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Abstract

Time-lapse full-waveform inversion (FWI) is a powerful technique for seismic analysis, en-
abling high-resolution imaging of subsurface physical properties to monitor reservoir changes
during injection, production, and long-term CO, storage. However, accurate time-lapse anal-
ysis remains challenging due to the requirement for highly repeatable seismic surveys, includ-
ing consistent acquisition geometry, stable ambient noise conditions, and other environmental
factors. To address these challenges, this thesis develops a target-oriented common-model
strategy (TO CMS) to mitigate non-repeatability issues that conventional parallel strate-
gies (PRS) fail to overcome. TO CMS combines the strengths of target-oriented FWI (TO
FWI)—which improves inversion convergence within the reservoir region—and the common-
model strategy (CMS)—which reduces time-lapse artifacts by guiding both baseline and
monitor inversions along similar convergence paths. Additionally, a multi-source amplitude-
encoding method is employed to significantly reduce computational cost without compro-
mising inversion accuracy. In the context of field-scale CO, monitoring, vertical seismic
profile (VSP) surveys provide higher vertical resolution and improved signal-to-noise ratio
(SNR) compared to surface seismic methods. When integrated with FWI, VSP data further
enhances the detectability of subtle time-lapse anomalies. Despite these advantages, the
application of FWI to field VSP data has remained limited due to its sensitivity to non-
repeatable acquisition and noise. This thesis presents a field experiment utilizing time-lapse
walkaway VSP data and FWI to monitor long-term subsurface changes associated with a
small-scale CO, injection. The workflow demonstrates that FWI can successfully detect
reservoir changes resulting from the injection of less than 60 tons of CO, into a shallow,
7-meter-thick reservoir at a depth of approximately 300 meters. The results confirm that
even in low-injection-volume scenarios, time-lapse FWI can deliver high-resolution imaging
and effectively capture small-scale velocity changes. Building on this, the study further
investigates the use of Distributed Acoustic Sensing (DAS) for time-lapse FWI. DAS of-

fers key advantages such as high spatial sampling density, long-term deployment potential,
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and reduced operational costs, making it a promising alternative to conventional receivers.
A second field experiment is conducted at the same site using time-lapse DAS-based VSP
data. Despite limited acquisition geometry and the presence of strong near-surface noise,
the application of TO CMS enables successful detection of COs-induced changes. The time-
lapse results show strong agreement with the synthetic test, confirming the robustness of the

proposed workflow.
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Preface

This thesis, adopting a manuscript-style format, amalgamates the essence of extensive re-
search efforts encapsulated in a series of papers. These papers, which form the core chapters
of this thesis, reflect a deep dive into the innovative development of time-lapse full-waveform
inversion strategies, and the application of time-lapse full-waveform inversion to field VSP
data, especially using Distributed Acoustic Sensing (DAS) technology to achieve low-cost,
long-term and small scale CO2 injection and sequestration monitoring.

Chapter 3 has been previously published in the IEEE Transactions ob Geoscience and Re-
mote Sensing, titled ”Multi-source time-lapse elastic full-waveform inversion using a target-
oriented common-model strategy” authored by Liu H, Fu X, Trad D, Innanen K and Cao
D, 2025. This chapter develops a advanced and robust time-lapse full-waveform inversion
strategy.

Chapter 4 has been previously published in Geophysics, entitled ” High-resolution moni-
toring of CO2 sequestration using walkaway VSP and full-waveform inversion” authored by
Liu H, Fu X, Cai X, Trad D, Innanen K, 2025. This chapter is a field study on time-lapse
full-waveform inversion using field VSP data at CaMI, and it explores the feasibility of ap-
plication of time-lapse full-waveform inverison in a 7-m thin reservior at the shallow depth
with a small amount of CO2 injection.

Chapter 5 has been previously published at IMAGE conference in 2025, entitled ” Time-
lapse full-waveform inversion of distributed acoustic sensing data”. This work is authored

by Liu H, Fu X, Cai X, Trad D, Innanen K, which first time explores the feasibility of full-
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waveform inversion using field DAS data, highlighting the feasbility of DAS technology in the

field application for low-cost, long-term of small amount of CO2 injection and sequestration.
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Chapter 1

Introduction

1.1 CO; monitoring and time-lapse full-waveform in-
version

The continuous increase in anthropogenic carbon dioxide (CO3) emissions remains the dom-
inant driver of global climate change, necessitating mitigation strategies that complement
renewable energy deployment and improvements in energy efficiency. Carbon Capture, Uti-
lization, and Storage (CCUS) represents a technically mature and large-scale approach for
reducing emissions from hard-to-abate industrial sectors. It involves capturing CO, from
major point sources, utilizing it in chemical or energy processes, and permanently storing
it in deep geological formations such as saline aquifers and depleted hydrocarbon reservoirs
(Metz et al., 2005; Bachu, 2008; Benson and Cole, 2008; Masson-Delmotte et al., 2021). The
security of geological storage is ensured by a combination of structural, residual, solubility,
and mineral trapping mechanisms, which have been validated through field demonstrations
including the Sleipner, Weyburn, and Quest projects (Arts et al., 2004a; Wright et al., 2009;
Eiken et al., 2011). CCUS is inherently interdisciplinary, integrating chemical and process
engineering for capture, materials and reservoir engineering for injection and containment,

and geoscience, geomechanics, and environmental monitoring for assessing and maintaining



storage integrity (Bachu, 2000; Lumley, 2010; Daley et al., 2016; Ringrose and Meckel, 2019).

COg sequestration, as the core component of CCUS, has advanced rapidly over the past
decades with the shared goal of mitigating greenhouse gas emissions and ensuring storage se-
curity. The development of monitoring technologies and methodologies has become integral
to verifying the performance and safety of geological storage. Early field-scale demonstra-
tions, such as the Sleipner project in Norway and the Weyburn project in Canada, established
a foundation for understanding CO5 behavior in subsurface formations and validating predic-
tive models (Benson and Cole, 2008; Vinje et al., 2025). Building on these pioneering efforts,
modern monitoring approaches increasingly rely on seismic and geophysical techniques to
detect and track plume migration, pressure evolution, and potential leakage pathways within
storage reservoirs.

The deployment of advanced monitoring techniques such as seismic monitoring has en-
hanced the ability to track the migration of CO5 plumes.Time-lapse seismic analysis is widely
used for monitoring subsurface property changes, for instance, the reservoir changes caused
by oil/gas production or CO, injection (Greaves and Fulp, 1987; Ross and Altan, 1997;
Wang et al., 1998; Barkved et al., 2003; Arts et al., 2004b; Barkved et al., 2005; Chadwick
et al., 2009; Kazemeini et al., 2010; Pevzner et al., 2017). To enable high-resolution imaging
for monitoring subsurface changes, time-lapse seismic analysis often relies on full-waveform
inversion (FWI), a powerful technique that offers a detailed reconstruction of subsurface
properties. FWI is a high-resolution seismic imaging technique that leverages the full in-
formation contained within seismic traces, including both amplitude and phase, to extract
physical parameters of the subsurface medium probed by seismic waves (Virieux and Operto,
2009; Virieux et al., 2017; Zhang and Curtis, 2020; Operto et al., 2023), which is proposed
by Tarantola (1984) in time domain to invert the subsurface P-wave velocity model by min-
imizing the [2-norm of the difference between predicted and observed data (Symes, 2008).

When FWI is used for time-lapse analysis, the most commonly used strategy is known as

the parallel strategy (PRS) (Lumley et al., 2003; Plessix et al., 2010), in which the baseline



and monitor models are independently inverted with the same initial model, and the inverted
time-lapse change is the difference between two inverted models. However, this conventional
strategy suffers from severe artifacts that mainly result from the non-repeatability issue
that commonly exist in time-lapse surveys, such as non-repeatable source/receiver locations,
noises, surface velocities, etc. Hence, many researcher have proposed different strategies to
deal with this issue. Routh et al. (2012) propose to use the inverted baseline model as the
initial model for the monitor model inversion to save computational time, which is known
as the sequential strategy (SQS). Watanabe et al. (2004) and Zheng et al. (2011) introduce
the double-difference strategy (DDS), but it’s still very sensitive to source/receiver locations
(Zhou and Lumley, 2021b; Fu and Innanen, 2023). Zhang and Huang (2013) take the DDS
a step further by incorporating a target-oriented scheme (updating the local area, including
reservoir changes in the model, instead of the entire model) to enhance the effectiveness
of time-lapse EFWI. For the reason of focusing on reservoir change, the DDS has become
a popular strategy in field data application and numerical tests (Yang et al., 2015a, 2016;
Malcolm and Willemsen, 2016). Hicks et al. (2016) propose the common-model strategy
(CMS), which consists of two stages of inversions, and each stage follows the same process
as the PRS. In the second stage of the CMS, the inverted baseline and monitor models from
the first stage are averaged as the new initial model. This strategy has been adopted in
field data in a North Sea field (Hicks et al., 2016) and a post-salt field in the Campos Basin
Bortoni et al. (2021). This strategy shows improved performance in mitigating artifacts and
is less sensitive in the case of non-repeatability of source locations.

