise. This thesis presents a field experiment utilizing time-lapse

walkaway VSP data and FWI to monitor long-term subsurface changes associated with a

small-scale CO2 injection. The workflow demonstrates that FWI can successfully detect

reservoir changes resulting from the injection of less than 60 tons of CO2 into a shallow,

7-meter-thick reservoir at a depth of approximately 300 meters. The results confirm that

even in low-injection-volume scenarios, time-lapse FWI can deliver high-resolution imaging

and effectively capture small-scale velocity changes. Building on this, the study further

investigates the use of Distributed Acoustic Sensing (DAS) for time-lapse FWI. DAS of-

fers key advantages such as high spatial sampling density, long-term deployment potential,
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and reduced operational costs, making it a promising alternative to conventional receivers.

A second field experiment is conducted at the same site using time-lapse DAS-based VSP

data. Despite limited acquisition geometry and the presence of strong near-surface noise,

the application of TO CMS enables successful detection of CO2-induced changes. The time-

lapse results show strong agreement with the synthetic test, confirming the robustness of the

proposed workflow.
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Preface

This thesis, adopting a manuscript-style format, amalgamates the essence of extensive re-

search efforts encapsulated in a series of papers. These papers, which form the core chapters

of this thesis, reflect a deep dive into the innovative development of time-lapse full-waveform

inversion strategies, and the application of time-lapse full-waveform inversion to field VSP

data, especially using Distributed Acoustic Sensing (DAS) technology to achieve low-cost,

long-term and small scale CO2 injection and sequestration monitoring.

Chapter 3 has been previously published in the IEEE Transactions ob Geoscience and Re-

mote Sensing, titled ”Multi-source time-lapse elastic full-waveform inversion using a target-

oriented common-model strategy” authored by Liu H, Fu X, Trad D, Innanen K and Cao

D, 2025. This chapter develops a advanced and robust time-lapse full-waveform inversion

strategy.

Chapter 4 has been previously published in Geophysics, entitled ” High-resolution moni-

toring of CO2 sequestration using walkaway VSP and full-waveform inversion” authored by

Liu H, Fu X, Cai X, Trad D, Innanen K, 2025. This chapter is a field study on time-lapse

full-waveform inversion using field VSP data at CaMI, and it explores the feasibility of ap-

plication of time-lapse full-waveform inverison in a 7-m thin reservior at the shallow depth

with a small amount of CO2 injection.

Chapter 5 has been previously published at IMAGE conference in 2025, entitled ”Time-

lapse full-waveform inversion of distributed acoustic sensing data”. This work is authored

by Liu H, Fu X, Cai X, Trad D, Innanen K, which first time explores the feasibility of full-
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waveform inversion using field DAS data, highlighting the feasbility of DAS technology in the

field application for low-cost, long-term of small amount of CO2 injection and sequestration.
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Chapter 1

Introduction

1.1 CO2 monitoring and time-lapse full-waveform in-

version

The continuous increase in anthropogenic carbon dioxide (CO2) emissions remains the dom-

inant driver of global climate change, necessitating mitigation strategies that complement

renewable energy deployment and improvements in energy efficiency. Carbon Capture, Uti-

lization, and Storage (CCUS) represents a technically mature and large-scale approach for

reducing emissions from hard-to-abate industrial sectors. It involves capturing CO2 from

major point sources, utilizing it in chemical or energy processes, and permanently storing

it in deep geological formations such as saline aquifers and depleted hydrocarbon reservoirs

(Metz et al., 2005; Bachu, 2008; Benson and Cole, 2008; Masson-Delmotte et al., 2021). The

security of geological storage is ensured by a combination of structural, residual, solubility,

and mineral trapping mechanisms, which have been validated through field demonstrations

including the Sleipner, Weyburn, and Quest projects (Arts et al., 2004a; Wright et al., 2009;

Eiken et al., 2011). CCUS is inherently interdisciplinary, integrating chemical and process

engineering for capture, materials and reservoir engineering for injection and containment,

and geoscience, geomechanics, and environmental monitoring for assessing and maintaining
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storage integrity (Bachu, 2000; Lumley, 2010; Daley et al., 2016; Ringrose and Meckel, 2019).

CO2 sequestration, as the core component of CCUS, has advanced rapidly over the past

decades with the shared goal of mitigating greenhouse gas emissions and ensuring storage se-

curity. The development of monitoring technologies and methodologies has become integral

to verifying the performance and safety of geological storage. Early field-scale demonstra-

tions, such as the Sleipner project in Norway and the Weyburn project in Canada, established

a foundation for understanding CO2 behavior in subsurface formations and validating predic-

tive models (Benson and Cole, 2008; Vinje et al., 2025). Building on these pioneering efforts,

modern monitoring approaches increasingly rely on seismic and geophysical techniques to

detect and track plume migration, pressure evolution, and potential leakage pathways within

storage reservoirs.

The deployment of advanced monitoring techniques such as seismic monitoring has en-

hanced the ability to track the migration of CO2 plumes.Time-lapse seismic analysis is widely

used for monitoring subsurface property changes, for instance, the reservoir changes caused

by oil/gas production or CO2 injection (Greaves and Fulp, 1987; Ross and Altan, 1997;

Wang et al., 1998; Barkved et al., 2003; Arts et al., 2004b; Barkved et al., 2005; Chadwick

et al., 2009; Kazemeini et al., 2010; Pevzner et al., 2017). To enable high-resolution imaging

for monitoring subsurface changes, time-lapse seismic analysis often relies on full-waveform

inversion (FWI), a powerful technique that offers a detailed reconstruction of subsurface

properties. FWI is a high-resolution seismic imaging technique that leverages the full in-

formation contained within seismic traces, including both amplitude and phase, to extract

physical parameters of the subsurface medium probed by seismic waves (Virieux and Operto,

2009; Virieux et al., 2017; Zhang and Curtis, 2020; Operto et al., 2023), which is proposed

by Tarantola (1984) in time domain to invert the subsurface P-wave velocity model by min-

imizing the l2-norm of the difference between predicted and observed data (Symes, 2008).

When FWI is used for time-lapse analysis, the most commonly used strategy is known as

the parallel strategy (PRS) (Lumley et al., 2003; Plessix et al., 2010), in which the baseline
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and monitor models are independently inverted with the same initial model, and the inverted

time-lapse change is the difference between two inverted models. However, this conventional

strategy suffers from severe artifacts that mainly result from the non-repeatability issue

that commonly exist in time-lapse surveys, such as non-repeatable source/receiver locations,

noises, surface velocities, etc. Hence, many researcher have proposed different strategies to

deal with this issue. Routh et al. (2012) propose to use the inverted baseline model as the

initial model for the monitor model inversion to save computational time, which is known

as the sequential strategy (SQS). Watanabe et al. (2004) and Zheng et al. (2011) introduce

the double-difference strategy (DDS), but it’s still very sensitive to source/receiver locations

(Zhou and Lumley, 2021b; Fu and Innanen, 2023). Zhang and Huang (2013) take the DDS

a step further by incorporating a target-oriented scheme (updating the local area, including

reservoir changes in the model, instead of the entire model) to enhance the effectiveness

of time-lapse EFWI. For the reason of focusing on reservoir change, the DDS has become

a popular strategy in field data application and numerical tests (Yang et al., 2015a, 2016;

Malcolm and Willemsen, 2016). Hicks et al. (2016) propose the common-model strategy

(CMS), which consists of two stages of inversions, and each stage follows the same process

as the PRS. In the second stage of the CMS, the inverted baseline and monitor models from

the first stage are averaged as the new initial model. This strategy has been adopted in

field data in a North Sea field (Hicks et al., 2016) and a post-salt field in the Campos Basin

Bortoni et al. (2021). This strategy shows improved performance in mitigating artifacts and

is less sensitive in the case of non-repeatability of source locations.

In chapter 3, we develop a target-oriented common-model strategy (TO CMS) for time-

lapse FWI, incorporating a multi-source method (chapter 2). All the mentioned implemen-

tations in time-lapse data are based on acoustic FWI. Hereon, we extend this strategy to

time-lapse elastic FWI. This approach leverages the advantages of TO FWI, which enhances

model convergence in the target area to improve time-lapse results, and common-model time-

lapse FWI, which mitigates time-lapse errors by using an optimized starting model to guide
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baseline and monitor inversions toward similar convergence. Both strategies help suppress

artifacts in the inverted time-lapse results, while the multi-source method—an amplitude-

encoding strategy—effectively reduces computational overhead by allowing multiple seismic

shots to be simulated simultaneously in the FWI.

In field CCUS projects, time-lapse seismic inversion is a powerful tool for monitoring

reservoir changes introduced by CO2 injection and sequestration. Vertical seismic profile

(VSP) surveys offer higher vertical resolution and an improved signal-to-noise ratio com-

pared with surface seismic methods. When combined with full-waveform inversion (FWI),

a high-resolution seismic imaging technique capable of capturing subtle reservoir changes

over time (Virieux and Operto, 2009), VSP data further improves the detection of time-

lapse anomalies. This makes the application of FWI to VSP data particularly well-suited for

reservoir monitoring. Liang et al. (2013) detected the time-lapse changes in a heavy oil field

introduced by steam injection. Yang et al. (2014) reported challenges in detecting time-lapse

differences related to CO2 injection, partly due to limitations in acquisition geometry. A no-

table result was obtained by Egorov et al. (2017), who applied FWI to single-source VSP

data and identified changes in a saline aquifer at 1500 m depth, caused by the injection of

15,000 tons of CO2. Cai et al. (2024) used FWI to monitor short-term CO2 injection at 300

m depth with rapidly repeated single-source VSP data. Other studies have explored using

FWI with various borehole data to monitor water injection at shallow depths. Nakata et al.

(2022) monitored the dynamic transient fluid-flow effects introduced by water injection at

a depth around 25 m, using controlled-source crosswell data. Liu et al. (2023) monitored

velocity changes at an approximate depth of 11.6 m associated with in-situ fracture evolution

at a shallow contamination site, using continuous active-source borehole data. These studies

underscore the potential of this technique for high-resolution subsurface imaging. However,

due to its sensitivity to non-repeatable noise, the application of FWI to time-lapse VSP data

remains relatively rare, particularly for CO2 monitoring.

Unlike the cases mentioned above, which involve shallow water injection, large-scale deep
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CO2 injections, single-source time-lapse surveys, or short-term monitoring, Chapter 4 con-

ducts a field experiment using time-lapse walkaway VSP data and FWI to track long-term

changes in a thin (7 meters), shallow (at approximately 300 m depth) reservoir caused by less

than 60 tons of CO2 injection. At the Field Research Station (FRS), located approximately

200 km southeast of Calgary and developed by the Containment and Monitoring Institute

(CaMI) under Canada Management Canada (CMC) Research Institutes Inc., a small scale

CO2 sequestration project is undergoing. Less than 60 tons of CO2 was injected within a

7 m-thick target formation. The VSP datasets were acquired with accelerometers and Dis-

tributed Acoustic Sensing (DAS) in 2018 and 2022, serving as the baseline and monitor data

(Hall et al., 2019a; Innanen et al., 2022).

Distributed Acoustic Sensing (DAS) is a revolutionary technology that transforms passive

optical fibers into an array of virtual microphones, enabling continuous monitoring and real-

time analysis of acoustic interactions along the fiber’s length. This technology is predicated

on the backscatter of light within the fiber induced by acoustic vibrations surrounding it.

Over the past decade, DAS has playing a critical role across a spectrum of geological, environ-

mental, and urban studies. Initially demonstrated in diverse settings such as CCUS sites and

infrastructure test facilities (Daley et al., 2013; Ancelle et al., 2014; Macquet et al., 2022),

DAS has since proven its efficacy in harsh environments, including permafrost, glaciated

terrains, and geothermal areas (Ajo-Franklin et al., 2016; Walter et al., 2020; Jousset et al.,

2017).

In borehole seismic exploration, DAS is a great new tool for subsurface investigation

due to its resilience under extreme conditions, cost-efficiency, and enhanced data acquisition

capabilities. DAS technology, especially in the context of DAS-VSP, significantly reduces

operational costs. Its application in 3D DAS-VSP surveys has proven particularly effective in

delineating complex geological structures with higher spatial resolution and wider frequency

ranges. Furthermore, alternative cable designs, such as helical and straight fiber, have been

explored to improve DAS performance (Hall et al., 2018, 2019b). Time-lapse 3D DAS-VSP,
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or 4D surveys, have shown immense promise in monitoring subsurface property variations,

crucial for operations like CO2 sequestration, hydraulic fracturing, and fluid injections.

Distributed Acoustic Sensing (DAS) holds a promising potential for advancing the effi-

cacy and safety of CO2 sequestration and monitoring processes, a critical facet of carbon

capture and storage endeavors. The technology facilitates real-time monitoring of the sub-

surface, enabling the detection and mapping of CO2 plume migration within the storage

reservoirs (Daley et al., 2013). DAS’s high spatial and temporal resolution makes it a valu-

able tool for tracking the injection of CO2, and its dispersion in subsurface formations, thus

providing a robust framework for validating reservoir models and ensuring the integrity of

the sequestration sites (Dou et al., 2017). Moreover, the technology aids in the identification

and assessment of induced seismicity or any other geomechanical alterations which might

arise from the injection processes, offering an early-warning system for potential leaks or

caprock integrity breaches. The passive and continuous monitoring capacity of DAS allows

for a comprehensive surveillance over the sequestration lifecycle, assuring compliance with

regulatory frameworks and public safety mandates. By delivering a deeper understanding of

the subsurface dynamics associated with CO2 sequestration, DAS significantly contributes

to optimizing the operational procedures and bolstering the public and regulatory confidence

in CCUS technologies as viable solutions for reducing greenhouse gas emissions.

In Chapter 5, I conduct a field experiment using time-lapse walkaway DAS VSP data and

FWI to monitor long-term subsurface changes induced by CO2 injection. Chapter 5 present

a workflow that applies FWI to detect time-lapse anomalies associated with the injection

of less than 60 tons of CO2 into a 7 m-thick shallow reservoir. The results demonstrate

the capability of DAS-based FWI to achieve high-resolution inversion and accurately track

small-scale CO2-induced changes. This study highlights the feasibility of leveraging DAS for

long-term, high-resolution CO2 monitoring in real field conditions.
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1.2 Contributions

The contributions of this thesis lay in the following points:

1 In Chapter 3, a target-oriented common-model strategy (TO CMS) for time-lapse FWI,

incorporating a multi-source method is developed. This approach leverages the advantages of

TO FWI, which enhances model convergence in the target area to improve time-lapse results,

and common-model time-lapse FWI, which mitigates time-lapse errors by using an optimized

starting model to guide baseline and monitor inversions toward similar convergence. Both

strategies help suppress artifacts in the inverted time-lapse results, while the multi-source

method—an amplitude-encoding strategy—effectively reduces computational overhead by

allowing multiple seismic shots to be simulated simultaneously in the FWI.

2 In Chapter 4, a field experiment using time-lapse VSP data and FWI to monitor long-

term changes in a thin, shallow reservoir due to CO2 injection is conducted. We present a

workflow that uses time-lapse FWI for field walkway VSP data to identify time-lapse changes

related to less than 60 tons of CO2 injected into a 7 m-thick reservoir at a depth of 300 m. A

frequency range of 5 to 60 Hz is applied to achieve high-resolution results. This experiment

showcases the capability of FWI to perform high-resolution inversion and detect time-lapse

anomalies within a shallow reservoir caused by a small amount of CO2 injection. To the best

of our knowledge, no similar field experiments have been reported.