In chapter 3, we develop a target-oriented common-model strategy (TO CMS) for time-
lapse FWI, incorporating a multi-source method (chapter 2). All the mentioned implemen-
tations in time-lapse data are based on acoustic FWI. Hereon, we extend this strategy to
time-lapse elastic FWI. This approach leverages the advantages of TO FWI, which enhances
model convergence in the target area to improve time-lapse results, and common-model time-

lapse FWI, which mitigates time-lapse errors by using an optimized starting model to guide



baseline and monitor inversions toward similar convergence. Both strategies help suppress
artifacts in the inverted time-lapse results, while the multi-source method—an amplitude-
encoding strategy—effectively reduces computational overhead by allowing multiple seismic
shots to be simulated simultaneously in the FWI.

In field CCUS projects, time-lapse seismic inversion is a powerful tool for monitoring
reservoir changes introduced by CO, injection and sequestration. Vertical seismic profile
(VSP) surveys offer higher vertical resolution and an improved signal-to-noise ratio com-
pared with surface seismic methods. When combined with full-waveform inversion (FWI),
a high-resolution seismic imaging technique capable of capturing subtle reservoir changes
over time (Virieux and Operto, 2009), VSP data further improves the detection of time-
lapse anomalies. This makes the application of FWI to VSP data particularly well-suited for
reservoir monitoring. Liang et al. (2013) detected the time-lapse changes in a heavy oil field
introduced by steam injection. Yang et al. (2014) reported challenges in detecting time-lapse
differences related to COs injection, partly due to limitations in acquisition geometry. A no-
table result was obtained by Egorov et al. (2017), who applied FWTI to single-source VSP
data and identified changes in a saline aquifer at 1500 m depth, caused by the injection of
15,000 tons of CO,. Cai et al. (2024) used FWI to monitor short-term CO, injection at 300
m depth with rapidly repeated single-source VSP data. Other studies have explored using
FWI with various borehole data to monitor water injection at shallow depths. Nakata et al.
(2022) monitored the dynamic transient fluid-flow effects introduced by water injection at
a depth around 25 m, using controlled-source crosswell data. Liu et al. (2023) monitored
velocity changes at an approximate depth of 11.6 m associated with in-situ fracture evolution
at a shallow contamination site, using continuous active-source borehole data. These studies
underscore the potential of this technique for high-resolution subsurface imaging. However,
due to its sensitivity to non-repeatable noise, the application of FWI to time-lapse VSP data
remains relatively rare, particularly for CO, monitoring.

Unlike the cases mentioned above, which involve shallow water injection, large-scale deep



COs injections, single-source time-lapse surveys, or short-term monitoring, Chapter 4 con-
ducts a field experiment using time-lapse walkaway VSP data and FWI to track long-term
changes in a thin (7 meters), shallow (at approximately 300 m depth) reservoir caused by less
than 60 tons of COq injection. At the Field Research Station (FRS), located approximately
200 km southeast of Calgary and developed by the Containment and Monitoring Institute
(CaMI) under Canada Management Canada (CMC) Research Institutes Inc., a small scale
CO; sequestration project is undergoing. Less than 60 tons of COy was injected within a
7 m-thick target formation. The VSP datasets were acquired with accelerometers and Dis-
tributed Acoustic Sensing (DAS) in 2018 and 2022, serving as the baseline and monitor data
(Hall et al., 2019a; Innanen et al., 2022).

Distributed Acoustic Sensing (DAS) is a revolutionary technology that transforms passive
optical fibers into an array of virtual microphones, enabling continuous monitoring and real-
time analysis of acoustic interactions along the fiber’s length. This technology is predicated
on the backscatter of light within the fiber induced by acoustic vibrations surrounding it.
Over the past decade, DAS has playing a critical role across a spectrum of geological, environ-
mental, and urban studies. Initially demonstrated in diverse settings such as CCUS sites and
infrastructure test facilities (Daley et al., 2013; Ancelle et al., 2014; Macquet et al., 2022),
DAS has since proven its efficacy in harsh environments, including permafrost, glaciated
terrains, and geothermal areas (Ajo-Franklin et al., 2016; Walter et al., 2020; Jousset et al.,
2017).

In borehole seismic exploration, DAS is a great new tool for subsurface investigation
due to its resilience under extreme conditions, cost-efficiency, and enhanced data acquisition
capabilities. DAS technology, especially in the context of DAS-VSP, significantly reduces
operational costs. Its application in 3D DAS-VSP surveys has proven particularly effective in
delineating complex geological structures with higher spatial resolution and wider frequency
ranges. Furthermore, alternative cable designs, such as helical and straight fiber, have been

explored to improve DAS performance (Hall et al., 2018, 2019b). Time-lapse 3D DAS-VSP,



or 4D surveys, have shown immense promise in monitoring subsurface property variations,
crucial for operations like CO4 sequestration, hydraulic fracturing, and fluid injections.

Distributed Acoustic Sensing (DAS) holds a promising potential for advancing the effi-
cacy and safety of COy sequestration and monitoring processes, a critical facet of carbon
capture and storage endeavors. The technology facilitates real-time monitoring of the sub-
surface, enabling the detection and mapping of COy plume migration within the storage
reservoirs (Daley et al., 2013). DAS’s high spatial and temporal resolution makes it a valu-
able tool for tracking the injection of CO,, and its dispersion in subsurface formations, thus
providing a robust framework for validating reservoir models and ensuring the integrity of
the sequestration sites (Dou et al., 2017). Moreover, the technology aids in the identification
and assessment of induced seismicity or any other geomechanical alterations which might
arise from the injection processes, offering an early-warning system for potential leaks or
caprock integrity breaches. The passive and continuous monitoring capacity of DAS allows
for a comprehensive surveillance over the sequestration lifecycle, assuring compliance with
regulatory frameworks and public safety mandates. By delivering a deeper understanding of
the subsurface dynamics associated with COy sequestration, DAS significantly contributes
to optimizing the operational procedures and bolstering the public and regulatory confidence
in CCUS technologies as viable solutions for reducing greenhouse gas emissions.

In Chapter 5, I conduct a field experiment using time-lapse walkaway DAS VSP data and
FWI to monitor long-term subsurface changes induced by CO, injection. Chapter 5 present
a workflow that applies FWI to detect time-lapse anomalies associated with the injection
of less than 60 tons of CO49 into a 7 m-thick shallow reservoir. The results demonstrate
the capability of DAS-based FWI to achieve high-resolution inversion and accurately track
small-scale COs-induced changes. This study highlights the feasibility of leveraging DAS for

long-term, high-resolution COy monitoring in real field conditions.



1.2 Contributions

The contributions of this thesis lay in the following points:

1 In Chapter 3, a target-oriented common-model strategy (TO CMS) for time-lapse FWI,
incorporating a multi-source method is developed. This approach leverages the advantages of
TO FWI, which enhances model convergence in the target area to improve time-lapse results,
and common-model time-lapse FWI, which mitigates time-lapse errors by using an optimized
starting model to guide baseline and monitor inversions toward similar convergence. Both
strategies help suppress artifacts in the inverted time-lapse results, while the multi-source
method—an amplitude-encoding strategy—effectively reduces computational overhead by
allowing multiple seismic shots to be simulated simultaneously in the FWI.

2 In Chapter 4, a field experiment using time-lapse VSP data and FWI to monitor long-
term changes in a thin, shallow reservoir due to CO; injection is conducted. We present a
workflow that uses time-lapse FWI for field walkway VSP data to identify time-lapse changes
related to less than 60 tons of COs injected into a 7 m-thick reservoir at a depth of 300 m. A
frequency range of 5 to 60 Hz is applied to achieve high-resolution results. This experiment
showcases the capability of FWI to perform high-resolution inversion and detect time-lapse
anomalies within a shallow reservoir caused by a small amount of CO, injection. To the best
of our knowledge, no similar field experiments have been reported.

3. In Chapter 5, we conduct a field experiment using time-lapse walkaway DAS VSP data
and FWI to monitor long-term subsurface changes induced by COs injection. We present
a workflow that applies FWI to detect time-lapse anomalies associated with the injection
of less than 60 tons of CO, into a 7 m-thick shallow reservoir. Our results demonstrate
the capability of DAS-based FWI to achieve high-resolution inversion and accurately track
small-scale COs-induced changes. This study highlights the feasibility of leveraging DAS for

long-term, high-resolution CO, monitoring in real field conditions.



1.3 Thesis overview and objectives

The thesis presents an in-depth exploration of underground geophysical methods, focusing
particularly on monitoring CO, injection and sequestration. This research is structured into
six chapters, each addressing critical aspects of geophysical methods and its applications on
time-lapse seismic data.

Chapter 1 sets the stage by discussing the current development in CO, sequestration and
monitoring, as well as the application of seismic geophysics in it. Meanwhile, it introduces
the capabilities of DAS in capturing the intricacies of CO, sequestration, laying the ground-
work for the advanced techniques discussed in later chapters. Besides, in later sections, it
introduces the main approaches that are studied in this thesis- (Time-lapse) full-waveform
inverison. At last, it also introduces FWI using multi-source strategies, which elevate the
calculation effiencey.

Chapter 2 delves into the implementation of FWI using a multi-source strategy. This
section unravels the improved calculation effiency of FWI and offers a option for time-lapse
FWI.

Chapter 3 develops a target-oriented common-model strategy, which provides a robust
and effective result for time-lapse elastic FWI. This chapter demonstrates that this strategy is
non-sensitive to the non-repeatability issues that commonly exist in field time-lapse surveys.
In addition, a multi-source strategy is incorporated into FWI, which well help elevate the
calculation overburden issue of time-lapse elastic FWI.

Chapter 4 focuses on the application of time-lapse FWI to Vertical Seismic Profile (VSP)
data and explores the potential of this technique in monitoring COs injection and seques-
tration within a 7-m thin reservoir at shallow depth. The chapter bridges the gap between
theory and application, highlighting the enhanced imaging capabilities achieved through this
approach.

Chapter 5 focuses on the application of DAS in COy monitoring, and time-lapse FWI is

performed using DAS VSP data at CaMI to monitor the CO, injection and sequestration



within a 7-m thin reservoir at shallow depth. This chapter presents the first-time application
of FWI using DAS data, highlighting the capability of DAS data providing low-cost, high-
resolution inversion results in COy monitoring.

Finally, Chapter 6 concludes the thesis by summarizing the key contributions and findings
of the research. It presents a synthesis of the insights gained from each chapter and offers
a perspective on the future applications and developments of time-lapse FWTI stategies, and
field experiments especially using DAS technology in monitoring and COy sequestration.

Each chapter of this thesis is a stepping stone towards a comprehensive understanding of
time-lapse FWI and DAS technology applications in geophysics, culminating in a substantial
contribution to the field and paving the way for future research in effective CO5 monitoring
and sequestration.

While this thesis focuses on developing advanced time-lapse FWI strategies and demon-
strating their feasibility and effectiveness for monitoring CO, injection using both conven-
tional and DAS VSP data, several limitations remain. The non-repeatability scenarios tested
using the target-oriented common-model strategy are relatively moderate compared with
those encountered in real field surveys; therefore, developing more powerful and robust time-
lapse FWI strategies remains an important goal. In the field data application, the inversion
accuracy is constrained by incomplete near-surface velocity information, the absence of shear-
wave and density models, and the limited quality and repeatability of the field DAS data.
The proposed TO-CMS is adopted as a practical solution to mitigate non-repeatable ac-
quisition geometry; however, it inevitably reduces sensitivity to subtle overburden changes
that may indicate CO, leakage. These limitations define the current scope of this work
and underscore the need for future research to develop more adaptive and overburden-aware

inversion strategies for reliable and sensitive CO4 sequestration monitoring.



Chapter 2

Multi-source full-waveform inversion

A super-shot or blended data strategy has been used in marine and land seismic surveys
to reduce acquisition costs by reducing the time spent on the field. Full waveform inver-
sion (FWI) has been used to estimate high-resolution subsurface velocity models. However,
it suffers from expensive computational costs for matching the synthetic and the observed
data. To reduce the costs of both data acquisition and processing, FWI using blended data
has been recognized as very promising in future oil exploration. In this work, we use an
amplitude-encoding strategy with different bases to accelerate the FWI process and com-
pare their performance. The synthetic examples show that amplitude-encoding FWI using
different bases as encoding functions can mitigate the crosstalk noise very well, providing
good estimations of velocity models and convergence rate for both acoustic and elastic media.
To further improve the calculation efficiency, we also adopt the dynamic encoding concept
and reduce the number of super-shots every a few iterations. Since the encoding functions
are not changed during the iterations, we can directly simulate the super-shots without the
blending stage. From the updated velocity model comparison, we can see that the inversion
results by dynamic encoding are almost identical to those by static encoding with further

reduced calculation effort. This multi-source strategy will be adopted in chapter 3.
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2.1 Introduction

FWTI is a high-resolution seismic imaging technique that is based on using the entire content
of seismic traces for extracting physical parameters of the medium sampled by seismic waves
(Virieux et al., 2017). The classical time-domain FWI was originally proposed by Tarantola
(1984) to invert the velocity model by minimizing the 12-norm of the difference between pre-
dicted and observed data (Symes, 2008). This technique is very useful but computationally
expensive.

To reduce the costs of both data acquisition and processing, a simultaneous source-firing
strategy has been recognized as very promising in future oil exploration. Increasing field
efficiency by recording more than one source has been explored utilizing encoded shot gathers
or super-shots (Romero et al., 2000). However, once the super-shots are acquired, traditional
seismic processing methods require a de-blending process for velocity model estimation and
seismic migration (Florez et al., 2016).

Source-encoding strategies were first introduced into pre-stack migration in the frequency
domain (Morton and Ober, 1998; Romero et al., 2000). Krebs et al. (2009) proposed to
multiply the source wavelet with a random encoding sequence of +1 or -1 and then blend all
the shot gathers into one super-shot. Zhan et al. (2009) proposed to compose a multi-source
shot gather of a sum of single-shot gathers with random time delays. This usually requires
zero-padding the input shot gathers along the time axis, which may add extra cost for the
time-domain wave extrapolator and memory. Dai et al. (2012) proposed to combine these
two source-encoding strategies for least-squares reverse time migration (LSRTM). Usually,
all shots are blended into several sub-super-shots that contain all the shot records. Hu et al.
(2016) proposed an efficient amplitude encoding strategy using a cosine basis to perform
LSRTM. Godwin and Sava (2013) proposed an amplitude encoding strategy using Hartley
basis for wave-equation migration and compared its performance with some other source-
encoding strategies. To date, source-encoding strategies have been used to accelerate RTM,

LSRTM and FWI process (Krebs et al., 2009; Dai et al., 2012; Godwin and Sava, 2013;
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Pan, 2017). Instead of modifying the phase or zero-padding the input shot gathers, the
implementation of the amplitude encoding method is based on weighting the amplitude of
the shot gathers. Therefore, it can be conveniently incorporated into the time-domain wave
propagator. What is also different is that one super shot contains all the shot gathers.

In this work, we present amplitude encoding acoustic and elastic FWI using different
bases and compare the inversion results. We also adopt the dynamic encoding concept and
change the number of super-shots every a few iterations to further reduce the calculation

effort.

2.2 Amplitude-encoding FWI in time domain
In the case of constant density, the acoustic wave equation is described by

1 &p(x,t;x,)

Be or Vv Plehix) =fi(xtx) (2.1)

where fg (z,t;25) = f(t)d(x —x5)d(t =) .

According to equation 2.1, the data misfit Ap = p.q;—pobs can be defined by the differences
at the receiver positions between the recorded seismic data p,s and the forward modeled
seismic data pea = f(m) for each source-receiver pair of the seismic survey. In the acoustic
velocity inversion, f(-) indicates the forward modeling function, whereas m corresponds to
the velocity model to be inverted. The goal of FWI is to match the data misfit by iteratively
updating the velocity model. We also define the data misfit function as the objective function

taking the least-squares norm of the misfit vector Ap, which is given by

1 1
E(m) = QAPTAP = 5 ||pca1 - pobs”2

ng ns

1 tmax
= 522/ At [Peat (X, 5 Xs) — Pobs (X, 5 X5 )|
0

r=1 s=1

(2.2)

where ns and ng are the number of sources and receivers and T denotes the adjoint operator
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(conjugate transpose).
In encoding FWI, shot gathers are transformed into super shot gathers by the encoding

matrix, which is defined as

ptl p21 ) bNig,l
b1,2 b2,2 ) bN5i9’2
B = (2.3)
blstup b27Nsup . szz‘g'Nsup

where Ny, is the number of the super-shots and Ny, is the number of the individual shots

(Nsup < Nsig ). The Ny, synthetic data and observed data are blended into Nj,, blended

data by
sup
pca - cha
! 1 (2.4)
Pobe = BPobs

The ratio between Ng;, and N, is the factor by which the computational cost is reduced.