3. In Chapter 5, we conduct a field experiment using time-lapse walkaway DAS VSP data

and FWI to monitor long-term subsurface changes induced by CO2 injection. We present

a workflow that applies FWI to detect time-lapse anomalies associated with the injection

of less than 60 tons of CO2 into a 7 m-thick shallow reservoir. Our results demonstrate

the capability of DAS-based FWI to achieve high-resolution inversion and accurately track

small-scale CO2-induced changes. This study highlights the feasibility of leveraging DAS for

long-term, high-resolution CO2 monitoring in real field conditions.
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1.3 Thesis overview and objectives

The thesis presents an in-depth exploration of underground geophysical methods, focusing

particularly on monitoring CO2 injection and sequestration. This research is structured into

six chapters, each addressing critical aspects of geophysical methods and its applications on

time-lapse seismic data.

Chapter 1 sets the stage by discussing the current development in CO2 sequestration and

monitoring, as well as the application of seismic geophysics in it. Meanwhile, it introduces

the capabilities of DAS in capturing the intricacies of CO2 sequestration, laying the ground-

work for the advanced techniques discussed in later chapters. Besides, in later sections, it

introduces the main approaches that are studied in this thesis- (Time-lapse) full-waveform

inverison. At last, it also introduces FWI using multi-source strategies, which elevate the

calculation effiencey.

Chapter 2 delves into the implementation of FWI using a multi-source strategy. This

section unravels the improved calculation effiency of FWI and offers a option for time-lapse

FWI.

Chapter 3 develops a target-oriented common-model strategy, which provides a robust

and effective result for time-lapse elastic FWI. This chapter demonstrates that this strategy is

non-sensitive to the non-repeatability issues that commonly exist in field time-lapse surveys.

In addition, a multi-source strategy is incorporated into FWI, which well help elevate the

calculation overburden issue of time-lapse elastic FWI.

Chapter 4 focuses on the application of time-lapse FWI to Vertical Seismic Profile (VSP)

data and explores the potential of this technique in monitoring CO2 injection and seques-

tration within a 7-m thin reservoir at shallow depth. The chapter bridges the gap between

theory and application, highlighting the enhanced imaging capabilities achieved through this

approach.

Chapter 5 focuses on the application of DAS in CO2 monitoring, and time-lapse FWI is

performed using DAS VSP data at CaMI to monitor the CO2 injection and sequestration
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within a 7-m thin reservoir at shallow depth. This chapter presents the first-time application

of FWI using DAS data, highlighting the capability of DAS data providing low-cost, high-

resolution inversion results in CO2 monitoring.

Finally, Chapter 6 concludes the thesis by summarizing the key contributions and findings

of the research. It presents a synthesis of the insights gained from each chapter and offers

a perspective on the future applications and developments of time-lapse FWI stategies, and

field experiments especially using DAS technology in monitoring and CO2 sequestration.

Each chapter of this thesis is a stepping stone towards a comprehensive understanding of

time-lapse FWI and DAS technology applications in geophysics, culminating in a substantial

contribution to the field and paving the way for future research in effective CO2 monitoring

and sequestration.

While this thesis focuses on developing advanced time-lapse FWI strategies and demon-

strating their feasibility and effectiveness for monitoring CO2 injection using both conven-

tional and DAS VSP data, several limitations remain. The non-repeatability scenarios tested

using the target-oriented common-model strategy are relatively moderate compared with

those encountered in real field surveys; therefore, developing more powerful and robust time-

lapse FWI strategies remains an important goal. In the field data application, the inversion

accuracy is constrained by incomplete near-surface velocity information, the absence of shear-

wave and density models, and the limited quality and repeatability of the field DAS data.

The proposed TO-CMS is adopted as a practical solution to mitigate non-repeatable ac-

quisition geometry; however, it inevitably reduces sensitivity to subtle overburden changes

that may indicate CO2 leakage. These limitations define the current scope of this work

and underscore the need for future research to develop more adaptive and overburden-aware

inversion strategies for reliable and sensitive CO2 sequestration monitoring.
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Chapter 2

Multi-source full-waveform inversion

A super-shot or blended data strategy has been used in marine and land seismic surveys

to reduce acquisition costs by reducing the time spent on the field. Full waveform inver-

sion (FWI) has been used to estimate high-resolution subsurface velocity models. However,

it suffers from expensive computational costs for matching the synthetic and the observed

data. To reduce the costs of both data acquisition and processing, FWI using blended data

has been recognized as very promising in future oil exploration. In this work, we use an

amplitude-encoding strategy with different bases to accelerate the FWI process and com-

pare their performance. The synthetic examples show that amplitude-encoding FWI using

different bases as encoding functions can mitigate the crosstalk noise very well, providing

good estimations of velocity models and convergence rate for both acoustic and elastic media.

To further improve the calculation efficiency, we also adopt the dynamic encoding concept

and reduce the number of super-shots every a few iterations. Since the encoding functions

are not changed during the iterations, we can directly simulate the super-shots without the

blending stage. From the updated velocity model comparison, we can see that the inversion

results by dynamic encoding are almost identical to those by static encoding with further

reduced calculation effort. This multi-source strategy will be adopted in chapter 3.
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2.1 Introduction

FWI is a high-resolution seismic imaging technique that is based on using the entire content

of seismic traces for extracting physical parameters of the medium sampled by seismic waves

(Virieux et al., 2017). The classical time-domain FWI was originally proposed by Tarantola

(1984) to invert the velocity model by minimizing the l2-norm of the difference between pre-

dicted and observed data (Symes, 2008). This technique is very useful but computationally

expensive.

To reduce the costs of both data acquisition and processing, a simultaneous source-firing

strategy has been recognized as very promising in future oil exploration. Increasing field

efficiency by recording more than one source has been explored utilizing encoded shot gathers

or super-shots (Romero et al., 2000). However, once the super-shots are acquired, traditional

seismic processing methods require a de-blending process for velocity model estimation and

seismic migration (Florez et al., 2016).

Source-encoding strategies were first introduced into pre-stack migration in the frequency

domain (Morton and Ober, 1998; Romero et al., 2000). Krebs et al. (2009) proposed to

multiply the source wavelet with a random encoding sequence of +1 or -1 and then blend all

the shot gathers into one super-shot. Zhan et al. (2009) proposed to compose a multi-source

shot gather of a sum of single-shot gathers with random time delays. This usually requires

zero-padding the input shot gathers along the time axis, which may add extra cost for the

time-domain wave extrapolator and memory. Dai et al. (2012) proposed to combine these

two source-encoding strategies for least-squares reverse time migration (LSRTM). Usually,

all shots are blended into several sub-super-shots that contain all the shot records. Hu et al.

(2016) proposed an efficient amplitude encoding strategy using a cosine basis to perform

LSRTM. Godwin and Sava (2013) proposed an amplitude encoding strategy using Hartley

basis for wave-equation migration and compared its performance with some other source-

encoding strategies. To date, source-encoding strategies have been used to accelerate RTM,

LSRTM and FWI process (Krebs et al., 2009; Dai et al., 2012; Godwin and Sava, 2013;

11



Pan, 2017). Instead of modifying the phase or zero-padding the input shot gathers, the

implementation of the amplitude encoding method is based on weighting the amplitude of

the shot gathers. Therefore, it can be conveniently incorporated into the time-domain wave

propagator. What is also different is that one super shot contains all the shot gathers.

In this work, we present amplitude encoding acoustic and elastic FWI using different

bases and compare the inversion results. We also adopt the dynamic encoding concept and

change the number of super-shots every a few iterations to further reduce the calculation

effort.

2.2 Amplitude-encoding FWI in time domain

In the case of constant density, the acoustic wave equation is described by

1

v2(x)

∂2p (x, t; xs)

∂t2
−∇2p (x, t; xs) = fs (x, t; xs) (2.1)

where fs (x, t;xs) = f (t′) δ (x− xs) δ (t− t′) .

According to equation 2.1, the data misfit ∆p = pcal−pobs can be defined by the differences

at the receiver positions between the recorded seismic data pobs and the forward modeled

seismic data pcal = f(m) for each source-receiver pair of the seismic survey. In the acoustic

velocity inversion, f(·) indicates the forward modeling function, whereas m corresponds to

the velocity model to be inverted. The goal of FWI is to match the data misfit by iteratively

updating the velocity model. We also define the data misfit function as the objective function

taking the least-squares norm of the misfit vector ∆p, which is given by

E(m) =
1

2
∆p†∆p =

1

2
‖pcal − pobs‖2

=
1

2

ng∑
r=1

ns∑
s=1

∫ tmax

0

dt |pcal (xr, t; xs)− pobs (xr, t; xs)|2
(2.2)

where ns and ng are the number of sources and receivers and � denotes the adjoint operator

12



(conjugate transpose).

In encoding FWI, shot gathers are transformed into super shot gathers by the encoding

matrix, which is defined as

B =



b1,1 b2,1 . bNig ,1

b1,2 b2,2 . bNsig ,2

· · · ·

b1,Nsup b2,Nsup . bNsig ·Nsup


(2.3)

where Nsup is the number of the super-shots and Nsig is the number of the individual shots

(Nsup < Nsig ). The Nsig synthetic data and observed data are blended into Nsup blended

data by

psup
cal = Bpcal

psup
obs = Bpobs

(2.4)

The ratio between Nsig and Nsup is the factor by which the computational cost is reduced.

Since usually Nsup is much smaller than Nsig, the encoding FWI would achieve much better

efficiency due to the reduction of data dimension. Then the encoding objective function is

given by:

E(m) =
1

2
∆p†∆p =

1

2
‖pcal − pobs ‖2

=
1

2
(pcal − pobs ) BTB (pcal − pobs )

(2.5)

The matrix BTB is referred to as the crosstalk matrix, and when it’s equal to the identity

matrix, the encoding objective function is equal to the traditional objective function. FWI

using blended data would produce the same results as in conventional FWI cases. There-

fore, to make the inversion result from the encoding FWI comparable with that from the

conventional FWI, the designed encoding crosstalk matrix should be a good approximation

of the identity matrix.
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In this work, we use different bases as the encoding functions to design the amplitude

encoding matrices.

The Hartley encoding matrix is defined as (Tsitsas, 2010):

bm,n = cos

(
2πmn

nsig

)
+ sin

(
2πmn

nsig

)
(2.6)

The discrete form of the cosine basis is (Hu et al., 2016):

bm,n =

√
2

nsig

cos

(
π

nsig

(2m%nsig + 1) (2n+ 1)

4

)
(2.7)

The sine encoding matrix is defined as (Tsitsas, 2010):

bm,n =

√
2

nsig

sin

((
m+ 1

2

) (
n+ 1

2

)
π

nsig

)
(2.8)

Also, we noticed that the random polarity encoding strategy (Krebs et al., 2009) works

in a very similar way. It also applies different weights to the shot records or source wavelets

to compose super-shots, except that the weights are only + 1 or -1. In addition, it composes

all the individual shots into only one super-shot, and changes the encoding sequence at each

iteration. In this work, we use it in a different way, we don’t change the encoding sequence at

each iteration, but also use it as a basis and establish a encoding matrix, and then compose

multiple super-shots. Given enough number of individual shots and super-shots, the crosstalk

matrix for this basis will also be close to an identity matrix. The random polarity basis can

be expressed as:

bm,n = 1 or − 1 (2.9)

In equation 6 to 10, the parameters are defined in the same way, m = 1,. . . , Nsig is the

shot-index, n = 1,. . . , Nsup is the super-shot index, and nsig is the periodization index, which

we set to be half of Nsig.
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2.3 Numerical results for acoustic FWI

2.3.1 Marmousi model

In this section, we use a Marmousi model with a distance of 9216 m and a depth of 3008

m on a grid of 16 meters discretized in a grid of 576 by 188 grid points, which is shown

in Fig 2.1a. On top of the Marmousi model is a water layer with the thickness of 320 m,

the acoustic velocity is set to 1500 m/s. which makes the whole model size 576 by 208 grid

points. We get the initial model shown in Fig 2.1b by smoothing the original Marmousi

model, but the top layer remains not smoothed.

Marmousi model
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Figure 2.1: (a) The original Marmousi is down sampled along depth and lateral direction.

The shots are generated according to the Marmousi model. (b) The initial model of FWI

for Marmousi model, which is obtained by smoothing the original model.

In this work, we generate all synthetic shot gathers by solving the acoustic wave equations

in time domain for all 140 sources, which are evenly distributed near the surface of original

Marmousi model with a spatial interval of 64 m (4 grid points). We deploy 576 receivers

right beneath the sources with a spatial interval of 16 m (1 grid point). The Ricker wavelet

sources are fired with a central frequency of 4 Hz. We record the seismic waveforms for 4.2

s with an time step of 1.5 ms. For conventional FWI, all the sources are fired individually

and shot gathers are recorded separately. For amplitude encoding FWI, we apply different

amplitude weights to the shot gathers to compose super-shots.
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In our experiments, we use Hartley, cosine, sine and random polarity as encoding func-

tions. For comparison, we blend all the shot gathers into 7, 35 and 70 super-shots. Fig 2.2

and Fig 2.3 are the encoding matrices and corresponding crosstalk matrices. The elements of

encoding matrices are the weights we apply to the individual shots and compose super-shots.

The crosstalk matrices show how close they are to an identity matrix. We can see with an

increasing number of blended data, more off-diagonal elements are close to zero.
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Figure 2.2: Amplitude encoding matrices: columns from left to right are by Hartley, cosine,

sine and random polarity bases; rows from up to down are for 7, 35 and 70 super-shots,

respectively.
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Figure 2.3: crosstalk matrices: columns from left to right are by Hartley, cosine, sine and

random polarity bases; rows from up to down are for 7, 35 and 70 super-shots, respectively.

In Fig 2.4, we present the first individual shot in the conventional case and the first

super-shots in the amplitude-encoding cases using different bases. We can notice that each

super-shot contains all the individual shots and information of the whole model.
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Figure 2.4: a) is the first individual shot in the conventional case; b) to e) are the first

super-shot in the amplitude-encoding cases.

In this work, we run FWI using a gradient-based method (Yang et al., 2015b) for 100

iterations. For comparison, we first present the inversion result using conventional FWI,

which is displayed in Fig 2.5a. Then we perform amplitude-encoding FWI using different

bases as the encoding functions. For brevity, the inversion results at the early stage using

7 and 70 super-shots are shown in Fig 2.5b-i. When we first take a look at the left column

using 7 super-shots (see Fig 2.5b, d, f and h), we can notice there exists some crosstalk noise

in the middle left or upper left, while with increasing number of super-shots (see results using

70 super-shots in the right column in Fig 2.5) , the crosstalk noise can be better mitigated

and the images are almost noise-free.
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Figure 2.5: The updated velocity models after 25 iterations: a) by conventional FWI; b)

and c) are by Hartley basis with 7 and 70 super-shots; d) and e) are by cosine basis with 7

and 70 super-shots; f) and g) are by sine basis with 7 and 70 super-shots; h) and i) are by

random polarity basis with 7 and 70 super-shots.

The inversion results after 100 iterations are shown in Fig 2.6. Generally, in our exper-

iments, compared with the result by conventional FWI in Fig 2.6a, we can see amplitude-

encoding FWI using all 4 different encoding functions would produce very good estimations

of the velocity model, even with only 7 super-shots (see the left columns in Fig 2.5 and 2.6).
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However, to achieve better imaging quality, it still requires more super-shots to mitigate the

crosstalk noise with much more extra calculation effort.
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Figure 2.6: The updated velocity models after 100 iterations: a) by conventional FWI; b)

and c) are by Hartley basis with 7 and 70 super-shots; d) and e) are by cosine basis with 7

and 70 super-shots; f) and g) are by sine basis with 7 and 70 super-shots; h) and i) are by

random polarity basis with 7 and 70 super-shots.