Since usually Ng,, is much smaller than Ng;,, the encoding FWI would achieve much better

19
efficiency due to the reduction of data dimension. Then the encoding objective function is

given by:

1 1
E(m) = §APTAP - 5 ”pcal — Pobs ”2

1

= 5 (pcal — Pobs ) BTB (pcal — Pobs )

(2.5)

The matrix BYB is referred to as the crosstalk matrix, and when it’s equal to the identity
matrix, the encoding objective function is equal to the traditional objective function. FWI
using blended data would produce the same results as in conventional FWI cases. There-
fore, to make the inversion result from the encoding FWI comparable with that from the
conventional FWI, the designed encoding crosstalk matrix should be a good approximation

of the identity matrix.
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In this work, we use different bases as the encoding functions to design the amplitude
encoding matrices.

The Hartley encoding matrix is defined as (Tsitsas, 2010):

2 2
by = COS ( Wmn) + sin ( Wmn) (2.6)

Nsig

The discrete form of the cosine basis is (Hu et al., 2016):

b = 2 cos ( T (2m%ngg + 1) (2n + 1))

Nsig Nsig 4

The sine encoding matrix is defined as (Tsitsas, 2010):

by = (| sm<(m+%) (7”%”) (2.8)

' Nsig Nsig

Also, we noticed that the random polarity encoding strategy (Krebs et al., 2009) works
in a very similar way. It also applies different weights to the shot records or source wavelets
to compose super-shots, except that the weights are only + 1 or -1. In addition, it composes
all the individual shots into only one super-shot, and changes the encoding sequence at each
iteration. In this work, we use it in a different way, we don’t change the encoding sequence at
each iteration, but also use it as a basis and establish a encoding matrix, and then compose
multiple super-shots. Given enough number of individual shots and super-shots, the crosstalk
matrix for this basis will also be close to an identity matrix. The random polarity basis can

be expressed as:

by, =1or —1 (2.9)
In equation 6 to 10, the parameters are defined in the same way, m = 1,..., Ny, is the
shot-index, n = 1,..., N, is the super-shot index, and n, is the periodization index, which

we set to be half of N,.
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2.3 Numerical results for acoustic FWI

2.3.1 Marmousi model

In this section, we use a Marmousi model with a distance of 9216 m and a depth of 3008
m on a grid of 16 meters discretized in a grid of 576 by 188 grid points, which is shown
in Fig 2.1a. On top of the Marmousi model is a water layer with the thickness of 320 m,
the acoustic velocity is set to 1500 m/s. which makes the whole model size 576 by 208 grid
points. We get the initial model shown in Fig 2.1b by smoothing the original Marmousi

model, but the top layer remains not smoothed.
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Figure 2.1: (a) The original Marmousi is down sampled along depth and lateral direction.
The shots are generated according to the Marmousi model. (b) The initial model of FWI

for Marmousi model, which is obtained by smoothing the original model.

In this work, we generate all synthetic shot gathers by solving the acoustic wave equations
in time domain for all 140 sources, which are evenly distributed near the surface of original
Marmousi model with a spatial interval of 64 m (4 grid points). We deploy 576 receivers
right beneath the sources with a spatial interval of 16 m (1 grid point). The Ricker wavelet
sources are fired with a central frequency of 4 Hz. We record the seismic waveforms for 4.2
s with an time step of 1.5 ms. For conventional FWI, all the sources are fired individually
and shot gathers are recorded separately. For amplitude encoding FWI, we apply different

amplitude weights to the shot gathers to compose super-shots.
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In our experiments, we use Hartley, cosine, sine and random polarity as encoding func-
tions. For comparison, we blend all the shot gathers into 7, 35 and 70 super-shots. Fig 2.2
and Fig 2.3 are the encoding matrices and corresponding crosstalk matrices. The elements of
encoding matrices are the weights we apply to the individual shots and compose super-shots.
The crosstalk matrices show how close they are to an identity matrix. We can see with an

increasing number of blended data, more off-diagonal elements are close to zero.
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Figure 2.2: Amplitude encoding matrices: columns from left to right are by Hartley, cosine,

sine and random polarity bases; rows from up to down are for 7, 35 and 70 super-shots,

respectively.
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Figure 2.3: crosstalk matrices: columns from left to right are by Hartley, cosine, sine and

random polarity bases; rows from up to down are for 7, 35 and 70 super-shots, respectively.

In Fig 2.4, we present the first individual shot in the conventional case and the first

super-shots in the amplitude-encoding cases using different bases. We can notice that each

super-shot contains all the individual shots and information of the whole model.
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Figure 2.4: a) is the first individual shot in the conventional case; b) to e) are the first

super-shot in the amplitude-encoding cases.

In this work, we run FWI using a gradient-based method (Yang et al., 2015b) for 100
iterations. For comparison, we first present the inversion result using conventional FWI,
which is displayed in Fig 2.5a. Then we perform amplitude-encoding FWI using different
bases as the encoding functions. For brevity, the inversion results at the early stage using
7 and 70 super-shots are shown in Fig 2.5b-i. When we first take a look at the left column
using 7 super-shots (see Fig 2.5b, d, f and h), we can notice there exists some crosstalk noise
in the middle left or upper left, while with increasing number of super-shots (see results using
70 super-shots in the right column in Fig 2.5) , the crosstalk noise can be better mitigated

and the images are almost noise-free.

18



0 1000 2000 3000 4000 5000 6000 7000 8000 9000

el

I I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

———

I I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
9) o

1000

I I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

o

I I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

x (m) X (m)

Figure 2.5: The updated velocity models after 25 iterations: a) by conventional FWI; b)
and c) are by Hartley basis with 7 and 70 super-shots; d) and e) are by cosine basis with 7
and 70 super-shots; f) and g) are by sine basis with 7 and 70 super-shots; h) and i) are by

random polarity basis with 7 and 70 super-shots.

The inversion results after 100 iterations are shown in Fig 2.6. Generally, in our exper-
iments, compared with the result by conventional FWI in Fig 2.6a, we can see amplitude-
encoding FWI using all 4 different encoding functions would produce very good estimations

of the velocity model, even with only 7 super-shots (see the left columns in Fig 2.5 and 2.6).
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However, to achieve better imaging quality, it still requires more super-shots to mitigate the

crosstalk noise with much more extra calculation effort.
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Figure 2.6: The updated velocity models after 100 iterations: a) by conventional FWI; b)
and c) are by Hartley basis with 7 and 70 super-shots; d) and e) are by cosine basis with 7
and 70 super-shots; f) and g) are by sine basis with 7 and 70 super-shots; h) and i) are by

random polarity basis with 7 and 70 super-shots.

As shown in Fig 2.7, we compare the data misfits in the conventional and amplitude-

encoding FWI cases using 70 super-shots encoded by different bases. Note that the maximum
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value of data misfit we display here is 0.2. From the comparison, we can notice that using
amplitude-encoding strategy, the encoding FWI experiments show very similar convergency

as in the conventional case.

0.2

Cov
hartley |7
cosine

— sinE

polarity

Data Misfit

0 10 20 30 40 50 60 70 80 90 100
lteration

Figure 2.7: Comparison of data misfit function

To obtain ideal updated velocity models with better mitigated crosstalk noise as in the
70 super-shots cases, clearly the data dimension is not reduced enough. To further improve
the calculation efficiency, we adopt the dynamic encoding concept (Krebs et al., 2009). They
proposed to change the encoding sequence every iteration to avoid accumulating the crosstalk
noise for better imaging quality. In our case, compared to the inversion results using 70
super-shots, we can notice the crosstalk noise in the inversion results using 7 super-shots are
not significant. So instead of changing the encoding functions, we dynamically reduce the
number of super-shots every a few iterations to further reduce the data dimension, hoping to
achieve a better compromise between imaging quality and calculation efficiency. In our test,
for the first step, we still compose the individual shot gathers into 70 super-shots and run
FWI for 25 iterations, then we compose the shot gathers into 35 super-shots and run FWI
for another 25 iterations using the updated velocity model by the first step. Likewise, we
then use 14 super-shots and 7 super-shots for 25 iterations each. So overall, we also update

the velocity model 100 times.
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We present the inversion results using dynamic encoding concept after 100 iterations in
Fig 2.8. When we respectively compare them with the updated velocity models using 70
super-shots in the static-encoding cases shown in the right column of Fig 2.6, we can see
both encoding strategies provide almost identical inversion results and using different bases

make no significant difference, but the data dimension has been further reduced.
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Figure 2.8: Inversions results using dynamic-encoding concept by different bases: a) Hartley;

b) cosine; ¢) sine and d) random polarity.

The data misfit and vertical profile comparisons are shown in Fig 2.9a and b, respectively.
We can see that using dynamic encoding concept can provide a very similar convergence rate
as in the static encoding cases. In addition, since the number of super-shots is changed every
25 iterations, the data misfit function curves may not be smooth. Compared to the previous
static case, we can notice that using Hartley and random polarity bases, when the number of
super-shot is reduced during inversion process, there might be obvious “jump” in the misfit
curves. While in the cosine and sine bases cases, even the super-shot number is reduced,
the curves are still very smooth. From the comparison of vertical profiles in the middle of
the model, we can see the lines are almost overlapped, amplitude-encoding FWI using all

different 4 bases gives very good estimations of the true velocity model.
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Figure 2.9: a) is the comparison of vertical profiles at distance equals to 4680 m; b) is the

comparison of data misfit functions versus iteration.

2.3.2 Foothills model

To further validate the feasibility of amplitude-encoding strategy, we also used this Foothills
model with a distance of 6672 m and a depth of 4000 m in a grid of 417 by 250 cells with 16
meters size each, which is shown in Fig 2.10a. We also get the initial model by smoothing
the original Marmousi model, as shown in Fig 2.10b.

For this model, we generate all synthetic shot gathers for 100 sources, which are evenly
distributed near the surface of true model with a spatial interval of 64 m. We deploy 417
receivers right beneath the sources with a spatial interval of 16 m. The Ricker wavelet sources
are fired with a central frequency of 8 Hz. We record the seismic waveforms for 6.0 s with a

time step of 1.5 ms.
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Figure 2.10: a) true Foothills model; b) initial model.

In this case, we compose the shot records into 50, 25, 10 and 5 super-shots, and also run
FWI for 25 iterations each. For brevity, we only display the inversion results using dynamic

encoding shown in Fig 2.11.
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Figure 2.11: Inversion results after 100 iterations: a) by conventional FWTI; Inversions results
using dynamic-encoding concept by: b) Hartley basis; ¢) cosine basis; d) sine basis; e) random

polarity basis.

For this model, FWI converges really fast, data misfits reduce to 0.1 within 10 iterations
as shown in Fig 2.12. The curves for 5 cases overlapped at the first 25 iterations. We may

also see the “jump” in here, just much less obvious than the Marmousi model cases.
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Figure 2.12: Comparison of data misfit functions versus iteration using dynamic encoding

concept.

2.4 Numerical results for elastic FWI

In this section, we further apply amplitude-encoding strategy into elastic FWI. In isotropic

elastic media, the first-order stress-velocity wave equation can be rewritten as:

8vi . 80‘2']'
P 0t B 8xj + fZ
80'1" 00 887;'
8—; = A5 0y + 2 81%] (2.10)
8% _1 an 1 8vj 2

where p is the density, o is the stress, v is the velocity, A and p are Lame coefficients, and
vp and vs can be expressed by
vp =/ (A+2u)/p

Vs =/ 1/p

(2.11)

The objective function using 12-norm of the data misfit for elastic FWI using amplitude-
encoding strategy can also be expressed as equation 2.5, exactly the same as in the acoustic

case. So when the crosstalk matrix is a good approximation of the identity matrix, amplitude-
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encoding strategy should also work for elastic FWI in the same way. In this work, we use
the IFOS2D software (Bohlen et al., 2016b) to do the experiments.

We use a subsampled Marmousi II elastic model with a distance of 3600 m and a depth
of 1100 m in a grid of 360 by 110 cells with 10 meters size each. This model consists of a
200 m thick water layer above. The true and initial models are shown in Fig 2.13, we only

perform FWTI for vp and vs in this work.
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Figure 2.13: Subsampled Marmousi IT model: a) and b) are true vp and vs; ¢) and d) are

initial vp and vs.

We generate synthetic shot gathers for 40 explosive sources and deploy 360 two—component
receivers. The central freq is 10 hz. The sources and receivers are at depth 20 and 30 meters,
respectively.

In this experiment, we compose all 40 individual shots into 20 super-shots, the encoding

and crosstalk matrices are shown in Fig 2.14.
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Figure 2.14: The amplitude encoding and corresponding crosstalk matrices: columns from

left to right are for Hartley, cosine, sine and random polarity bases.

Also, rather than set the iteration times for our tests, we use an abort criterion to control
the inversion progress, which is the defined by the relative misfit change within the last two
iterations. If the relative change is smaller than one percent, the inversion stops.

The inversion results are shown in Fig 2.15. The left column are inverted vp and the right
column are inverted vs models, from up to down are inverted parameters by conventional
FWI, amplitude-encoding FWI using Hartley, cosine, sine and random polarity bases.

When we compare these results, we may notice there exists some minor difference among
different cases. But generally, we can also see elastic FWI using amplitude-encoding strategy
can also produce comparable inversion result with no obvious crosstalk noise introduced in
the final images as in the acoustic cases, which further proves the feasibility of amplitude-

encoding strategy for elastic FWI.
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Figure 2.15: Inversion results by both conventional and amplitude-encoding FWI: left column
is inverted vp, right column is inverted vs; from up to down are inverted parameters by
conventional FWI, amplitude-encoding FWI using Hartley, cosine, sine and random polarity

bases.
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Additionally, vertical vp and vs profiles at 2.2 km of the initial model and inversion
results are compared with the true model in Fig 2.16. The black line is the true model, the
dashed red line is the initial model, other thicker lines are the results by amplitude-encoding
strategy. The results contain a lot of small details, we can see some fine layers especially
in vs model needs further improvement. However, the amplitude-encoding results are still

comparable with half reduced calculation effort.
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Figure 2.16: Depth profiles at distance 2.2 km of the initial model and inversion results are
compared with the true model for the Marmousi II model: P-wave velocity (left), S-wave

velocity (right).
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2.5 Conclusions

In this work, we present the amplitude-encoding acoustic and elastic FWI using different
bases as the encoding functions and compare their performance.

In our experiments, we first use Marmousi model to show that amplitude-encoding acous-
tic FWI using different bases can mitigate the crosstalk noise very well and produce totally
comparable inverted models and convergence rate to the conventional case. Then we demon-
strate the feasibility of this strategy using a Foothills model. What’s also worth to notice is
that, for conventional acoustic FWI, it requires N;, forward model operations to generate the
synthetic acoustic data. While for amplitude-encoding FWI, we can directly simulate Ny,
super-shots without the blending stage, which also helps improve the calculation efficiency
for both forward modelling and inversion process.

In addition, we adopt the dynamic-encoding concept and reduce the number of super-
shots during the inversion process to further improve the calculation efficiency, producing
almost the same updated velocity models as in the static-encoding cases.

We further apply amplitude-encoding strategy to elastic FWI and prove that this strategy

also shows great performance for multi-parameter FWI.
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Chapter 3

Multi-source time-lapse elastic
full-waveform inversion using a
target-oriented common-model

strategy

Full-waveform inversion (FWTI) is a powerful tool for time-lapse seismic analysis, enabling
high-resolution imaging of subsurface physical properties to monitor reservoir changes dur-
ing injection, production, and long-term CO, storage. However, conventional time-lapse
FWI, which relies on a parallel inversion strategy, suffers from significant artifacts due to
survey non-repeatability, disrupting convergence consistency between baseline and monitor
inversions. Additionally, the high computational cost remains a major challenge. To address
these limitations, we propose a novel time-lapse FWI strategy—the target-oriented (TO)
common-model strategy (CMS)—which strategically integrates multiple approaches. Our
method combines TO FWI, which enhances model convergence in the target region to im-
prove time-lapse accuracy, with CMS, which reduces artifacts by using an optimized starting

model to guide baseline and monitor inversions toward similar convergence paths. Addition-
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ally, we employ an amplitude-encoding multi-source strategy, significantly reducing compu-
tational costs without compromising inversion accuracy. Through extensive elastic tests, we
validate the robustness and effectiveness of TO CMS, demonstrating superior performance
over both the conventional parallel strategy and standard CMS across various challenging
scenarios—including non-repeated source positions, random noise, seawater velocity varia-
tions, and biased initial models. Notably, strong noise and seawater velocity variations can
significantly impact time-lapse FWI results, highlighting the need for further investigation.
Ensuring consistent multi-source parameters in time-lapse FWI can help minimize artifacts.