As shown in Fig 2.7, we compare the data misfits in the conventional and amplitude-

encoding FWI cases using 70 super-shots encoded by different bases. Note that the maximum
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value of data misfit we display here is 0.2. From the comparison, we can notice that using

amplitude-encoding strategy, the encoding FWI experiments show very similar convergency

as in the conventional case.
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Figure 2.7: Comparison of data misfit function

To obtain ideal updated velocity models with better mitigated crosstalk noise as in the

70 super-shots cases, clearly the data dimension is not reduced enough. To further improve

the calculation efficiency, we adopt the dynamic encoding concept (Krebs et al., 2009). They

proposed to change the encoding sequence every iteration to avoid accumulating the crosstalk

noise for better imaging quality. In our case, compared to the inversion results using 70

super-shots, we can notice the crosstalk noise in the inversion results using 7 super-shots are

not significant. So instead of changing the encoding functions, we dynamically reduce the

number of super-shots every a few iterations to further reduce the data dimension, hoping to

achieve a better compromise between imaging quality and calculation efficiency. In our test,

for the first step, we still compose the individual shot gathers into 70 super-shots and run

FWI for 25 iterations, then we compose the shot gathers into 35 super-shots and run FWI

for another 25 iterations using the updated velocity model by the first step. Likewise, we

then use 14 super-shots and 7 super-shots for 25 iterations each. So overall, we also update

the velocity model 100 times.
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We present the inversion results using dynamic encoding concept after 100 iterations in

Fig 2.8. When we respectively compare them with the updated velocity models using 70

super-shots in the static-encoding cases shown in the right column of Fig 2.6, we can see

both encoding strategies provide almost identical inversion results and using different bases

make no significant difference, but the data dimension has been further reduced.
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Figure 2.8: Inversions results using dynamic-encoding concept by different bases: a) Hartley;

b) cosine; c) sine and d) random polarity.

The data misfit and vertical profile comparisons are shown in Fig 2.9a and b, respectively.

We can see that using dynamic encoding concept can provide a very similar convergence rate

as in the static encoding cases. In addition, since the number of super-shots is changed every

25 iterations, the data misfit function curves may not be smooth. Compared to the previous

static case, we can notice that using Hartley and random polarity bases, when the number of

super-shot is reduced during inversion process, there might be obvious “jump” in the misfit

curves. While in the cosine and sine bases cases, even the super-shot number is reduced,

the curves are still very smooth. From the comparison of vertical profiles in the middle of

the model, we can see the lines are almost overlapped, amplitude-encoding FWI using all

different 4 bases gives very good estimations of the true velocity model.

22



a)

0 20 40 60 80 100

Iteration

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

M
is

fi
t

Cov

H static

H dynamic

C static

C dynamic

S static

S dynamic

P static

P dynamic

b)

1500 2000 2500 3000 3500 4000 4500 5000 5500

Velocity (m/s)

500

1000

1500

2000

2500

3000

D
e
p
th

 (
m

)

True

Initial

H static

H dynamic

C static

C dynamic

S static

S dynamic

P static

P dynamic

Figure 2.9: a) is the comparison of vertical profiles at distance equals to 4680 m; b) is the

comparison of data misfit functions versus iteration.

2.3.2 Foothills model

To further validate the feasibility of amplitude-encoding strategy, we also used this Foothills

model with a distance of 6672 m and a depth of 4000 m in a grid of 417 by 250 cells with 16

meters size each, which is shown in Fig 2.10a. We also get the initial model by smoothing

the original Marmousi model, as shown in Fig 2.10b.

For this model, we generate all synthetic shot gathers for 100 sources, which are evenly

distributed near the surface of true model with a spatial interval of 64 m. We deploy 417

receivers right beneath the sources with a spatial interval of 16 m. The Ricker wavelet sources

are fired with a central frequency of 8 Hz. We record the seismic waveforms for 6.0 s with a

time step of 1.5 ms.
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Figure 2.10: a) true Foothills model; b) initial model.

In this case, we compose the shot records into 50, 25, 10 and 5 super-shots, and also run

FWI for 25 iterations each. For brevity, we only display the inversion results using dynamic

encoding shown in Fig 2.11.
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Figure 2.11: Inversion results after 100 iterations: a) by conventional FWI; Inversions results

using dynamic-encoding concept by: b) Hartley basis; c) cosine basis; d) sine basis; e) random

polarity basis.

For this model, FWI converges really fast, data misfits reduce to 0.1 within 10 iterations

as shown in Fig 2.12. The curves for 5 cases overlapped at the first 25 iterations. We may

also see the “jump” in here, just much less obvious than the Marmousi model cases.
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Figure 2.12: Comparison of data misfit functions versus iteration using dynamic encoding

concept.

2.4 Numerical results for elastic FWI

In this section, we further apply amplitude-encoding strategy into elastic FWI. In isotropic

elastic media, the first-order stress-velocity wave equation can be rewritten as:

ρ
∂vi
∂t

=
∂σij
∂xj

+ fi

∂σij
∂t

= λ
∂θ

∂t
δij + 2µ

∂εij
∂t

∂εij
∂t

=
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)2

(2.10)

where ρ is the density, σ is the stress, v is the velocity, λ and µ are Lame coefficients, and

vp and vs can be expressed by

vp =
√

(λ+ 2µ)/ρ

vs =
√
µ/ρ

(2.11)

The objective function using l2-norm of the data misfit for elastic FWI using amplitude-

encoding strategy can also be expressed as equation 2.5, exactly the same as in the acoustic

case. So when the crosstalk matrix is a good approximation of the identity matrix, amplitude-
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encoding strategy should also work for elastic FWI in the same way. In this work, we use

the IFOS2D software (Bohlen et al., 2016b) to do the experiments.

We use a subsampled Marmousi II elastic model with a distance of 3600 m and a depth

of 1100 m in a grid of 360 by 110 cells with 10 meters size each. This model consists of a

200 m thick water layer above. The true and initial models are shown in Fig 2.13, we only

perform FWI for vp and vs in this work.
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Figure 2.13: Subsampled Marmousi II model: a) and b) are true vp and vs; c) and d) are

initial vp and vs.

We generate synthetic shot gathers for 40 explosive sources and deploy 360 two–component

receivers. The central freq is 10 hz. The sources and receivers are at depth 20 and 30 meters,

respectively.

In this experiment, we compose all 40 individual shots into 20 super-shots, the encoding

and crosstalk matrices are shown in Fig 2.14.
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Figure 2.14: The amplitude encoding and corresponding crosstalk matrices: columns from

left to right are for Hartley, cosine, sine and random polarity bases.

Also, rather than set the iteration times for our tests, we use an abort criterion to control

the inversion progress, which is the defined by the relative misfit change within the last two

iterations. If the relative change is smaller than one percent, the inversion stops.

The inversion results are shown in Fig 2.15. The left column are inverted vp and the right

column are inverted vs models, from up to down are inverted parameters by conventional

FWI, amplitude-encoding FWI using Hartley, cosine, sine and random polarity bases.

When we compare these results, we may notice there exists some minor difference among

different cases. But generally, we can also see elastic FWI using amplitude-encoding strategy

can also produce comparable inversion result with no obvious crosstalk noise introduced in

the final images as in the acoustic cases, which further proves the feasibility of amplitude-

encoding strategy for elastic FWI.
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Figure 2.15: Inversion results by both conventional and amplitude-encoding FWI: left column

is inverted vp, right column is inverted vs; from up to down are inverted parameters by

conventional FWI, amplitude-encoding FWI using Hartley, cosine, sine and random polarity

bases.
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Additionally, vertical vp and vs profiles at 2.2 km of the initial model and inversion

results are compared with the true model in Fig 2.16. The black line is the true model, the

dashed red line is the initial model, other thicker lines are the results by amplitude-encoding

strategy. The results contain a lot of small details, we can see some fine layers especially

in vs model needs further improvement. However, the amplitude-encoding results are still

comparable with half reduced calculation effort.

Figure 2.16: Depth profiles at distance 2.2 km of the initial model and inversion results are

compared with the true model for the Marmousi II model: P-wave velocity (left), S-wave

velocity (right).
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2.5 Conclusions

In this work, we present the amplitude-encoding acoustic and elastic FWI using different

bases as the encoding functions and compare their performance.

In our experiments, we first use Marmousi model to show that amplitude-encoding acous-

tic FWI using different bases can mitigate the crosstalk noise very well and produce totally

comparable inverted models and convergence rate to the conventional case. Then we demon-

strate the feasibility of this strategy using a Foothills model. What’s also worth to notice is

that, for conventional acoustic FWI, it requires Nsig forward model operations to generate the

synthetic acoustic data. While for amplitude-encoding FWI, we can directly simulate Nsup

super-shots without the blending stage, which also helps improve the calculation efficiency

for both forward modelling and inversion process.

In addition, we adopt the dynamic-encoding concept and reduce the number of super-

shots during the inversion process to further improve the calculation efficiency, producing

almost the same updated velocity models as in the static-encoding cases.

We further apply amplitude-encoding strategy to elastic FWI and prove that this strategy

also shows great performance for multi-parameter FWI.
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Chapter 3

Multi-source time-lapse elastic

full-waveform inversion using a

target-oriented common-model

strategy

Full-waveform inversion (FWI) is a powerful tool for time-lapse seismic analysis, enabling

high-resolution imaging of subsurface physical properties to monitor reservoir changes dur-

ing injection, production, and long-term CO2 storage. However, conventional time-lapse

FWI, which relies on a parallel inversion strategy, suffers from significant artifacts due to

survey non-repeatability, disrupting convergence consistency between baseline and monitor

inversions. Additionally, the high computational cost remains a major challenge. To address

these limitations, we propose a novel time-lapse FWI strategy—the target-oriented (TO)

common-model strategy (CMS)—which strategically integrates multiple approaches. Our

method combines TO FWI, which enhances model convergence in the target region to im-

prove time-lapse accuracy, with CMS, which reduces artifacts by using an optimized starting

model to guide baseline and monitor inversions toward similar convergence paths. Addition-
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ally, we employ an amplitude-encoding multi-source strategy, significantly reducing compu-

tational costs without compromising inversion accuracy. Through extensive elastic tests, we

validate the robustness and effectiveness of TO CMS, demonstrating superior performance

over both the conventional parallel strategy and standard CMS across various challenging

scenarios—including non-repeated source positions, random noise, seawater velocity varia-

tions, and biased initial models. Notably, strong noise and seawater velocity variations can

significantly impact time-lapse FWI results, highlighting the need for further investigation.

Ensuring consistent multi-source parameters in time-lapse FWI can help minimize artifacts.

This time-lapse strategy will adopted in chapter 5.

3.1 Introduction

Time-lapse seismic analysis is widely used for monitoring subsurface property changes, for

instance, the reservoir changes caused by oil/gas production or CO2 injection (Greaves and

Fulp, 1987; Ross and Altan, 1997; Wang et al., 1998; Barkved et al., 2003; Arts et al.,

2004b; Barkved et al., 2005; Chadwick et al., 2009; Kazemeini et al., 2010; Pevzner et al.,

2017). To enable high-resolution imaging for monitoring subsurface changes, time-lapse seis-

mic analysis often relies on full-waveform inversion (FWI), a powerful technique that offers

a detailed reconstruction of subsurface properties. FWI is a high-resolution seismic imag-

ing technique that leverages the full information contained within seismic traces, including

both amplitude and phase, to extract physical parameters of the subsurface medium probed

by seismic waves (Virieux and Operto, 2009; Virieux et al., 2017; Zhang and Curtis, 2020;

Operto et al., 2023), which is proposed by Tarantola (1984) in the time domain to invert

the subsurface P-wave velocity model by minimizing the l2-norm of the difference between

predicted and observed data (Symes, 2008). Pica et al. (1990) further extend FWI into

elastic cases. Bunks et al. (1995) propose a multi-scale strategy to deal with the cycle

skipping issue in FWI. Nevertheless, FWI continues to grapple with a significant compu-
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tational workload, primarily due to its iterative and computationally intensive nature. In

each iteration, the objective function’s gradient must be computed concerning the model

parameters, accomplished by cross-correlating the backward-propagated residual wavefield

with the corresponding forward-propagated source wavefield. Calculating these two types of

wave fields places significant demands on computational resources, as it involves performing

a substantial number of times to solve the wave equation. For time-lapse FWI, where multi-

ple inversions are required, the computational cost is normally double (the parallel strategy)

or four times (such as the common-model strategy) of that in 2D or 3D FWI. Therefore,

there is an urgent need to reduce computational complexity for time-lapse FWI.

A efficient way to reduce the computational time is source-encoding strategies (Romero

et al., 2000; Krebs et al., 2009), which reduce the data dimension by encoding the individual

shot gathers into super-shots. Source-encoding strategies are first introduced into pre-stack

migration in the frequency domain (Morse and Feshbach, 1954; Romero et al., 2000). To

date, source-encoding strategies have been used to accelerate RTM (reverse time migration),

LSRTM (least-squares RTM), and FWI (Krebs et al., 2009; Dai et al., 2012; Godwin and

Sava, 2013; Hu et al., 2016; Pan, 2017). Krebs et al. (2009) propose to multiply the source

wavelet with a random encoding sequence of +1 or −1 and then blend all the shot gathers

into one super-shot, but this method inevitably introduces a significant amount of noise

to the final image, known as crosstalk noise (Godwin and Sava, 2013). Zhan et al. (2009)

propose to compose a multi-source shot gather of a sum of single-shot gathers with random

time delays, which is equivalent to using linear phase-shift as a function of frequency. This

usually requires zero padding the input shot gathers along the time axis. However, the time

shifts may be quite large (up to seconds) (Blacquiere et al., 2009), which increases the com-

putational cost. Dai et al. (2012) proposed to combine these two phase-encoding strategies

for LSRTM. Usually, all shots are blended into several sub-super-shots that contain all the

shot records. Godwin and Sava (2013) propose an amplitude encoding strategy using the

Hartley basis for wave-equation migration and compared its performance with some other
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source-encoding strategies. Hu et al. (2016) propose an efficient amplitude encoding strat-

egy using a cosine basis to perform LSRTM. Amplitude encoding is based on weighting

the input shot gathers instead of modifying their phase Hu et al. (2016) and can be conve-

niently incorporated into the time-domain wave propagator. Compared with conventional

migrations, FWI is a more advanced imaging technique and has been applied successfully

to various data types (Huang et al., 2021). Matharu and Sacchi (2018) demonstrate the

feasibility of random polarity encoding strategy in multi-parameter FWI. We will introduce

the amplitude-encoding strategy to elastic FWI (EFWI), of which the efficiency has been

validated in acoustic FWI.

When FWI is used for time-lapse analysis, the most commonly used strategy is known

as the parallel strategy (PRS) (Lumley et al., 2003; Plessix et al., 2010), in which the

baseline and monitor models are independently inverted with the same initial model (shown

in Fig. 3.1(a)), and the inverted time-lapse change is the difference between two inverted

models. Due to different convergence in two independent inversions, this strategy usually

introduces artifacts in the final inverted time-lapse change. Routh et al. (2012) propose

to use the inverted baseline model as the initial model for the monitor model inversion

to save computational time, which is known as the sequential strategy (SQS). Its target-

oriented version, with a local wave-equation solver to calculate the wavefield within the

target area, can be found in Huang et al. (2020). However, this strategy still doesn’t cope

with the artifact issue in the inverted time-lapse change, and it even enhances them since

the convergence difference is widened. Watanabe et al. (2004) and Zheng et al. (2011)

introduce the double-difference strategy (DDS) to address artifacts effectively. This approach

allows for a more precise focus on time-lapse changes by directly utilizing the difference

data (monitor data minus baseline data), corresponding to reservoir changes, during the

monitoring inversion process. Zhang et al. (2012) apply the DDS for time-lapse EFWI.

Zhang and Huang (2013) take the DDS a step further by incorporating a target-oriented

scheme (updating the local area, including reservoir changes in the model, instead of the
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entire model) to enhance the effectiveness of time-lapse EFWI. For the reason of focusing

on reservoir change, the DDS has become a popular strategy in field data application and

numerical tests (Yang et al., 2015a, 2016; Malcolm and Willemsen, 2016). Its target-oriented

version, with machine learning assistance, is presented by Li et al. (2021). Also, it is used for

Bayesian/Markov Chain Monte Carlo formulation of time-lapse seismic waveform inversion

(Kotsi et al., 2020; Fu and Innanen, 2022a). Nonetheless, the algebraic processes involved in

DDS render it highly susceptible to acquisition nonrepeatability issues, including the non-

repeatability in source/receiver locations (Zhou and Lumley, 2021b; Fu and Innanen, 2023)

and source wavelets (Fu et al., 2023). Hicks et al. (2016) propose the common-model strategy

(CMS), which consists of two stages of inversions, and each stage follows the same process

as the PRS. In the second stage of the CMS, the inverted baseline and monitor models from

the first stage are averaged as the new initial model, the workflow is shown in Fig. 3.1(b).