This time-lapse strategy will adopted in chapter 5.

3.1 Introduction

Time-lapse seismic analysis is widely used for monitoring subsurface property changes, for
instance, the reservoir changes caused by oil/gas production or COy injection (Greaves and
Fulp, 1987; Ross and Altan, 1997; Wang et al., 1998; Barkved et al., 2003; Arts et al.,
2004b; Barkved et al., 2005; Chadwick et al., 2009; Kazemeini et al., 2010; Pevzner et al.,
2017). To enable high-resolution imaging for monitoring subsurface changes, time-lapse seis-
mic analysis often relies on full-waveform inversion (FWI), a powerful technique that offers
a detailed reconstruction of subsurface properties. FWI is a high-resolution seismic imag-
ing technique that leverages the full information contained within seismic traces, including
both amplitude and phase, to extract physical parameters of the subsurface medium probed
by seismic waves (Virieux and Operto, 2009; Virieux et al., 2017; Zhang and Curtis, 2020;
Operto et al., 2023), which is proposed by Tarantola (1984) in the time domain to invert
the subsurface P-wave velocity model by minimizing the [2-norm of the difference between
predicted and observed data (Symes, 2008). Pica et al. (1990) further extend FWI into
elastic cases. Bunks et al. (1995) propose a multi-scale strategy to deal with the cycle

skipping issue in FWI. Nevertheless, FWI continues to grapple with a significant compu-
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tational workload, primarily due to its iterative and computationally intensive nature. In
each iteration, the objective function’s gradient must be computed concerning the model
parameters, accomplished by cross-correlating the backward-propagated residual wavefield
with the corresponding forward-propagated source wavefield. Calculating these two types of
wave fields places significant demands on computational resources, as it involves performing
a substantial number of times to solve the wave equation. For time-lapse FWI, where multi-
ple inversions are required, the computational cost is normally double (the parallel strategy)
or four times (such as the common-model strategy) of that in 2D or 3D FWI. Therefore,
there is an urgent need to reduce computational complexity for time-lapse FWI.

A efficient way to reduce the computational time is source-encoding strategies (Romero
et al., 2000; Krebs et al., 2009), which reduce the data dimension by encoding the individual
shot gathers into super-shots. Source-encoding strategies are first introduced into pre-stack
migration in the frequency domain (Morse and Feshbach, 1954; Romero et al., 2000). To
date, source-encoding strategies have been used to accelerate RTM (reverse time migration),
LSRTM (least-squares RTM), and FWI (Krebs et al., 2009; Dai et al., 2012; Godwin and
Sava, 2013; Hu et al., 2016; Pan, 2017). Krebs et al. (2009) propose to multiply the source
wavelet with a random encoding sequence of +1 or —1 and then blend all the shot gathers
into one super-shot, but this method inevitably introduces a significant amount of noise
to the final image, known as crosstalk noise (Godwin and Sava, 2013). Zhan et al. (2009)
propose to compose a multi-source shot gather of a sum of single-shot gathers with random
time delays, which is equivalent to using linear phase-shift as a function of frequency. This
usually requires zero padding the input shot gathers along the time axis. However, the time
shifts may be quite large (up to seconds) (Blacquiere et al., 2009), which increases the com-
putational cost. Dai et al. (2012) proposed to combine these two phase-encoding strategies
for LSRTM. Usually, all shots are blended into several sub-super-shots that contain all the
shot records. Godwin and Sava (2013) propose an amplitude encoding strategy using the

Hartley basis for wave-equation migration and compared its performance with some other
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source-encoding strategies. Hu et al. (2016) propose an efficient amplitude encoding strat-
egy using a cosine basis to perform LSRTM. Amplitude encoding is based on weighting
the input shot gathers instead of modifying their phase Hu et al. (2016) and can be conve-
niently incorporated into the time-domain wave propagator. Compared with conventional
migrations, FWI is a more advanced imaging technique and has been applied successfully
to various data types (Huang et al., 2021). Matharu and Sacchi (2018) demonstrate the
feasibility of random polarity encoding strategy in multi-parameter FWI. We will introduce
the amplitude-encoding strategy to elastic FWI (EFWI), of which the efficiency has been
validated in acoustic FWI.

When FWI is used for time-lapse analysis, the most commonly used strategy is known
as the parallel strategy (PRS) (Lumley et al., 2003; Plessix et al., 2010), in which the
baseline and monitor models are independently inverted with the same initial model (shown
in Fig. 3.1(a)), and the inverted time-lapse change is the difference between two inverted
models. Due to different convergence in two independent inversions, this strategy usually
introduces artifacts in the final inverted time-lapse change. Routh et al. (2012) propose
to use the inverted baseline model as the initial model for the monitor model inversion
to save computational time, which is known as the sequential strategy (SQS). Its target-
oriented version, with a local wave-equation solver to calculate the wavefield within the
target area, can be found in Huang et al. (2020). However, this strategy still doesn’t cope
with the artifact issue in the inverted time-lapse change, and it even enhances them since
the convergence difference is widened. Watanabe et al. (2004) and Zheng et al. (2011)
introduce the double-difference strategy (DDS) to address artifacts effectively. This approach
allows for a more precise focus on time-lapse changes by directly utilizing the difference
data (monitor data minus baseline data), corresponding to reservoir changes, during the
monitoring inversion process. Zhang et al. (2012) apply the DDS for time-lapse EFWI.
Zhang and Huang (2013) take the DDS a step further by incorporating a target-oriented

scheme (updating the local area, including reservoir changes in the model, instead of the
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entire model) to enhance the effectiveness of time-lapse EFWI. For the reason of focusing
on reservoir change, the DDS has become a popular strategy in field data application and
numerical tests (Yang et al., 2015a, 2016; Malcolm and Willemsen, 2016). Its target-oriented
version, with machine learning assistance, is presented by Li et al. (2021). Also, it is used for
Bayesian/Markov Chain Monte Carlo formulation of time-lapse seismic waveform inversion
(Kotsi et al., 2020; Fu and Innanen, 2022a). Nonetheless, the algebraic processes involved in
DDS render it highly susceptible to acquisition nonrepeatability issues, including the non-
repeatability in source/receiver locations (Zhou and Lumley, 2021b; Fu and Innanen, 2023)
and source wavelets (Fu et al., 2023). Hicks et al. (2016) propose the common-model strategy
(CMS), which consists of two stages of inversions, and each stage follows the same process
as the PRS. In the second stage of the CMS, the inverted baseline and monitor models from
the first stage are averaged as the new initial model, the workflow is shown in Fig. 3.1(b).
This strategy has been adopted in field data in a North Sea field (Hicks et al., 2016) and
a post-salt field in the Campos Basin (Bortoni et al., 2021). This strategy shows improved
performance in mitigating artifacts and is less sensitive in the case of non-repeatability of
source locations. However, all the mentioned implementations in time-lapse data are based
on acoustic FWI. Hereon, we extend this CMS to time-lapse elastic FWI, and strengthen it
with the target-oriented strategy. The numerical experiments performed in this study will
demonstrate the effectiveness of the CMS and the newly designed target-oriented (TO) CMS
for elastic time-lapse data.

Certainly, an increased emphasis is observable in endeavors to mitigate artifacts in time-
lapse inversion techniques. Zhou and Lumley (2021a) propose a central-difference strategy
for time-lapse FWI, which includes two SQSs with opposite data usage orders to counteract
the artifacts. Fu and Innanen (2023) present a stepsize-sharing strategy, which is able to
reduce the artifacts, is stable to a biased initial model, and it is of the capacity to decrease
half time of seeking stepsizes when compared with the SQS. Mardan et al. (2023) devise

a weighted-average approach to enhance the management of artifacts in the inverted time-
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lapse changes. In addition, it is also important to process time-lapse seismic data well, which
can effectively reduce artifacts in time-lapse imaging or inversion. Fu and Innanen (2022b)
design a source-independent matching filter to solve the source wavelet nonrepeatability
issue. Attempting to encompass all methods within a single study becomes impractical due
to the prohibitive computational demands. This study will center its investigation on the
CMS, which has been applied in various field datasets, and the TO CMS, assessing their
effectiveness in the context of time-lapse EFWI. Furthermore, we will also evaluate the PRS
as the conventional methodology to have a comparison with the CMS and the TO CMS.

In this study, we develop a TO CMS for time-lapse FWI, incorporating a multi-source
method. This approach leverages the advantages of TO FWI, which enhances model conver-
gence in the target area to improve time-lapse results, and common-model time-lapse FWI,
which mitigates time-lapse errors by using an optimized starting model to guide baseline
and monitor inversions toward similar convergence. Both strategies help suppress artifacts
in the inverted time-lapse results, while the multi-source method—an amplitude-encoding
strategy—effectively reduces computational overhead by allowing multiple seismic shots to
be simulated simultaneously in the FWI.

The rest of this paper is laid out as follows: in the theory section, we introduce the
fundamental principles of time-domain multi-source EFWI and provide an overview of the
time-lapse inversion strategies investigated in this study; the subsequent section presents
the numerical examples, where we evaluate the methods across various scenarios; finally, we

summarize our findings in the conclusions section.
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3.2 Theory

3.2.1 Multi-source EFWI in the time domain

In a standard FWI problem, we minimize a misfit function
E(m), (3.1)

subject to

F(m)u(x,t) =s(x, ), (3.2)

where E is a function with respect of model parameters m, F(m) characterizes the seismic
wave equation, u(x,t) denotes the particle displacement at time ¢ € [0,7] excited by an
external source s(x, t) and x denotes spatial coordinates. The wave equation F(m) in elastic
media can be can be solved by the stagger-grid finite-difference scheme Virieux (1986);
Levander (1988).

The objective function taking the least-squares norm of the misfit vector Au is given by

1 1
E(m) = 5AuTAu =3 [ Uobs — Ugyn

1 T
- 5 (uobs - usyn) (uobs - ucal) (33)
1 Ns Ny
=5 D00 Tt (s8) = g G i)
s=1 r=1 T

where t denotes the adjoint operator (conjugate transpose), the data misfit Au is defined by
the differences between the observed seismic data u,,s and the synthetic seismic data ugyy
recorded at the r-th receiver and generated by the s-th source s, for model m. N, and N,
denote she number of sources and receivers.

Via the conjugate gradient method, the model is updated iteratively according to

myp. 1 = Mg —+ akémk, (34)
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where k is the iteration number, « the step length, and dm;, is a search direction or descent
direction and can be derived from the gradient of the misfit function.
The gradient of E(m) with respect to m,V,,E, can be calculated efficiently using the

adjoint-state method Plessix (2006):

ViaE(x) =— Z/Tuibs (x,t) - g—iuobs (x,t)dt. (3.5)

T

obs 15 the adjoint wavefield.

where
In multi-source FWI, the individual shot gathers are blended into super-shots, and the

encoded objective function is given by Matharu and Sacchi (2018):

| 1 :
_ 1t i _ = obs _ _.syn
E(m) = 2AumSAums 9 Hums uH};S H
- % (ug — ) " (ugh — uiy?) (3.6)
Nms Ny

:% ) Z/ s () — w2 (%, tm)|” dit,
T

ms=1 r=1

where u2" is the blended observed data and u®" is the blended synthetic data.
Similarly to the way to compute the gradient in standard FWI, the multi-source gradient

using the adjoint-state method can be expressed as Matharu and Sacchi (2018):

NTVLS aF
mEms(X) = — Wt (x 1) - ——u (x, t) dt
VB = =D [ ! Ge) - g (.0
Ns N,
A OF (3.7)
_ Y% [
= VmE(X) — T /Tuj(x, t) . a—mul(x,t)dt
J#i

Cross-talk term

In this work, we used the amplitude-encoding strategy Godwin and Sava (2013); Hu et al.

(2016) to compose super-shots. The individual shot gathers are blended into super-shots by
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u? = Bu™ (3.8a)

ms

u” = Bu™ (3.8b)

ms

where the encoding matrix B is defined as Hu et al. (2016)

bl,l b2’1 ) bNS’l
bl,? b2’2 ) sz,Q
B = (3.9)
b]-mes b27Nm5 . sz‘N'ms

where N,,, is the number of the super-shots and N is the total number of the individual
shots. Since usually N,,s is much smaller than N, the encoding FWI would achieve much
better efficiency due to the reduction of data dimension. The ratio between N, and N, is
the factor by which the computational cost is reduced.

We use the sine basis as the encoding matrix, which is defined as Tsitsas (2010):

By = \/nzsm <(m ha %)n(n +3) W) (3.10)

where m = 1,..., N, is the shot-index, n = 1,..., N, is the super-shot index, and n; is the

periodization index, which we set to be half of N,.

Then the multi-source objective function can be rewritten as:

Blm) = 5Au, Auy, — 5 [u - w2
= 5 — )" (ug — will) (31D

N~ N~ DN -

(uobs - usyn)T BTB (uobs - usyn)

The matrix BYB is referred to as the crosstalk matrix. When comparing this new misfit
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function with equation 3.6, we can notice that when the crosstalk matrix is identical to
the identity matrix, the multi-source objective function equates to the traditional objective
function. Consequently, multi-source FWI, which utilizes blended data, yields identical
results to conventional FWI cases. Hence, to ensure that the inversion results from encoded
FWI are comparable to those from conventional FWI, it is imperative that the designed

encoding crosstalk matrix closely approximates the identity matrix.

3.2.2 Time-lapse inversion strategies
Parallel strategy

In the PRS, whose workflow is shown in Fig. 3.1(a), the baseline and monitor models are
independently inverted with the same initial model. Subsequently, the time-lapse model
is derived by subtracting the inverted baseline model from the inverted monitor model.
However, due to different convergence behaviors between these two models, this strategy

often introduces artifacts in the time-lapse result.

Common-model strategy

The CMS shown in Fig. 3.1(b) consists of two stages of inversion processes. In each stage, the
workflow precisely mirrors that of the PRS. After the completion of the first stage, instead
of directly subtracting the inverted baseline model from the inverted monitor model, as is
done in the PRS, the CMS takes a different approach. It calculates an average of the two
inverted models to create a new initial model for the second stage. In this subsequent stage,
FWI is performed using this new initial model along with the original baseline and monitor
data as input. The final time-lapse model is then obtained by performing a subtraction
operation. Serving as an enhanced version of the PRS, the CMS uses an optimized starting
model to guide baseline and monitor inversions toward similar convergences. Therefore,
using the CMS will result in better time-lapse result compared with the PRS. The CMS

has demonstrated its ability to effectively mitigate artifacts in acoustic FWI, as evidenced
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by experiments conducted with both synthetic and field data Hicks et al. (2016); Fu and

Innanen (2023).

Target-oriented common-model strategy

In our study, we develop a target-oriented scheme of the CMS, incorporating prior infor-
mation of reservoir change locations for baseline and monitor inversions, refered to the TO
CMS, the workflow is presented in Fig. 3.1(c). Similar to the CMS, the TO CMS begins by
averaging the inverted baseline and monitor models derived from the same initial model. In
the second stage, we assume prior knowledge of the locations of velocity change areas, and
only update the model within specific regions that encompass the time-lapse areas Zhang
and Huang (2013). Time-lapse FWI is usually conducted to detect the changes within a
specific reservoir, such as the target reservoir for CO, injection and sequestration. In such a
project, the location of the reservoir is known prior to the injection operation. This allows
us to design the target area to update the models, making the TO CMS more feasible. Com-
pared with the CMS, in the implementation of algorithm, the gradient outside the target
area is set to zero. This combines the benefits of TO FWI Valenciano et al. (2006); Huang
et al. (2020); Cui et al. (2020); Li et al. (2021); Biondi et al. (2023); Zheglova et al. (2023),
which improves convergence in the target area, and common-model time-lapse FWI, which
uses an optimized starting model to guide baseline and monitor inversions toward similar

convergences. Both techniques reduce noise in the inverted time-lapse results.

3.3 Numerical examples

In our study, we assume a constant density and perform EFWI for Vp and Vs using the
IFOS2D software Bohlen et al. (2016a). We use a down-sampled elastic Marmousi 1 model
to demonstrate the efficiency of the amplitude-encoding strategy in EFWI and feasibility of

the CMS and the TO CMS in time-lapse EFWI. Since the amplitude-encoding strategy is a
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Figure 3.1: Workflows of time-lapse strategies: (a) parallel strategy (PRS), (b) common-
model strategy (CMS), (c) target-oriented common-model strategy (TO CMS).
static source-encoding method, we implement it in the software to directly simulate the super-
shots without the blending stage. After we achieve multi-source full-waveform inversion using
the modified software, we can carry out baseline and monitor model inversions to obtain the
time-lapse result using the PRS. To implement the CMS and the TO CMS, we need to use
the inverted models from the previous stage to generate new initial models as inputs in the
second stage inversions.