This strategy has been adopted in field data in a North Sea field (Hicks et al., 2016) and

a post-salt field in the Campos Basin (Bortoni et al., 2021). This strategy shows improved

performance in mitigating artifacts and is less sensitive in the case of non-repeatability of

source locations. However, all the mentioned implementations in time-lapse data are based

on acoustic FWI. Hereon, we extend this CMS to time-lapse elastic FWI, and strengthen it

with the target-oriented strategy. The numerical experiments performed in this study will

demonstrate the effectiveness of the CMS and the newly designed target-oriented (TO) CMS

for elastic time-lapse data.

Certainly, an increased emphasis is observable in endeavors to mitigate artifacts in time-

lapse inversion techniques. Zhou and Lumley (2021a) propose a central-difference strategy

for time-lapse FWI, which includes two SQSs with opposite data usage orders to counteract

the artifacts. Fu and Innanen (2023) present a stepsize-sharing strategy, which is able to

reduce the artifacts, is stable to a biased initial model, and it is of the capacity to decrease

half time of seeking stepsizes when compared with the SQS. Mardan et al. (2023) devise

a weighted-average approach to enhance the management of artifacts in the inverted time-
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lapse changes. In addition, it is also important to process time-lapse seismic data well, which

can effectively reduce artifacts in time-lapse imaging or inversion. Fu and Innanen (2022b)

design a source-independent matching filter to solve the source wavelet nonrepeatability

issue. Attempting to encompass all methods within a single study becomes impractical due

to the prohibitive computational demands. This study will center its investigation on the

CMS, which has been applied in various field datasets, and the TO CMS, assessing their

effectiveness in the context of time-lapse EFWI. Furthermore, we will also evaluate the PRS

as the conventional methodology to have a comparison with the CMS and the TO CMS.

In this study, we develop a TO CMS for time-lapse FWI, incorporating a multi-source

method. This approach leverages the advantages of TO FWI, which enhances model conver-

gence in the target area to improve time-lapse results, and common-model time-lapse FWI,

which mitigates time-lapse errors by using an optimized starting model to guide baseline

and monitor inversions toward similar convergence. Both strategies help suppress artifacts

in the inverted time-lapse results, while the multi-source method—an amplitude-encoding

strategy—effectively reduces computational overhead by allowing multiple seismic shots to

be simulated simultaneously in the FWI.

The rest of this paper is laid out as follows: in the theory section, we introduce the

fundamental principles of time-domain multi-source EFWI and provide an overview of the

time-lapse inversion strategies investigated in this study; the subsequent section presents

the numerical examples, where we evaluate the methods across various scenarios; finally, we

summarize our findings in the conclusions section.
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3.2 Theory

3.2.1 Multi-source EFWI in the time domain

In a standard FWI problem, we minimize a misfit function

E(m), (3.1)

subject to

F(m)u(x, t) = s(x, t), (3.2)

where E is a function with respect of model parameters m, F(m) characterizes the seismic

wave equation, u(x, t) denotes the particle displacement at time t ∈ [0, T ] excited by an

external source s(x, t) and x denotes spatial coordinates. The wave equation F(m) in elastic

media can be can be solved by the stagger-grid finite-difference scheme Virieux (1986);

Levander (1988).

The objective function taking the least-squares norm of the misfit vector ∆u is given by

E(m) =
1

2
∆u†∆u =

1

2
‖uobs − usyn‖2

=
1

2
(uobs − usyn)T (uobs − ucal)

=
1

2

Ns∑
s=1

Nr∑
r=1

∫
T

|uobs (xr, t)− usyn (xr, t; m)|2 dt,

(3.3)

where † denotes the adjoint operator (conjugate transpose), the data misfit ∆u is defined by

the differences between the observed seismic data uobs and the synthetic seismic data usyn

recorded at the r-th receiver and generated by the s-th source ss for model m. Ns and Nr

denote she number of sources and receivers.

Via the conjugate gradient method, the model is updated iteratively according to

mk+1 = mk + αkδmk, (3.4)
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where k is the iteration number, α the step length, and δmk is a search direction or descent

direction and can be derived from the gradient of the misfit function.

The gradient of E(m) with respect to m,∇mE, can be calculated efficiently using the

adjoint-state method Plessix (2006):

∇mE(x) = −
Ns∑
s=1

∫
T

u†obs (x, t) · ∂F

∂m
uobs (x, t) dt. (3.5)

where u†obs is the adjoint wavefield.

In multi-source FWI, the individual shot gathers are blended into super-shots, and the

encoded objective function is given by Matharu and Sacchi (2018):

E(m) =
1

2
∆u†ms∆ums =

1

2

∥∥uobs
ms − usyn

ms

∥∥2
=

1

2

(
uobs
ms − usyn

ms

)T (
uobs
ms − usyn

ms

)
=

1

2

Nms∑
ms=1

Nr∑
r=1

∫
T

∣∣uobsms (xr, t)− usynms (xr, t; m)
∣∣2 dt,

(3.6)

where uobsms is the blended observed data and usynms is the blended synthetic data.

Similarly to the way to compute the gradient in standard FWI, the multi-source gradient

using the adjoint-state method can be expressed as Matharu and Sacchi (2018):

∇mEms(x) = −
Nms∑
s=1

∫
T

usyn†ms (x, t) · ∂F

∂m
usynms (x, t) dt

= ∇mE(x)−
Ns∑
i=1

Ns∑
j=1
j 6=i

∫
T

u†j(x, t) ·
∂F

∂m
ui(x, t)dt

︸ ︷︷ ︸
Cross-talk term

.
(3.7)

In this work, we used the amplitude-encoding strategy Godwin and Sava (2013); Hu et al.

(2016) to compose super-shots. The individual shot gathers are blended into super-shots by

39



uobs
ms = Buobs (3.8a)

usyn
ms = Busyn (3.8b)

where the encoding matrix B is defined as Hu et al. (2016)

B =



b1,1 b2,1 . bNs,1

b1,2 b2,2 . bNs,2

· · · ·

b1,Nms b2,Nms . bNs·Nms


(3.9)

where Nms is the number of the super-shots and Ns is the total number of the individual

shots. Since usually Nms is much smaller than Ns, the encoding FWI would achieve much

better efficiency due to the reduction of data dimension. The ratio between Ns and Nms is

the factor by which the computational cost is reduced.

We use the sine basis as the encoding matrix, which is defined as Tsitsas (2010):

bm,n =

√
2

ns

sin

((
m+ 1

2

) (
n+ 1

2

)
π

ns

)
(3.10)

where m = 1,. . . , Ns is the shot-index, n = 1,. . . , Nms is the super-shot index, and ns is the

periodization index, which we set to be half of Ns.

Then the multi-source objective function can be rewritten as:

E(m) =
1

2
∆u†ms∆ums =

1

2

∥∥uobs
ms − usyn

ms

∥∥2
=

1

2

(
uobs
ms − usyn

ms

)T (
uobs
ms − usyn

ms

)
=

1

2
(uobs − usyn)T BTB (uobs − usyn)

(3.11)

The matrix BTB is referred to as the crosstalk matrix. When comparing this new misfit
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function with equation 3.6, we can notice that when the crosstalk matrix is identical to

the identity matrix, the multi-source objective function equates to the traditional objective

function. Consequently, multi-source FWI, which utilizes blended data, yields identical

results to conventional FWI cases. Hence, to ensure that the inversion results from encoded

FWI are comparable to those from conventional FWI, it is imperative that the designed

encoding crosstalk matrix closely approximates the identity matrix.

3.2.2 Time-lapse inversion strategies

Parallel strategy

In the PRS, whose workflow is shown in Fig. 3.1(a), the baseline and monitor models are

independently inverted with the same initial model. Subsequently, the time-lapse model

is derived by subtracting the inverted baseline model from the inverted monitor model.

However, due to different convergence behaviors between these two models, this strategy

often introduces artifacts in the time-lapse result.

Common-model strategy

The CMS shown in Fig. 3.1(b) consists of two stages of inversion processes. In each stage, the

workflow precisely mirrors that of the PRS. After the completion of the first stage, instead

of directly subtracting the inverted baseline model from the inverted monitor model, as is

done in the PRS, the CMS takes a different approach. It calculates an average of the two

inverted models to create a new initial model for the second stage. In this subsequent stage,

FWI is performed using this new initial model along with the original baseline and monitor

data as input. The final time-lapse model is then obtained by performing a subtraction

operation. Serving as an enhanced version of the PRS, the CMS uses an optimized starting

model to guide baseline and monitor inversions toward similar convergences. Therefore,

using the CMS will result in better time-lapse result compared with the PRS. The CMS

has demonstrated its ability to effectively mitigate artifacts in acoustic FWI, as evidenced
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by experiments conducted with both synthetic and field data Hicks et al. (2016); Fu and

Innanen (2023).

Target-oriented common-model strategy

In our study, we develop a target-oriented scheme of the CMS, incorporating prior infor-

mation of reservoir change locations for baseline and monitor inversions, refered to the TO

CMS, the workflow is presented in Fig. 3.1(c). Similar to the CMS, the TO CMS begins by

averaging the inverted baseline and monitor models derived from the same initial model. In

the second stage, we assume prior knowledge of the locations of velocity change areas, and

only update the model within specific regions that encompass the time-lapse areas Zhang

and Huang (2013). Time-lapse FWI is usually conducted to detect the changes within a

specific reservoir, such as the target reservoir for CO2 injection and sequestration. In such a

project, the location of the reservoir is known prior to the injection operation. This allows

us to design the target area to update the models, making the TO CMS more feasible. Com-

pared with the CMS, in the implementation of algorithm, the gradient outside the target

area is set to zero. This combines the benefits of TO FWI Valenciano et al. (2006); Huang

et al. (2020); Cui et al. (2020); Li et al. (2021); Biondi et al. (2023); Zheglova et al. (2023),

which improves convergence in the target area, and common-model time-lapse FWI, which

uses an optimized starting model to guide baseline and monitor inversions toward similar

convergences. Both techniques reduce noise in the inverted time-lapse results.

3.3 Numerical examples

In our study, we assume a constant density and perform EFWI for Vp and Vs using the

IFOS2D software Bohlen et al. (2016a). We use a down-sampled elastic Marmousi II model

to demonstrate the efficiency of the amplitude-encoding strategy in EFWI and feasibility of

the CMS and the TO CMS in time-lapse EFWI. Since the amplitude-encoding strategy is a
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Figure 3.1: Workflows of time-lapse strategies: (a) parallel strategy (PRS), (b) common-
model strategy (CMS), (c) target-oriented common-model strategy (TO CMS).

static source-encoding method, we implement it in the software to directly simulate the super-

shots without the blending stage. After we achieve multi-source full-waveform inversion using

the modified software, we can carry out baseline and monitor model inversions to obtain the

time-lapse result using the PRS. To implement the CMS and the TO CMS, we need to use

the inverted models from the previous stage to generate new initial models as inputs in the

second stage inversions.

The model has a distance of 4100 m and a depth of 1500 m in a grid with a size of 410 by

150 and a 10-meter spacing. The true baseline Vp and Vs models are plotted in Figs. 3.2(a)

and 3.2(b). We employ the smoothed true models as the initial models, which are plotted in
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Figure 3.2: True baseline model: (a) Vp model and (b) Vs model.
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Figure 3.3: The initial baseline model: (a) Vp model and (b) Vs model.
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Figure 3.4: True time-lapse model: (a) Vp model and (b) Vs model.

Figs. 3.3(a) and (b). There is a 200 m-thick water layer at the top of the model. The free

surface condition Levander (1988) is implemented on top of the model. There are 20 layers

of Perfectly Matched Layers (PMLs) Komatitsch and Martin (2007) implemented around

the other sides of the model as the absorbing boundary condition in the finite difference

modeling.
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For the time-lapse survey, three velocity change areas, plotted in Fig. 3.4, are added

to the baseline model to have the monitor model. The Vp changes in area 1 (top left),

area 2 (top right) and area 3 (bottom) are set to +150, -150 and +150 m/s, respectively.

Accordingly, the Vs changes in these 3 areas are set to +90, -90 and +90 m/s. Areas 1 and

2 are located at shallower depths with relatively lower background velocities, while the area

3 is located at large depth with a relatively higher background velocity.

We deploy evenly distributed 80 sources and 410 receivers along the surface at depths of

20 m and 30 m, respectively. The horizontal source location starts from 80 m and the source

location interval is 50 m, and the receivers are located at every grid cell. The source wavelets

adopted for both baseline and monitor datasets are identical, which is a Riker wavelet with

a dominant frequency of 10 Hz. The time sampling interval is 1.25 ms and the maximum

recording time is 3 seconds. Moreover, in the EFWI, a multi-scale approach Bunks et al.

(1995) is incorporated to mitigate the cycle skipping problem.

3.3.1 Multi-source EFWI

To illustrate the capacity of the multi-source strategy in EFWI, the inversion results of the

baseline model using the multi-source FWI are compared with that using the conventional

FWI in which the shot gathers are calculated individually. In the conventional EFWI process,

80 synthetic individual shot gathers are generated by using the true baseline model as the

observed data and solving the first-order elastic wave equations Virieux (1986); Levander

(1988). In the multi-source EFWI experiment, we use the amplitude-encoding strategy to

assign the encoding weights to all the individual shot gathers to compose 10 super-shots.

In conventional FWI, the encoding and crosstalk matrices are identity matrices, while in

multi-source FWI, the encoding and crosstalk matrices are plotted in Fig. 3.5. In both

experiments, the computations were carried out on a workstation equipped with an Intel i7-

7800X CPU and 64 GB of RAM. The programs were parallelized using MPI with 5 processors.

The memory usage in each experiment was approximately 2.19 GB. In Fig. 3.6, we plot an
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Figure 3.5: (a) The encoding matrix and (b) the crosstalk matrix.
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Figure 3.6: Synthetic data: (a) a shot near the center of the model in conventional FWI; (b)
the first super-shot in multi-source FWI.

individual central shot and the first encoded super-shot, respectively, used in conventional

and multi-source EFWI’s.

In Fig. 3.7, the inverted baseline models from both conventional and multi-source EFWI’s

are plotted, and which shows that the multi-source EFWI can produce high-quality inversion

results with acceptable crosstalk noise introduced in the final images. In Fig. 3.8, extracted

traces from the results in Fig. 3.7 at distances of 2.08 km, 3.0 km, and 2.68 km, respectively,

are plotted, which can well match the true values. In Fig. 3.9(a) and 3.9(b), the normalized

model misfits (L1-norm) of conventional and multi-source EFWI are plotted. We observe

that both inversions have nice model convergences, and the conventional EFWI has a lower

model misfit since there is no impact of data crosstalk. We also observe that the data misfits

shown in Fig. 3.9(c) for both methods converge well and reach a similar level. The efficiency

comparison between the conventional and multi-source EFWI’s is illustrated via table 3.1,
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Figure 3.7: Inverted baseline model, (a) Vp and (b) Vs models using conventional FWI; (c)
Vp and (d) Vs models using multi-source FWI.

Table 3.1: Averaged calculation time for conventional FWI and encoding-FWI per iteration.
Conventional FWI Encoding-FWI

(80 shots) (10 super-shots))
Calculation time (s) 968 122

where their average CPU times for each iteration are displayed. It shows that the speed-up

ratio for encoding-FWI is approximately the number of individual shots over the number of

super-shots.

Since we have demonstrated that the multi-source EFWI can achieve high-quality elastic

inversions, in the following tests, we will only adopt the amplitude-encoding EFWI to perform

the time-lapse EFWIs using three time-lapse inversion strategies, including the PRS, the

CMS, and the TO CMS. In the TO CMS, to lower the practical difficulty of locating three

reservoir changes, we treat all three velocity change areas as a whole and update a local

region that contains all the changes.
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Figure 3.8: Extracted traces of Vp and Vs within 3 reservoir areas extracted at distances
2.08 km, 3.0 km and 2.68 km: the first row are P-wave velocities, the second row are S-wave
velocities.Within each panel, the black solid line is the true model, and the black dashed line
is the initial model, the blue line is the result of conventional EFWI, and the red line is the
result of multi-source EFWI.
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Figure 3.9: Model misfits and data misfit versus iteration of both FWI and multi-source
FWI: (a) Vp model misfit, (b) Vs model misfit, and (c) data misfit.

3.3.2 Marmousi model

Noise-free data tests

In this subsection, noise-free datasets with perfectly repeatable acquisition geometries are

employed. The first super-shot of the monitor data and the difference between the first super-
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Figure 3.10: Noise-free synthetic data: (a) the first super-shot in the monitor survey; (b)
the difference of first super-shots in monitor and baseline surveys.

shots of the monitor and baseline data are plotted in Figs. 3.10(a) and (b), respectively.

The results of different time-lapse strategies are plotted in Fig. 3.11. We observe that the

PRS gives the worst results, in which artifacts become more noticeable with the increase

of depth since the deeper part has worse model convergence. Compared with the PRS, the

CMS and the TO CMS can provide results with significantly fewer artifacts. The inverted

velocity changes of the TO CMS have better model convergence than that of the CMS. The

inverted Vp changes are better than the inverted Vs changes. The same conclusions can

also be drawn from Figs. 3.12(a) to (f), where the traces, extracted at distances 2.08 km,

3.0 km, and 2.68 km from the results in Figs. 3.12(a) to (f), are plotted, respectively. In

this section, a total of six times of elastic FWI are performed. In the following sections,

the situation is similar, which is very time-consuming and makes adopting the multi-source

strategy necessary for computational feasibility.

Different encoding functions

In this section, to analyze the effect of encoding function in time-lapse inversion, different

encoding functions are adopted to invert the baseline and monitor models. In this case, we

used the Hartley basis as the encoding function to invert monitor model, which is defined as
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Figure 3.11: Tests with perfectly repeated surveys and source encoding methods. The time-
lapse results of different strategies, in the case baseline and monitor inversions use noise-free
data: (a) and (b) are Vp and Vs using the parallel strategy (PRS), (c) and (d) are Vp and
Vs using the common-model strategy (CMS), (e) and (f) are Vp and Vs using the target-
oriented common-model strategy (TO CMS). The PRS introduces noise into the time-lapse
result, the CMS and the TO CMS can provide results with significantly fewer artifacts.

Figure 3.12: Extracted traces of inverted time-lapse results of different strategies, in the
case baseline and monitor inversions use the same source-encoding methods, data are noise-
free with perfectly repeated acquisition geometry: (a) and (b) are time-lapse Vp and Vs at
distance 2.08 km, (c) and (d) are time-lapse Vp and Vs at distance 3.0 km, (e) and (f) are
time-lapse Vp and Vs at distance 2.68 km.
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Figure 3.13: Tests with non-repeated source-encoding methods. The time-lapse results of
different strategies, in the case baseline and monitor inversions use noise-free data with
perfectly repeated acquisition geometry: (a) and (b) are Vp and Vs using the PRS, (c) and
(d) are Vp and Vs using the CMS, (e) and (f) are Vp and Vs using the TO CMS. Different
encoding functions in baseline and monitor inversions introduce noise into the time-lapse
results.

Tsitsas (2010); Godwin and Sava (2013):

bm,n = cos

(
2πmn

ns

)
+ sin

(
2πmn

ns

)
(3.12)

where the parameters are defined in the same way as in equation 3.10.

In Fig. 3.13, we compared the results by 3 time-lapse strategies. In the first column,

we can see using the PRS, we can’t identify all the velocity change areas. While in the

results by the CMS and TO CMS, we can identify area 1 and area 2. As for area 3, none

of the time-lapse strategies can recover the velocity change. Since the encoding function

is repeatable in a time-lapse survey, in the following sections, we used the same encoding

functions to invert baseline and monitor models.
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Different number of super-shots

In this section, to analyze the impact of super-shot number on time-lapse inverison, the

baseline data are still blended into 10 super-shots, while the monitor data are blended into

6 and 14 super-shots respectively. In Figs. 3.14 and 3.15, the inverted time-lapse results

in two cases are displayed. Compared with results in the section where the same number

of super-shots are used in both baseline and monitor inversions, in the case when 6 super-

shots are used in monitor inversion, much more artifacts are introduced in the time-lapse

images shown in Fig. 3.14. In the case when 14 super-shots are used in monitor inversion

shown in Fig. 3.15, the time-lapse images are also degraded, but the quality are still better

than those in the first case. Due to the enhanced convergence using more super-shots in

the monitor inversion, it results in stronger time-lapse changes as well as stronger noise.

The comparison of results from the last three sections shows that both different encoding

functions and different numbers of super-shots in baseline and monitor inversions introduce

significant noise into the time-lapse results. When employing the multi-source strategy, we

recommend composing baseline and monitor data into super-shots in the same way to achieve

more reliable time-lapse FWI outcomes.

Non-repeatable random noise

In this section, we performed time-lapse inverison using noisy datasets with a perfectly

repeatable acquisition geometry. We added the same level of Gaussian random noise with

different implements to the noise-free baseline and monitor data to obtain noisy data. In Figs.

3.16(a) to (c), the first super-shots of noisy baseline data with SNR (signal-to-noise ratio)

= 20, 10 and 5. In Figs. 3.16(d) to (f), we display the corresponding differences between

noisy monitor and baseline data with SNR= 20, 10 and 5 (the amplitudes are magnified by

a factor of 10).

In Fig. 3.17, the inverted baseline models using noisy data with different levels of SNR

are plotted. In Figs. 3.18 to 3.20, we plot the corresponding time-lapse inversion results
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Figure 3.14: Tests with non-repeated source-encoding parameters. The time-lapse results of
different strategies, in the case baseline inversion uses 10 super-shots and monitor inversion
uses 6 super-shots using the same source-encoding function, data are noise-free with perfectly
repeated acquisition geometry: (a) and (b) are Vp and Vs using the PRS, (c) and (d) are
Vp and Vs using the CMS, (e) and (f) are Vp and Vs using the TO CMS. Different number
of super-shots in baseline and monitor inversions introduce noise into the time-lapse results.

using three time-lapse strategies. From the results, we can see that with an increasing level

of Gaussian random noise, the time-lapse results tend to be more noisy. And the inversion of

the deeper time-lapse change is worse than those of the sallow ones, since the corresponding

reflections are weaker. The PRS still provided results with strong artifacts, and the CMS

and the TO CMS perform much better than it. From the results of the CMS and the TO

CMS, we observe that all Vp changes can be identified, even when SNR is as low as 5, but

for Vs, the deep reservoir change can not be recognized when SNR equals either 10 or 5.

The TO CMS still generates more accurate results than the CMS.

Non-repeatable source positions

In this section, we consider how the non-repeatable source positions affect the time-lapse

inversion results using different time-lapse strategies. We use noise-free datasets, but the

acquisition geometries for baseline and monitor surveys are different. In this work, we only
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Figure 3.15: Tests with non-repeated source-encoding parameters. The time-lapse results
of different strategies, in the case baseline inversion uses 10 super-shots and monitor inver-
sion uses 14 super-shots using the same source-encoding function, data are noise-free with
perfectly repeated acquisition geometry: (a) and (b) are Vp and Vs using the PRS, (c) and
(d) are Vp and Vs using the CMS, (e) and (f) are Vp and Vs using the TO CMS. Different
number of super-shots in baseline and monitor inversions introduce noise into the time-lapse
results.

consider the impact of source position non-repeatability on different time-lapse strategies,

and receivers are still deployed in each grid cell of the model and kept fixed. To analyze the

effects of non-repeatable source positions, we consider three different cases. In cases 1 and

2, the source locations in the baseline model remain the same as in previous sections, the

first source locations in monitor survey are, respectively, 10 m and 20 m larger than that in

baseline survey. In case 3, we consider an extreme scenario, the source locations in baseline

model are also changed, and shifted to left, the first source location starts from a distance

of 20 m. In the monitor model, the source locations are still shifted to right, and the first

source location starts from a distance of 140 m. In this case, the minimum source location

distance between baseline and monitor surveys are also 20 m as in case 2 , but the difference

between two acquisition geometries in both surveys are bigger. In the froward simulation

of monitor model inversion, the shifted source positions which are non-repeatable from the

baseline model are used.
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Figure 3.16: Synthetic data: (a), (b) and (c) are the first super-shots of noisy baseline data
with SNR=20, 10 and 5, (d), (e) and (f) are the differences between noisy monitor and
baseline data with SNR=20, 10 and 5 (the amplitudes are magnified by a factor of 10).

In Figs. 3.21, 3.22 and 3.23, the inverted time-lapse results in three cases are plot-

ted. From these results, we observe that the PRS is sensitive to the source position non-

repeatability and gives the worst results, especially in case 3, the time-lapse changes are

totally submerged in artifacts. In case 3, we observe that the CMS and TO CMS provide

similar results, while in case 1 and case 2, the TO CMS can recover more accurate values

for the deeper velocity change.

Non-repeatable seawater velocity change

In a time-lapse survey, the seawater velocity may change, and it seriously affects the recovery

of underground velocity change. In this section, we consider the overburden water velocity

change. Three cases are considered, in the first two cases, the maximum water velocity
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Figure 3.17: Inverted baseline model using noisy data: (a) and (b) are Vp and Vs using data
with SNR=20, (c) and (d) are Vp and Vs using data with SNR=10, (e) and (f) are Vp and
Vs using data with SNR=5.
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Figure 3.18: Tests with non-repeatable random noise. The time-lapse results of different
strategies, in the case baseline and monitor data are noisy (SNR=20) with perfectly repeated
acquisition geometry: (a) and (b) are Vp and Vs using the PRS, (c) and (d) are Vp and
Vs using the CMS, (e) and (f) are Vp and Vs using the TO CMS. An increasing level of
Gaussian random noise results in noisier time-lapse results, making it more difficult to detect
deeper time-lapse changes. In all the following tests, including this one, the source-encoding
method and parameters are identical across all FWI processes.
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Figure 3.19: Tests with non-repeatable random noise. The time-lapse results of different
strategies, in the case baseline and monitor data are noisy (SNR=10) with perfectly repeated
acquisition geometry: (a) and (b) are Vp and Vs using the PRS, (c) and (d) are Vp and
Vs using the CMS, (e) and (f) are Vp and Vs using the TO CMS. An increasing level of
Gaussian random noise results in noisier time-lapse results, making it more difficult to detect
deeper time-lapse changes.
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Figure 3.20: Tests with non-repeatable random noise. The time-lapse results of different
strategies, in the case baseline and monitor data are noisy (SNR=5) with perfectly repeated
acquisition geometry: (a) and (b) are Vp and Vs using the PRS, (c) and (d) are Vp and
Vs using the CMS, (e) and (f) are Vp and Vs using the TO CMS. An increasing level of
Gaussian random noise results in noisier time-lapse results, making it more difficult to detect
deeper time-lapse changes.
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Figure 3.21: Tests with non-repeatable acquisition geometry. The time-lapse results of
different strategies, in the case baseline and monitor data are noise-free, monitor source
locations as a whole have been moved to the right of baseline source locations by 10 m:
(a) and (b) are Vp and Vs using the PRS, (c) and (d) are Vp and Vs using the CMS, (e)
and (f) are Vp and Vs using the TO CMS. The PRS is sensitive to the source position
non-repeatability and gives the worst results and the TO CMS can recover more accurate
values for the deeper velocity change.

changes are 20 m/s and 35 m/s, respectively, the water velocity changes decrease linearly

from the surface to the seabed, and at the seabed, the minimum water velocity change is

5% of the maximum. In Figs. 3.24 and 3.25, the time-lapse inversion results for cases of

non-repeatable seawater velocity change are plotted. In the case of a small seawater velocity

change, we can observe that reservoir changes can still be identified from TO CMS and CMS,

with the former showing better convergence and less coherent noise, but stronger random

noise. In the case of a large seawater velocity change, the results are significantly impacted

for both TO CMS and CMS.

In a realistic scenario, the velocity of seawater is subject to fluctuations due to various

factors such as water temperature (T ), salinity (S) and depth (D). The water temperature

and the salinity vary at different time, the seawater velocity is described as Medwin (1975):
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Figure 3.22: Tests with non-repeatable acquisition geometry. The time-lapse results of
different strategies, in the case baseline and monitor data are noise-free, monitor source
locations as a whole have been moved to the right of baseline source locations by 20 m: (a)
and (b) are Vp and Vs using the PRS, (c) and (d) are Vp and Vs using the CMS, (e) and
(f) are Vp and Vs using the TO CMS. The TO CMS can recover more accurate values for
the deeper velocity change.
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Figure 3.23: Tests with non-repeatable acquisition geometry. The time-lapse results of
different strategies, in the case baseline and monitor data are noise-free. monitor source
locations as a whole have been moved to the right of baseline source locations by 120 m: (a)
and (b) are Vp and Vs using the PRS, (c) and (d) are Vp and Vs using the CMS, (e) and (f)
are Vp and Vs using the TO CMS. The CMS and TO CMS provide similarly good results.
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Figure 3.24: Tests with non-repeatable seawater velocity. The time-lapse results of different
strategies, in the case baseline and monitor data are noise-free, the water velocity in monitor
model is 20 m/s larger and kept constant in all FWI processes: (a) and (b) are Vp and Vs
using the PRS, (c) and (d) are Vp and Vs using the CMS, (e) and (f) are Vp and Vs using
the TO CMS. The CMS and TO CMS can still identify the velocity change areas.
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Figure 3.25: Tests with non-repeatable seawater velocity. The time-lapse results of different
strategies, in the case baseline and monitor data are noise-free, the water velocity in monitor
model is 35 m/s larger and kept constant in all FWI processes: (a) and (b) are Vp and Vs
using the PRS, (c) and (d) are Vp and Vs using the CMS, (e) and (f) are Vp and Vs using
the TO CMS. When the water velocity change is large, none of the time-lapse strategies
succeed.
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Figure 3.26: Tests with unknown and fluctuating spatially seawater velocity. The time-lapse
results of different strategies, in the case where baseline and monitor data are noise-free,
and the water velocity in the monitor model is spatially fluctuating and kept constant in all
FWI processes: (a) and (b) are Vp and Vs using the PRS, (c) and (d) are Vp and Vs using
the CMS, (e) and (f) are Vp and Vs using the TO CMS. The CMS and TO CMS can still
identify the velocity change areas.

c = 1449.2 + 4.6T − 0.055T 2 + 0.00029T 3

+ (1.34− 0.010T )(S − 35)

+ 0.016D

(3.13)

In the third case, we assume the water temperature (T ) decreases linearly from the surface

at 30 °C to the seabed at 0 °C, the salinity (S) increases linearly from left to right of the

model from 35 to 0 ppt, the depth increases from the surface at 0 m to the seabed at 200 m.

In this model, the maximum of seawater velocity difference is around 130 m/s. However, in

most practical cases of FWI, the seawater velocity remains fixed as a constant. Hence, it is

necessary to investigate how this affects the time-lapse FWI results, and the test results are

plotted in Fig. 26. We observe that all the tested strategies exhibit strong artifacts. The

TO CMS seems more sensitive to this situation. The non-repeatable seawater change issue

in time-lapse FWI still requires further research Zhou and Lumley (2021b); Fu et al. (2024).
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Overburden velocity change, no matter in a land time-lapse survey or a marine time-lapse

survey, is still a trouble to identify the underground velocity changes and recover the velocity

change values. It requires further investigation with more advanced time-lapse strategies. In

land seismic surveys, surface-wave inversion may be incorporated into time-lapse inversion

to exclude the surface velocity change effects.

Combined random noise and non-repeatable source locations

In this subsection, we test different strategies in the case that non-repeatable random noise

and non-repeatable source locations exist at the same time. In this experiment, the SNRs of

both baseline and monitor data are set to 20, and the source location in the monitor survey

is 10 m (case 1) or 20 m (case 2) larger than that in the baseline survey. In Figs. 3.27 and

3.28, we plot the inversion results of different strategies. From the results, we observe that

the PRS can not handle either cases 1 or 2, we can only recognize the reservoir change from

the Vp result in case 2. For the CMS, the Vp and Vs changes can be imaged only in case

1, and the result for Vs in case 1 contains a lot of coherent artifacts. The best results are

given by the TO CMS, we can clearly recognize the Vp and Vs changes from the results in

both cases.

Crosstalk analysis

In this section, we analyze the crosstalk introduced by the coupling effects using our time-

lapse EFWI strategy using two additional time-lapse models. The two time-lapse models

are analogous to those employed in the previous sections utilizing the Marmousi model.

However, they differ in that the first model exhibits only Vp time-lapse changes, while the

second model exhibits only Vs time-lapse changes. In this way, the time-lapse changes can

be used as Vp and Vs perturbations to analyze the crosstalk. The true and initial models

remain the same. The general parameters for forward modeling and inversion are set to

the same as in the section “Noise-free data tests”. In Figs. 3.29 and 3.30, we respectively
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Figure 3.27: Tests with non-repeatable seawater velocity. The time-lapse results of different
strategies, in the case baseline and monitor data are noisy (SNR=20), monitor source loca-
tions as a whole have been moved to the right of baseline source locations by 10 m: (a) and
(b) are Vp and Vs using the PRS, (c) and (d) are Vp and Vs using the CMS, (e) and (f)
are Vp and Vs using the TO CMS. The PRS fails, the CMS and TO CMS can detect the
time-lapse changes.
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Figure 3.28: Tests with non-repeatable seawater velocity. The time-lapse results of different
strategies, in the case baseline and monitor data are noisy (SNR=20), monitor source loca-
tions as a whole have been moved to the right of baseline source locations by 20 m: (a) and
(b) are Vp and Vs using the PRS, (c) and (d) are Vp and Vs using the CMS, (e) and (f)
are Vp and Vs using the TO CMS. The PRS and CMS fails, only the TO CMS can detect
the time-lapse changes.
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Figure 3.29: Tests with only Vp time-lapse changes in the Marmousi model: a) and b) are
Vp and Vs using the PRS, c) and d) are Vp and Vs using the CMS, e) and f) are Vp and
Vs using the TO CMS.

present the inverted time-lapse results for two time-lapse models using different time-lapse

strategies. When only perturbations of Vp exist as shown in Fig. 3.29, in the results by the

PRS, the artifacts are strong and we can’t tell any time-lapse change of Vs, in the results

by the CMS with mitigated artifacts, some subtle crosstalk can be revealed. In contrast, the

TO CMS results effectively mitigate both artifacts and crosstalk. Similarly, in Fig. 3.30,

when there are only perturbations of Vs, we observe similar outcomes.

Biased initial models

In the previous tests, the initial model in Fig 3.3 is unbiased, being a smoothed version of

the true baseline model shown in Fig 3.2. In this section, we use two biased initial models

to test the resilience of the different strategies to bias, using baseline and monitor datasets

that are noise-free and are of identical acquisition geometries. The two biased Vp initial

models are equal to the unbiased models minus and plus 100 m/s below the water layer.

The biased Vs initial models are changed accordingly. In Figs. 3.31 and 3.32, the inverted

time-lapse models using different strategies are plotted. In fist case, FWI can still relatively
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Figure 3.30: Tests with only Vs time-lapse changes in the Marmousi model: a) and b) are
Vp and Vs using the PRS, c) and d) are Vp and Vs using the CMS, e) and f) are Vp and
Vs using the TO CMS.

well recover the true models. In Fig 3.31, we can observe similar results as in Fig 3.11. In the

second case, the increased velocities in the initial models results in degraded convergence,

espetically in the inverted Vs modelw. In Fig 3.32, we observe that the PRS and CMS

provide no meaningful results. However, in the results using the TO CMS, we can still

identify the time-lapse changes.

3.3.3 Overthrust model

In this section, we also use a down-sampled Overthrust model to demonstrate the efficiency

of the amplitude-encoding strategy in EFWI and feasibility of the CMS and the TO CMS in

time-lapse EFWI. The true baseline Vp and Vs models are plotted in Fig. 3.33. We employ

the smoothed true models as the initial models, which are plotted in Fig. 3.34. The time-

lapse models are shown in Fig. 3.35, the Vp and Vs changes are set to 300 and 176 m/s. The

dimension and grid size are the same as the Marmousi model. The general parameters for

forward modeling and inversion are set to the same as in previous sections. In this section,

we only consider two scenarios as in the Marmousi model tests.
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Figure 3.31: Tests with biased initial models. The time-lapse results of different strategies,
in the case the biased Vp initial model is equal to the unbiased model (Fig. 3.3a) minus 100
m/s below the water layer. The biased Vs initial model is changed accordingly: a) and b)
are Vp and Vs using the PRS, c) and d) are Vp and Vs using the CMS, e) and f) are Vp
and Vs using the TO CMS.

Noise-free data tests

In the first case, we consider noise-free datasets with repeatable acquisition geometry. To

further consider the influence of the target area on the time-lapse results of the TO CMS,

in Fig. 3.36, we present the inverted time-lapse results of the PRS, CMS and TO CMS with

varying target areas. As with the Marmousi model examples, the comparison of results by

different time-lapse strategies leads to the same conclusion. The results of the TO CMS

with different scales of target area demonstrate that more precise prior information leads to

more accurate time-lapse change recovery. In Fig. 3.37, we plot the extracted traces at the

distance of 1.9 km in the inverted time-lapse results using the PRS, the CMS, and the TO

CMS with the smallest target updating area, respectively.
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Figure 3.32: Tests with biased initial models. The time-lapse results of different strategies,
in the case the biased Vp initial model is equal to the unbiased model (Fig. 3.3a) plus 100
m/s below the water layer. The biased Vs initial model is changed accordingly: a) and b)
are Vp and Vs using the PRS, c) and d) are Vp and Vs using the CMS, e) and f) are Vp
and Vs using the TO CMS.
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Figure 3.33: True baseline model: (a) Vp model and (b) Vs model.

Combined random noise and non-repeatable source locations

In the second test, we consider the second case in the ’Combined random noise’ section,

where the SNRs of both baseline and monitor data are set to 20, and the source location

in the monitor survey is or 20 m larger than that in the baseline survey. In Figs. 3.38 and

??, we present the inverted time-lapse results and extracted traces at distance 1.9 km using

different strategies. From the results using two different models, we have illustrated the
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Figure 3.34: The initial baseline model: (a) Vp model and (b) Vs model.
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Figure 3.35: True time-lapse model: (a) Vp model and (b) Vs model.
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Figure 3.36: Tests with varying target areas in the Overthrust model. The time-lapse results
of different strategies, in the case baseline and monitor data are noise-free: a) and b) are Vp
and Vs using the PRS, c) and d) are Vp and Vs using the CMS, e), g) and i) are Vp using
the TO CMS with decreasing updating target area, f), h) and j) are Vs using the TO CMS
with decreasing updating target area.

feasibility of the CMS and the TO CMS in multi-source time-lapse elastic FWI.
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Figure 3.37: Extracted traces of inverted time-lapse results of different strategies, in the case
baseline and monitor inversions use the noise-free data with perfectly repeated acquisition
geometry: (a) and (b) are time-lapse Vp and Vs.

Figure 3.38: Tests with varying target areas in the Overthrust model. The time-lapse results
of different strategies, in the case baseline and monitor data are noisy (SNR=20) and monitor
source locations as a whole have been moved to the right of baseline source locations by 20
m: a) and b) are Vp and Vs using the PRS, c) and d) are Vp and Vs using the CMS, e), g)
and i) are Vp using the TO CMS with decreasing updating target area, f), h) and j) are Vs
using the TO CMS with decreasing updating target area.

3.4 Discussions

The difference between acoustic and elastic FWI is that elastic FWI concerns more than

one parameter to be inverted, and there is inevitable crosstalk between Vp and Vs Matharu
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and Sacchi (2018). Compared with acoustic FWI, elastic FWI demands much more compu-

tational effort. Hence, the investigation of application of multi-source strategies in elastic

FWI is important, especially in a time-lapse survey, which requires carrying out more times

of elastic FWI. The issue of source-encoding strategy applied to FWI is the crosstalk intro-

duced by the individual shot gathers, which can be represented by the off-diagonal elements

in the crosstalk matrix shown in Fig. 3.5(b). The crosstalk resulting from multi-parameter

inversion and source-encoding strategy makes the multi-source elastic FWI more challenging.

When this come to the time-lapse elastic FWI, where a small area of time-lapse change exist

in the monitor survey, it requires much higher resolution and accuracy for us to identify the

time-lapse change location and recover the time-lapse change value.

Using a multi-source strategy will eventually introduce crosstalk noise in a baseline model

inversion or a monitor model inversion, and this crosstalk noise will eventually exist in the

time-lapse result. If the crosstalk noise is large enough, we can’t obtain an acceptable in-

version result even for a baseline model, not to mention the time-lapse result. While using

a multi-source strategy is still a good choice to accelerate FWI, the key is that we need to

balance the calculation efficiency and the imaging quality, that’s why we compose the indi-

vidual shot gathers into several super-shots instead of just one super-shot, because using too

few super-shots will introduce non-ignorable crosstalk noise into the inversion result. The

speed-up ratio for the amplitude-encoding EFWI is roughly the total number of individual

shots divided by the number of super-shots. The numerical experiment illustrates that the

output Vp and Vs of adopting this strategy are comparable to those of using the conventional

EFWI. Then the amplitude-encoding EFWI is employed for the time-lapse inversion to save

computational time. To stably invert the reservoir changes, the same amplitude-encoding

parameters should be set up for baseline and monitor EFWI both, otherwise, it could gen-

erate artifacts due to the non-repeated amplitude-encoding parameters. In our results, we

tried to show that balance and feasibility when the time-lapse result can be well recovered

with improved calculation efficiency.
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In this study, we use one target area to include three reservoir changes while conducting

the TO CMS. On one hand, we are trying to include enough background area, since the con-

trast between the time-lapse change and the background is important to detect the reservoir

change area in practice. On the other hand, precisely locating the reservoir change area is

difficult in practice, using a big target area is easy to operate. Of course, for some cases

with good prior location information on the reservoir change area, a tight target area can be

used. For instance, three independent target areas can be utilized in the modified Marmousi

model in this study. It may help to enhance the inverted results further. Actually, in the test

of the time-lapse Overthrust model in this study, a tighter target area is employed, which

also gives satisfactory results.

In the study, the SNR for time-lapse data with non-repeatable random noise is relatively

high, and the value should be much lower in real cases, which could damage signals corre-

sponding to reservoir changes. A more anti-noise EFWI algorithm, such as adding certain

penalty terms to the EFWI, could be better. As for how to handle non-repeatable correlated

noise, we believe it is still an open question. Moreover, using ambient noise to perform

passive time-lapse imaging of the subsurface is also proven in some seismic monitoring cases

(Mordret et al., 2014; De Ridder et al., 2014).

The non-repeatability scenarios tested in this study are not too serious compared with

real field data cases. For strong non-repeatable noise, large source/receiver position non-

repeatability, and complex sea-surface conditions all the time-lapse methods mentioned in

this study could fail. Moreover, all tests in this study are based on a good initial model, and

the impact of a bad initial model is not discussed, which could be serious. Hence, developing

more powerful time-lapse imaging methods is still significant.
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3.5 Conclusions

In this study, we have implemented the amplitude-encoding strategy for EFWI, which can

significantly improve computational efficiency. In time-lapse EFWI, the same amplitude-

encoding parameters should be set up for baseline and monitor model inversions, which

would avoid the artifacts resulting from the non-repeated amplitude-encoding parameters.

Furthermore, we’ve applied CMS to time-lapse EFWI and assessed its robustness and

effectiveness through numerical examples in different scenarios. Compared with the con-

ventional PRS, the CMS can effectively reduce the artifacts arising from the convergence

difference between the baseline and monitor inversions. Moreover, we have designed a TO

CMS by incorporating the prior location information of the reservoir changes into the CMS,

and the numerical tests demonstrate that the TO CMS can enhance the model convergence

and improve the accuracy of the inverted time-lapse changes. In the application of the TO

CMS, a more precise target area results in better time-lapse change resolution. Experiments

have also shown that strong noise and changes in seawater velocity have a serious impact on

time-lapse EFWI results, these issues require further research.

72



Chapter 4

Time-lapse FWI using field

accelerometer data at CaMI

Applying full-waveform inversion (FWI) to walkway vertical seismic profile (VSP) data pro-

vides a promising method for obtaining high-resolution models of subsurface physical prop-

erties. While time-lapse FWI has shown potential for monitoring reservoir changes caused

by CO2 storage with high resolution, its application in field data remains scarce due to its

vulnerability to non-repeatable noise. We conduct a field experiment using time-lapse VSP

data and FWI to monitor long-term changes in a thin, shallow reservoir due to CO2 injec-

tion. We present a workflow that uses time-lapse FWI for field walkway VSP data to identify

time-lapse changes related to less than 60 tons of CO2 injected into a 7 m-thick reservoir at a

depth of 300 m. A frequency range of 5 to 60 Hz is applied to achieve high-resolution results.

This experiment showcases the capability of FWI to perform high-resolution inversion and

detect time-lapse anomalies within a shallow reservoir caused by a small amount of CO2

injection. To the best of our knowledge, no similar field experiments have been reported.
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4.1 Introduction

Time-lapse seismic inversion is a powerful tool for monitoring reservoir changes introduced

by CO2 injection and sequestration. Vertical seismic profile (VSP) surveys offer higher verti-

cal resolution and an improved signal-to-noise ratio compared with surface seismic methods.

When combined with full-waveform inversion (FWI), a high-resolution seismic imaging tech-

nique capable of capturing subtle reservoir changes over time (Virieux and Operto, 2009),

VSP data further improves the detection of time-lapse anomalies. This makes the appli-

cation of FWI to VSP data particularly well-suited for reservoir monitoring. Liang et al.

(2013) detected the time-lapse changes in a heavy oil field introduced by steam injection.

Yang et al. (2014) reported challenges in detecting time-lapse differences related to CO2

injection, partly due to limitations in acquisition geometry. A notable result was obtained

by Egorov et al. (2017), who applied FWI to single-source VSP data and identified changes

in a saline aquifer at 1500 m depth, caused by the injection of 15,000 tons of CO2. Cai et al.

(2024) used FWI to monitor short-term CO2 injection at 300 m depth with rapidly repeated

single-source VSP data. Other studies have explored using FWI with various borehole data

to monitor water injection at shallow depths. Nakata et al. (2022) monitored the dynamic

transient fluid-flow effects introduced by water injection at a depth around 25 m, using

controlled-source crosswell data. Liu et al. (2023) monitored velocity changes at an approx-

imate depth of 11.6 m associated with in-situ fracture evolution at a shallow contamination

site, using continuous active-source borehole data. These studies underscore the potential

of this technique for high-resolution subsurface imaging. However, due to its sensitivity to

non-repeatable noise, the application of FWI to time-lapse VSP data remains relatively rare,

particularly for CO2 monitoring.

Unlike the cases mentioned above, which involve shallow water injection, large-scale deep

CO2 injections, single-source time-lapse surveys, or short-term monitoring, this study con-

ducts a field experiment using time-lapse walkaway VSP data and FWI to track long-term

changes in a thin (7 meters), shallow (at approximately 300 m depth) reservoir caused by
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less than 60 tons of CO2 injection.

4.2 Geologic background at the CaMI.FRS

The Field Research Station (FRS), located approximately 200 km southeast of Calgary and

developed by the Containment and Monitoring Institute (CaMI) under Canada Management

Canada (CMC) Research Institutes Inc., was established to drive research in secure CO2

storage technologies (Macquet et al., 2019). The injection target is the Basal Belly River

Sandstone (BBRS) formation, situated at a depth of 295–302 m. Overlying the BBRS is the

152 m-thick Foremost Formation, consisting of clayey sandstone interbedded with coal layers.

The VSP datasets were acquired in 2018 and 2022, serving as the baseline and monitor data

(Hall et al., 2019a; Innanen et al., 2022). The injection well is located 20 m northeast of the

observation well, where accelerometers were deployed at intervals of 1 to 2 meters, extending

from the surface to a depth of approximately 324 m. A Vp well log was recorded from the

injection well between depths of 61 and 337 m, as shown on the right side in Fig 4.1. The

distributions of geology formations and rock types at different depths in the subsurface of

CaMI.FRS also are plotted in Fig 4.1.
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Figure 4.1: On the left is the geology formation at different depths, different colors denote

different rock types. On the right side is the Vp velocity well log measured from the in-

jection well (gray line). The horizontal dashed lines indicate dashed gray lines indicate the

boundaries of geological formations. The blue stars on top of the surface denote the sources

deployed from the southwest to the observation well, in which the red rectangles denote the

receivers are deployed. The blue cloud denotes the CO2 injected into the BBRS layer.

The Vp (P-wave velocity) well log is available from the observation well from 61 to 336 m

The distributions of geology formations and rock types at different depths in the subsurface

of CaMI.FRS also are plotted in Fig 4.1. In 2018 and 2022, two 3D VSP DAS datasets were

acquired by CREWES. One baseline survey before the injection and one monitor after the

injection. In both 3D datasets (referred to as Snowflake data I and II), a total of 12 shot

lines are deployed at 15-degree intervals centered around the observation well. The INOVA

Univib system was employed during the 2018 survey, whereas the 2022 survey utilized the
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INOVA AHV-IV vibrator. Although both vibrators exhibit comparable source signatures,

the preferred sweep parameters differ slightly between the two surveys (Innanen et al., 2022).

The acquisition is presented by Ji et al. (2024). The observation well is located in the center

of the snowflake, and the injection well is located 20 m away from the observation well to the

northeast aligned in line 4. In the observation well, straight DAS fibers and accelerometers

are deployed at 1 to 2 m intervals from the surface to around 324 m in depth.

4.3 Full-waveform inversion

In time-domain acoustic FWI, we adopt the global-correlation norm (GCN) as the objec-

tive function (Choi and Alkhalifah, 2012). The GCN measures the coherence between the

predicted data and the observed data by

E(m) =
ns∑
s=1

ng∑
r=1

[−û(s, r,m) · d̂(s, r)] (4.1)

where m represents the subsurface model parameters, s and r denote the source and receiver

location vectors (Liu et al., 2023). The GCN, similar to phase-only inversion in the frequency

domain (Choi and Alkhalifah, 2012), is expected to make the inversion of onshore VSP

data more stable than methods based on the standard objective function. The normalized

predicted and observed data are expressed as:

û(s, r,m) =
u(s, r,m)

‖u(s, r,m)‖2
(4.2)

and

d̂(s, r) =
d(s, r)

‖d(s, r)‖2
, (4.3)

where u(s, r,m) and d(s, r) are the predicted and observed data, respectively. The gradient

of the objective function with respect to the model parameters is derived as (Choi and

Alkhalifah, 2012):
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∂E(m)

∂mi

=
ns∑
s=1

ng∑
r=1

[
∂u(s, r,m)

∂mi

· b(s, r,m)

]
, (4.4)

where mi ∈m, and b(s, r,m) is the back-propagated residual, defined as :

b(s, r,m) =
{û(s, r,m)[û(s, r,m) · d̂(s, r)]− d̂(s, r)}

‖u(s, r,m)‖2
. (4.5)

4.4 Results

In the walkway VSP acquisition, the offsets range from 10 m to 480 m. The surveys include

47 sources deployed from east to west, with a nearly uniform spatial interval of 10 m. To

focus on the direct waves and the reflected waves from the target layer, we apply a time

window of 300 ms and a bandpass filter within 5 to 60 Hz. We convert accelerometer data

to displacement by negating the sign to maintain consistency in polarity with displacement.

The grid cell size is set to 2 m and the receiver spatial interval is resampled accordingly

accounting for the thickness of the reservoir. In Figure 4.2, we present three VSP gathers

from the baseline data, the monitor data and their differences.

We conduct FWI of Vp using the vertical component of the field data. The inversion

workflow is implemented in an open-source software package IFOS2D (Bohlen et al., 2016a).

Following several trial experiments, the filtered Ricker wavelet was identified as a suitable

wavelet for the inversion. The inverted baseline and monitor models are presented in Figure

4.3c and d, illustrating effective model updates within a 300 m offset, with the observation

well located at 0 m. Compared with the initial model derived by Gaussian smoothing the

well log data shown in Figure 4.3a, we observe that FWI significantly improves the model’s

resolution by introducing fine details into the initial model. The inversion results resolve

the target layer at approximately 300 m depth. Furthermore, a 3 m-thick coal layer at

approximately 160 m depth is visible in the inverted model, emphasizing FWI’s ability to

capture thin and subtle subsurface features. In Figure 4.3b, we compare the smoothed well
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Figure 4.2: Three VSP gathers from the field baseline data (first row), the field monitor
data (second row) and their differences (third row). The offsets of the three gathers from left
to right are 290, 190, and 90 m, respectively. The differences between the strong upgoing
reflected waves in these gathers highlight the seismic response changes introduced by CO2

injection.

log, initial model, and inverted baseline and monitor models at an offset of 0 m. Both

inverted models align well, with only minor discrepancies. For quality control, in Figure 4.4,

we present the comparisons of the field baseline data, the simulated data before and after

FWI at different offsets.

Following the workflows of the parallel strategy (Lumley et al., 2003) and common-model

strategy (Hicks et al., 2016), we obtain the time-lapse change as shown in Figure 4.5a and

b. The results demonstrate that the time-lapse change is captured within the 7 m-thick

reservoir, and due to the illumination limitations of VSP acquisition geometry, the far edge

of the reservoir cannot be accurately identified using VSP data. Comparing two time-lapse

results, we observe that the CMS reduces 4D noise while maintaining the localized time-lapse

change.
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Figure 4.3: (a) The initial model constructed by Gaussian smoothing the well log. The red
and green triangles denote the sources and receivers. (b) Comparison of the smoothed well
log (gray line), initial model (bold black line), and inverted baseline and monitor models
(blue and red lines) using field data at an offset of 0 m. (c) The inverted baseline model
using the field baseline data. (d) The inverted monitor model using the field monitor data.
The target layer is resolved in the inversion results. A comparison of both inverted models
reveals that FWI reproduces identical subsurface structures using both field datasets.

Since the true subsurface conditions are unknown, direct QC of the reservoir change

results is not feasible. Instead, we use synthetic seismic data generated from a time-lapse

model that closely matches the real geological conditions for inversion. The entire inversion

process is repeated, and QC is performed by comparing the inversion results of the field

data with those of the synthetic data. A reliable field data inversion result should closely

align with the synthetic data inversion result. The true synthetic time-lapse model and the

baseline model (also obtained by Gaussian smoothing the well log data) are shown in Figure

4.5c and e. We use the same workflow and acquisition geometry as in the field data inversion.

In Figure 4.5d and f, we present the inverted time-lapse change using the parallel strategy

and the inverted baseline model. The synthetic test replicates the results observed in the

field data, showing a clear time-lapse change within the thin layer. This consistency between

synthetic and field results confirms the capability of FWI to effectively detect and identify

80



118 218 318 218 118

0

0.1

0.2

0.3

T
im

e
 (

s
)

a)

118 218 318 218 118

0

0.1

0.2

0.3

b)

118 218 318 218 118

0

0.1

0.2

0.3

c)

118 218 318 218 118

0

0.1

0.2

0.3

T
im

e
 (

s
)

d)

118 218 318 218 118

0

0.1

0.2

0.3

e)

118 218 318 218 118

0

0.1

0.2

0.3

f)

50 100 150 200 250 300 350

Depth (m)

0

0.1

0.2

0.3

g)
d

obs
d

ini
d

inv

50 100 150 200 250 300 350

Depth (m)

0

0.1

0.2

0.3

f)

50 100 150 200 250 300 350

Depth (m)

0

0.1

0.2

0.3

T
im

e
 (

s
)

e)

Figure 4.4: Comparison of field baseline data, simulated data from the initial model, and
simulated data from the inverted baseline model. The offsets of three gathers (left to right)
are 90, 190, and 290 m, respectively. In the first two rows, on the left side of each panel are
the field baseline data. On the right side of (a) to (c) are the simulated data using the initial
model. On the right side of (d) to (f) are the simulated data using the inverted baseline
model. The last row presents the extracted traces from all datasets, spaced at 60 m intervals.

time-lapse changes in the reservoir.

4.5 Discussions

Certain limitations affect the accuracy of the time-lapse inversion. The initial model is

based on the Vp well log between 61 m and 337 m, leaving the near-surface velocity profile

poorly constrained. Additionally, the absence of initial models for Vs and density further

complicates the inversion, as natural elastic effects present in the field data are not accounted

for. Observed differences in the data include not only the upgoing reflected waves from the

target layer but also components commonly referred to as 4D noise. Despite these challenges,
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the results underscore the effectiveness of FWI for monitoring CO2 injection. Future work

could address these limitations by incorporating more detailed near-surface information and

developing advanced methods to mitigate 4D noise. Such improvements would enhance the

accuracy and robustness of time-lapse FWI for reservoir monitoring.

4.6 Conclusions

The application of FWI to baseline and monitor VSP datasets at the FRS demonstrates

its feasibility for CO2 injection monitoring. The time-lapse results from both the field and

synthetic data show that this technology can produce high-resolution models of reservoir

properties and effectively detect time-lapse velocity changes. This study provides clear ev-

idence that a small-scale CO2 injection in a shallow 7 m-thick reservoir can be monitored

using FWI, offering valuable insights into CO2 storage dynamics. The results also highlight

the potential of time-lapse FWI for small-scale, real-time monitoring, especially when inte-

grated with permanently installed distributed acoustic sensing (DAS) systems as discussed

in the next chapter . Moreover, this small-scale injection project establishes a foundation

for extending the approach to larger-scale deployments in the future.

82



050100150200250300

50

100

150

200

250

300

D
e
p
th

 (
m

)

a)

-50

0

50

 V
p

 (
m

/s
)

050100150200250300

50

100

150

200

250

300

b)

-50

0

50

 V
p

 (
m

/s
)

050100150200250300

50

100

150

200

250

300

D
e
p
th

 (
m

)

c)

-50

0

50
 V

p
 (

m
/s

)

050100150200250300

50

100

150

200

250

300

d)

-50

0

50

 V
p

 (
m

/s
)

050100150200250300

Offset (m)

50

100

150

200

250

300

D
e
p
th

 (
m

)

e)

2300

2650

3000

V
p

 (
m

/s
)

050100150200250300

Offset (m)

50

100

150

200

250

300

f)

2300

2650

3000

V
p

 (
m

/s
)

Figure 4.5: (a) The inverted time-lapse change using field data by the parallel strategy. (b)
The inverted time-lapse change using field data by the common-model strategy. (c) The true
time-lapse model, and the thickness of time-lapse anomaly aligns to the target layer. (d)
The inverted time-lapse change using synthetic data. (e) The true baseline model. (f) The
inverted baseline model using synthetic data. The results demonstrate that the time-lapse
change is captured.
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Chapter 5

Time-lapse FWI using field DAS data

at CaMI

Time-lapse full-waveform inversion (FWI) using vertical seismic profile (VSP) data has shown

great promise for cost-effective and long-term monitoring of CO2 injection and sequestration.

Compared to conventional receivers, Distributed Acoustic Sensing (DAS) offers advantages

such as high spatial sampling, long-term deployment, and lower costs, making it particularly

well-suited for CO2 monitoring. While time-lapse FWI with VSP data has demonstrated

high-resolution imaging capabilities for tracking reservoir changes due to CO2 storage, its

application to field data remains limited, primarily due to its sensitivity to non-repeatable

noise. A recent study has explored FWI using combined single-source DAS and accelerometer

VSP data, yet its effectiveness for long-term monitoring remains unverified. To address this

gap, we conduct a field experiment using time-lapse walkaway DAS VSP data and FWI to

monitor long-term subsurface changes induced by CO2 injection. We present a workflow

that applies FWI to detect time-lapse anomalies associated with the injection of less than

60 tons of CO2 into a 7 m-thick shallow reservoir. Our results demonstrate the capability

of DAS-based FWI to achieve high-resolution inversion and accurately track small-scale

CO2-induced changes. This study highlights the feasibility of leveraging DAS for long-term,
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high-resolution CO2 monitoring in real field conditions.

5.1 Introduction

In the previous chapters, I have introduced field cases of CO2 sequestration and monitoring,

as well as the CO2 monitoring project and geologic background at the CaMI.FRS. Previous

studies have demonstrated the potential of full-waveform inversion (FWI) for CO2 monitoring

using both conventional and fiber-optic measurements. For example, Eaid et al. (2023) and

Zhang et al. (2025) investigated FWI using combined accelerometer and DAS VSP data,

providing early evidence that integrating the two sensing technologies can enhance subsurface

imaging. Building on this direction, Cai et al. (2024) implemented time-lapse FWI with real-

time, single-source DAS and accelerometer VSP data at CaMI, demonstrating that FWI can

capture short-term injection-related changes using field DAS measurements. Furthermore,

Ji et al. (2024) extended the investigation to a fully 3D setting, exploring the feasibility of

applying 3D time-lapse FWI to accelerometer VSP data and highlighting the potential for

high-resolution monitoring in more complex geometries. In Chapter 4, I have conducted

time-lapse FWI for field walkway VSP accelerometer data to identify the time-lapse change

within the target layer. In this chapter, I conduct a field experiment using walkaway DAS

VSP data and FWI to track long-term subsurface changes. Specifically, we monitor a thin

(7-meter), shallow (approximately 300 m deep) reservoir following the injection of less than

60 tons of CO2. This work provides new insights into the feasibility of using DAS-based

FWI for high-resolution, long-term CO2 monitoring. The theory section is consistent with

the last chapter and omitted here. Hence, I first review the DAS datasets, describe data

matching process, time-lapse strategy and results. Then, I verify the time-lapse result using

a synthetic test.
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5.1.1 Datasets review

In our 2D FWI for CO2 monitoring, among all the 13 shot lines in the Snowflake dataset,

we chose the shot gathers from line 1 because this line has well-repeated source locations.

As depicted in Fig 4.1, the blue stars denote the sources deployed at the surface from the

southwest to the observation well, in which the red rectangles denote the deployed receivers.

In this 2D walkway VSP DAS acquisition, the offset varies from 470 m to 20 m, there are

a total of 29 shot gathers, the minimum distance between two source locations is 10 m, and

the maximum distance between two source locations is 90 m. The depth of DAS channels is

from the surface to 342 m deep. In the datasets, because most of the signals occur in the first

500 ms, we windowed the data within the first 300 ms which contains direct and reflected

waves from the BBRS layer. For both datasets, the preprocessing procedure is conducted

following the workflow in Table 5.1 (Cai et al., 2024).

Table 5.1: DAS data processing workflow
DAS data processing
Geometry assignment
Conversion of strain-rate data to strain data
Curvelet-transform-based denoising
Bandpass Butterworth filtering (5–100 Hz)
Median filtering to suppress spike and artifact noise
Time-domain resampling to dt = 0.3 ms
Spatial-domain resampling to dr = 2 m

5.1.2 Data matching

To achieve a successful imaging of time-lapse change in the reservoir where the CO2 was

injected, the datasets from baseline and monitor surveyed have to be well-matched. To cope

with the data-matching issue in the DAS VSP datasets, we propose an appoach following the

steps below. At first, we also balance the energy of each shot-gather pairs in both datasets,

which assures the amplitude of both datasets is at the same level. Second, we separate the

upgoing and downgoing waves in the VSP shot gathers using f-k filters. In this way, we can
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obtain the upgoing reflected waves from the BBRS layer, which are expected to result in the

data difference introduced by the CO2 injection. After the wavefield separation, we calculate

a filter based on a spectral balancing filter or matching filter using the downgoing waves in

each shot-gather pair. A spectral balancing filter or matching filer is designed to match the

amplitude, time delay, and spectra of two traces, making them almost identical. Since in a

time-lapse survey, the physical parameters above the time-lapse change area are expected to

remain the same, hence the downgoing waves received by the receivers above the injection

reservoir should be almost identical. Adopting a spectral balancing filter or matching filter

will make the downgoing waves well-matched and eliminate the 4D noise introduced by

velocity change at shallow depths and data acquisition. Then we apply the calculated filters

to the upgoing waves in the baseline datasets followed by a time-shift correction. Then we

sum up the matched downgoing and upgoing waves as the matched baseline datasets.

In practice, we only match the datasets with receivers located below 120 m. Since at

shallow depth, there are strong shearing effects not removed by preprocessing. After adopting

this new workflow, we found that some shot-gather pairs still could not be matched due to

some limitations of the field datasets. First of all, the quality of the baseline datasets is

quite poor compared with the monitor datasets, we can’t even observe the reflection from

the BBRS layer in some shot gathers. Second, the acquired downgoing and/or upgoing

waves in a shot-gather pair are not comparable. We tried with all the shot-gather pairs

with 29 well-repeated source locations and matched only 10 of them. In Fig 5.1, we present

one matched data example at an offset of 60 m. In the first row of Fig 5.1, we present the

separated upgoing waves in monitor data, baseline data, and their difference at an offset of

60 m. In the second row of Fig 5.1, we respectively present the matched baseline data and

the data difference after the data-matching workflow. From this comparison, we can notice

the data difference introduced by the BBRS reflection is well enhanced, and the 4D noise

that existed at the bottom right is well mitigated.
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Figure 5.1: Separated upgoing waves in (a) monitor data, (b) baseline data, and (d) matched

baseline data at an offset of 60 m. (d) is the data difference before the data-matching

workflow, and (e) is the data difference after the data-matching workflow.

5.1.3 Time-lapse inversion strategy

In the previous section, we described the data matching workflow and presented the matched

data examples. However, the matched baseline dataset consists of only 10 gathers with

90 receivers, which is insufficient for directly applying FWI to obtain a baseline model

comparable to the monitor model. To address this limitation, I use the target-oriented

common-model strategy (TO CMS) (Liu et al., 2025) in chapter 3 for this scenario. Given

the higher quality of the monitor dataset, we first apply FWI to the monitor dataset to

obtain an inverted monitor model, which serves as the initial model for the second stage

of CMS. In the second stage, we perform FWI on the matched baseline dataset, using the

newly obtained initial model, despite its limited acquisition geometry. During the inversion,

we precondition the gradient and prevent the model at shallow depths from updating (Fu

et al., 2024). To ensure localized convergence, we then reapply FWI to the monitor dataset,

using the same acquisition geometry as the matched baseline dataset. Finally, we obtain

the time-lapse result by subtracting the inverted baseline model from the inverted monitor

model after the second stage.
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5.1.4 Results

As in chapter 4, the VSP DAS data inversion workflow follows the traditional FWI tech-

nology (Tarantola, 1984) implemented in an open-source software package IFOS2D (Bohlen

et al., 2016a; Köhn, 2011). Given the thin 7-meter Basal Belly River Sandstone (BBRS)

reservoir where CO2 was injected, achieving high-resolution inversion is essential for reser-

voir identification. To meet this requirement, we use data with frequency components up to

60 Hz and set the grid cell size to 2 m. Both datasets are resampled with a receiver interval

of 2 m, spanning depths from 2 m to 342 m, and a temporal interval of 0.3 ms. The free

surface condition (Levander, 1988) is implemented on top of the model. At the sides and the

bottom of the model, there are 20 layers of Perfectly Matched Layers (PMLs) (Komatitsch

and Martin, 2007) implemented as the absorbing boundary condition in the finite difference

modeling. For inversion, we employ a filtered Klauder wavelet, which is shown in Fig 5.2.

The initial model is same as in chapter 4 shown in Fig 4.3a, which is constructed by applying

Gaussian smoothing to the well log data from 61 to 337 m, and then extended into a 2D

model.
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Figure 5.2: The Klauder wavelet with minimum phase filtered with the same bandpass

applied to baseline and monitor datasets. This wavelet is used for baseline and monitor

model inversion using Snowflake datasets.

In Fig 5.3, we present the inverted monitor model, in which the observation well is located
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at 0 m. The maximum offset of the source location in our inversion is 470 m. We display part

of the model with effective model updates within a 300 m offset. Comparing this inverted

model with the initial Vp model shown in Fig 4.3a, we can see that FWI introduces many

details into the smooth initial model. The target layer can be identified in the inversion

result at a depth of around 300 m, where the CO2 was injected.

Monitor

050100150200250300

Offset (m)

50

100

150

200

250

300

D
e

p
th

 (
m

)

2000

2200

2400

2600

2800

3000

Figure 5.3: Inverted baseline Vp model using the baseline dataset from the northwest to the

observation well in line 4 with an offset ranging from 20 m to 470 m. Maximum offset of 300

m of inverted Vp model with effective model updates is depicted.

For quality control, in Fig 5.4, we present the comparison of field monitor data, simulated

data using the initial model, and simulated data using the inverted model shown in Fig 5.3

at offsets 100, 200, and 350 m. In Fig 5.5, we respectively extract 4 traces with a spatial

interval of 60 m from observed data, initial data, and inverted data in the shot gathers with

offsets being 100, 200, and 350 m for comparison.
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Figure 5.4: Comparison of field monitor data with simulated data from the initial and

inverted monitor models. The left side of each panel shows the field data. In the left

column, the right side of each panel presents simulated data from the initial model, while

in the right column, the right side of each panel displays simulated data from the inverted

model.
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Figure 5.5: Comparison of traces extracted with a spatial interval of 60 m from observed

data, initial data, and inverted data in the shot gathers with offsets being 100, 200, and 350

m. The bold gray lines denote the traces from observed data, the black dashed lines denote

the simulated data using the initial model, and the solid black lines denote the simulated

data using the final inverted model.

After the monitor model inversion, we perform the FWI of the monitor model and baseline

model using the first inverted monitor model as the new initial model with matched datasets.

The results are presented in Fig 5.6. From the comparison, we can see that applying FWI

to two matched datasets provides identical structures.
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Figure 5.6: (a) The inverted baseline model using matched baseline dataset using the first

inverted monitor model as the new initial model. (b) The inverted monitor model using

matched monitor dataset using the first inverted monitor model as the new initial model.

To further evaluate the inversion results, we compare the smoothed well log from the

observation well, the initial model, and the vertical profiles from the inverted baseline and

monitor models at 0 m offset, as shown in Fig 5.7. We can see that two inverted models

show good agreement.
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Figure 5.7: Comparison of the smoothed Vp Log from the injection well 20 m away to the

northeast of the observation well at offset 0 m, the 1D initial Vp model, and the vertical

profiles of the observation well in the inverted baseline and monitor Vp models at 0 m offset.

The gray line denotes the smoothed Vp log, the bold black line denotes the 1D initial Vp

model, and the blue and red lines denote the vertical profiles of the observation well in the

inverted baseline and monitor Vp models at 0 m offset, respectively.

Finally, we obtain the time-lapse change introduced by CO2 injection by subtracting the

two inverted models, as shown in Fig 5.9a. From this figure, we can see the time-lapse change

is successfully captured within the thin target layer at a shallow depth. However, due to the

limited source illumination from only 10 matched datasets, the resolution of the time-lapse

result may also be constrained. Additionally, we also notice the time-lapse noise above the

reservoir, resulting from the 4D noise that’s not fully eliminated in the matched datasets.

For verification, we conduct a synthetic test. The true time-lapse and monitor models are

shown in Fig 5.9c and 5.9e. while the synthetic time-lapse result is presented in Fig 5.9b. A

comparison between the field and synthetic results reveals similar time-lapse patterns using

the same workflow, confirming the reliability of our approach.
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Figure 5.8: (a) The time-lapse result using the matched field data limited acquisition geom-

etry and the target-oriented strategy. (b) The time-lapse result using synthetic data and the

same workflow. (c) The true time-lapse model for synthetic test. (d) The inverted monitor

model using synthetic data. (e) The true monitor model for synthetic test, which is also

obtained by Gaussian smoothing the well log.

At last, we compare the time-lapse results using both accelerometer and DAS VSP

datasets. We can see that, the application of FWI to both datasets provides similar time-

lapse images, and with much larger offsets, the plume is better imaged due to better illumi-

nation. howver, we can also notice that the value of time-lapse anomaly is different.
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Figure 5.9: Time-lapse inversion results from (a) matched-field DAS VSP data acquired

with limited acquisition geometry and the target-oriented common-model strategy, (b) field

accelerometer VSP data and the parallel strategy, and (c) field accelerometer data and the

common-model strategy. Panel (a) uses 10 shots and 70 receivers with offsets from 60 to 220

m, whereas panels (b) and (c) use 47 shots and 159 receivers with offsets from 10 to 480 m.

5.2 Discussions

In this work, we focus only on detecting time-lapse changes within the target reservoir.

However, time-lapse variations may also occur in the overburden, which could potentially

indicate CO2 or other fluid leakage — a critical concern for storage integrity and long-term

monitoring.

Due to the limited quality and repeatability of the field DAS data, the target-oriented

common-model strategy (TO-CMS) proposed in Chapter 3 is adopted as a practical solution.

Although this approach effectively helps identify local velocity changes within the reservoir,

it may reduce our sensitivity to subtle anomalies associated with CO2 leakage in the overbur-
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den. Therefore, applying the target-oriented strategy represents a practical but necessary

compromise when conducting time-lapse FWI.

At the current stage of research on time-lapse FWI strategies, the primary focus remains

on detecting velocity changes within the reservoir. The numerical experiments presented

in Chapter 3 demonstrate that even under controlled conditions, identifying subtle time-

lapse anomalies is still highly challenging. At present, we are not yet able to reliably detect

such small changes, particularly in field data where noise, acquisition differences, and non-

repeatability further complicate the inversion — let alone the even subtler signals that might

be introduced by CO2 leakage. Future research should aim to develop more advanced in-

version approaches that enhance both sensitivity and robustness, enabling the distinction

between genuine reservoir changes and overburden anomalies. Such developments will be es-

sential for improving the reliability of time-lapse FWI in assessing and ensuring the long-term

safety of CO2 sequestration operations.

This work also suffers from the same limitations discussed in Chapter 4, including the

absence of P-wave velocity well logs at shallow depths and the lack of other elastic parameters.

In addition, the DAS VSP data exhibit relatively poor quality. To mitigate the influence

of strong near-surface noise, the data recorded at shallow depths were excluded from the

data-matching process.

These limitations primarily affect the shallow section of the model but have only a minor

influence on the time-lapse change interpretation, which remains the main focus of this study.

5.3 Conclusions

This study demonstrates the feasibility of applying time-lapse full-waveform inversion (FWI)

to field distributed acoustic sensing (DAS) vertical seismic profile (VSP) data for CO2 se-

questration monitoring. The results highlight the potential of integrating DAS with FWI for

high-resolution, small-scale CO2 monitoring in a shallow, thin reservoir. Synthetic experi-
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ments further validate the applicability of time-lapse FWI to DAS VSP data, confirming its

capability to recover reservoir-scale velocity changes associated with CO2 injection.

The time-lapse inversion results obtained from both DAS and accelerometer VSP datasets

exhibit consistent patterns, reinforcing the reliability and robustness of the proposed work-

flow. Nevertheless, due to the limited quality and repeatability of the field DAS data,

meaningful inversion updates are primarily confined to the reservoir zone. As a practical mit-

igation, a target-oriented inversion strategy was adopted to concentrate the model updates

within this region, ensuring inversion stability while reducing the impact of non-repeatable

noise and near-surface inconsistencies.

Overall, this work represents a key step toward establishing a cost-effective, field-deployable

time-lapse monitoring framework for CO2 sequestration using DAS VSP data. The demon-

strated approach lays a practical foundation for extending time-lapse FWI to larger-scale and

longer-term carbon storage projects, where reliable and continuous subsurface monitoring is

essential for ensuring storage security.
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Chapter 6

Conclusions

Time-lapse full-waveform inversion (FWI) is a powerful tool for CO2 monitoring, offering

high-resolution imaging of subsurface physical properties to detect reservoir changes during

injection, production, and long-term storage. By comparing inversion results from seismic

datasets acquired at different times, time-lapse FWI enables the identification and charac-

terization of dynamic reservoir behavior associated with CO2 injection and sequestration.

This thesis develops a novel time-lapse FWI strategy to address the limitations of conven-

tional approaches, which often rely on a parallel inversion strategy and suffer from significant

artifacts and inconsistent convergence between baseline and monitor models due to survey

non-repeatability. Specifically, Chapter 3 introduces a target-oriented common-model strat-

egy (TO CMS) that incorporates prior knowledge about the location of reservoir changes into

the common-model framework. When combined with the amplitude-encoding technique pre-

sented in Chapter 2 to improve computational efficiency, numerical experiments demonstrate

that TO CMS improves convergence within the target region and enhances the accuracy of

inverted time-lapse changes. The results also suggest that more precise delineation of the tar-

get area leads to improved imaging. Nonetheless, the experiments indicate that strong noise

and variations in seawater velocity can significantly impair inversion performance—issues

that warrant further investigation.
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Chapter 4 explores the feasibility of CO2 monitoring using time-lapse FWI and vertical

seismic profile (VSP) data acquired at the Field Research Station (FRS). In this field exper-

iment, accelerometer-based VSP data are used to construct high-resolution velocity models

that successfully capture subtle time-lapse changes in reservoir properties. The results clearly

demonstrate that even small-scale CO2 injections into a shallow, 7-meter-thick reservoir can

be effectively monitored using time-lapse FWI. These findings also underscore the potential

of time-lapse FWI for real-time, high-resolution subsurface monitoring, particularly when

integrated with distributed acoustic sensing (DAS) technology.

Building on this, Chapter 5 presents a second field experiment using DAS-based VSP

data. To mitigate the impact of strong near-surface noise, shallow-depth recordings were

excluded from the data matching process. Despite the limited acquisition geometry, the use

of the TO CMS strategy—employing the monitor model from the first stage as the initial

model—enabled successful application of time-lapse FWI to both the baseline and monitor

DAS datasets at the FRS. The resulting time-lapse velocity changes exhibit strong agreement

with synthetic benchmarks, validating the robustness and reliability of the proposed work-

flow. This study confirms the feasibility of integrating DAS data with FWI for small-scale

CO2 monitoring in shallow, thin reservoirs.

Together, these two field experiments demonstrate the practical viability of time-lapse

FWI for monitoring small-scale CO2 injection projects and lay a foundation for its extension

to larger-scale and long-term deployments. The findings of this thesis highlight the effective-

ness of advanced time-lapse FWI strategies, the feasibility of using VSP data for monitoring

small-scale CO2 injection and sequestration, as well as the potential of integrating DAS data

into time-lapse FWI workflows for high-resolution, real-time subsurface monitoring under

challenging field conditions.
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