The model has a distance of 4100 m and a depth of 1500 m in a grid with a size of 410 by
150 and a 10-meter spacing. The true baseline Vp and Vs models are plotted in Figs. 3.2(a)

and 3.2(b). We employ the smoothed true models as the initial models, which are plotted in
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Figure 3.3: The initial baseline model: (a) Vp model and (b) Vs model.
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Figure 3.4: True time-lapse model: (a) Vp model and (b) Vs model.

Figs. 3.3(a) and (b). There is a 200 m-thick water layer at the top of the model. The free

surface condition Levander (1988) is implemented on top of the model. There are 20 layers

of Perfectly Matched Layers (PMLs) Komatitsch and Martin (2007) implemented around

the other sides of the model as the absorbing boundary condition in the finite difference

modeling.
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For the time-lapse survey, three velocity change areas, plotted in Fig. 3.4, are added
to the baseline model to have the monitor model. The Vp changes in area 1 (top left),
area 2 (top right) and area 3 (bottom) are set to +150, -150 and +150 m/s, respectively.
Accordingly, the Vs changes in these 3 areas are set to 490, -90 and +90 m/s. Areas 1 and
2 are located at shallower depths with relatively lower background velocities, while the area
3 is located at large depth with a relatively higher background velocity.

We deploy evenly distributed 80 sources and 410 receivers along the surface at depths of
20 m and 30 m, respectively. The horizontal source location starts from 80 m and the source
location interval is 50 m, and the receivers are located at every grid cell. The source wavelets
adopted for both baseline and monitor datasets are identical, which is a Riker wavelet with
a dominant frequency of 10 Hz. The time sampling interval is 1.25 ms and the maximum
recording time is 3 seconds. Moreover, in the EFWI, a multi-scale approach Bunks et al.

(1995) is incorporated to mitigate the cycle skipping problem.

3.3.1 Multi-source EFWI

To illustrate the capacity of the multi-source strategy in EFWI, the inversion results of the
baseline model using the multi-source FWI are compared with that using the conventional
FWI in which the shot gathers are calculated individually. In the conventional EFWI process,
80 synthetic individual shot gathers are generated by using the true baseline model as the
observed data and solving the first-order elastic wave equations Virieux (1986); Levander
(1988). In the multi-source EFWI experiment, we use the amplitude-encoding strategy to
assign the encoding weights to all the individual shot gathers to compose 10 super-shots.
In conventional FWI, the encoding and crosstalk matrices are identity matrices, while in
multi-source FWI, the encoding and crosstalk matrices are plotted in Fig. 3.5. In both
experiments, the computations were carried out on a workstation equipped with an Intel i7-
7800X CPU and 64 GB of RAM. The programs were parallelized using MPI with 5 processors.

The memory usage in each experiment was approximately 2.19 GB. In Fig. 3.6, we plot an
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Figure 3.5: (a) The encoding matrix and (b) the crosstalk matrix.
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Figure 3.6: Synthetic data: (a) a shot near the center of the model in conventional FWTI; (b)
the first super-shot in multi-source FWI.

individual central shot and the first encoded super-shot, respectively, used in conventional
and multi-source EFWT’s.

In Fig. 3.7, the inverted baseline models from both conventional and multi-source EFWI'’s
are plotted, and which shows that the multi-source EFWI can produce high-quality inversion
results with acceptable crosstalk noise introduced in the final images. In Fig. 3.8, extracted
traces from the results in Fig. 3.7 at distances of 2.08 km, 3.0 km, and 2.68 km, respectively,
are plotted, which can well match the true values. In Fig. 3.9(a) and 3.9(b), the normalized
model misfits (L1-norm) of conventional and multi-source EFWT are plotted. We observe
that both inversions have nice model convergences, and the conventional EFWI has a lower
model misfit since there is no impact of data crosstalk. We also observe that the data misfits
shown in Fig. 3.9(c) for both methods converge well and reach a similar level. The efficiency

comparison between the conventional and multi-source EFWT’s is illustrated via table 3.1,
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Figure 3.7: Inverted baseline model, (a) Vp and (b) Vs models using conventional FWI; (c)
Vp and (d) Vs models using multi-source FWI.

Table 3.1: Averaged calculation time for conventional FWI and encoding-FWI per iteration.

Conventional FWI || Encoding-FWI
(80 shots) (10 super-shots))
Calculation time (s) 968 122

where their average CPU times for each iteration are displayed. It shows that the speed-up
ratio for encoding-F'WI is approximately the number of individual shots over the number of
super-shots.

Since we have demonstrated that the multi-source EFWI can achieve high-quality elastic
inversions, in the following tests, we will only adopt the amplitude-encoding EFWI to perform
the time-lapse EFWIs using three time-lapse inversion strategies, including the PRS, the
CMS, and the TO CMS. In the TO CMS, to lower the practical difficulty of locating three
reservoir changes, we treat all three velocity change areas as a whole and update a local

region that contains all the changes.
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Figure 3.8: Extracted traces of Vp and Vs within 3 reservoir areas extracted at distances
2.08 km, 3.0 km and 2.68 km: the first row are P-wave velocities, the second row are S-wave
velocities. Within each panel, the black solid line is the true model, and the black dashed line
is the initial model, the blue line is the result of conventional EFWI, and the red line is the
result of multi-source EFWI.
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Figure 3.9: Model misfits and data misfit versus iteration of both FWI and multi-source
FWI: (a) Vp model misfit, (b) Vs model misfit, and (c) data misfit.

3.3.2 Marmousi model
Noise-free data tests

In this subsection, noise-free datasets with perfectly repeatable acquisition geometries are

employed. The first super-shot of the monitor data and the difference between the first super-
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Figure 3.10: Noise-free synthetic data: (a) the first super-shot in the monitor survey; (b)
the difference of first super-shots in monitor and baseline surveys.

shots of the monitor and baseline data are plotted in Figs. 3.10(a) and (b), respectively.
The results of different time-lapse strategies are plotted in Fig. 3.11. We observe that the
PRS gives the worst results, in which artifacts become more noticeable with the increase
of depth since the deeper part has worse model convergence. Compared with the PRS, the
CMS and the TO CMS can provide results with significantly fewer artifacts. The inverted
velocity changes of the TO CMS have better model convergence than that of the CMS. The
inverted Vp changes are better than the inverted Vs changes. The same conclusions can
also be drawn from Figs. 3.12(a) to (f), where the traces, extracted at distances 2.08 km,
3.0 km, and 2.68 km from the results in Figs. 3.12(a) to (f), are plotted, respectively. In
this section, a total of six times of elastic FWI are performed. In the following sections,
the situation is similar, which is very time-consuming and makes adopting the multi-source

strategy necessary for computational feasibility.

Different encoding functions

In this section, to analyze the effect of encoding function in time-lapse inversion, different
encoding functions are adopted to invert the baseline and monitor models. In this case, we

used the Hartley basis as the encoding function to invert monitor model, which is defined as
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Figure 3.11: Tests with perfectly repeated surveys and source encoding methods. The time-
lapse results of different strategies, in the case baseline and monitor inversions use noise-free
data: (a) and (b) are Vp and Vs using the parallel strategy (PRS), (c¢) and (d) are Vp and
Vs using the common-model strategy (CMS), (e) and (f) are Vp and Vs using the target-
oriented common-model strategy (TO CMS). The PRS introduces noise into the time-lapse
result, the CMS and the TO CMS can provide results with significantly fewer artifacts.
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Figure 3.12: Extracted traces of inverted time-lapse results of different strategies, in the
case baseline and monitor inversions use the same source-encoding methods, data are noise-
free with perfectly repeated acquisition geometry: (a) and (b) are time-lapse Vp and Vs at
distance 2.08 km, (c) and (d) are time-lapse Vp and Vs at distance 3.0 km, (e) and (f) are
time-lapse Vp and Vs at distance 2.68 km.
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Figure 3.13: Tests with non-repeated source-encoding methods. The time-lapse results of
different strategies, in the case baseline and monitor inversions use noise-free data with
perfectly repeated acquisition geometry: (a) and (b) are Vp and Vs using the PRS, (c) and
(d) are Vp and Vs using the CMS, (e) and (f) are Vp and Vs using the TO CMS. Different
encoding functions in baseline and monitor inversions introduce noise into the time-lapse
results.

Tsitsas (2010); Godwin and Sava (2013):

2 2
by = COS ( wmn) + sin ( Wmn) (3.12)

N N

where the parameters are defined in the same way as in equation 3.10.

In Fig. 3.13, we compared the results by 3 time-lapse strategies. In the first column,
we can see using the PRS, we can’t identify all the velocity change areas. While in the
results by the CMS and TO CMS, we can identify area 1 and area 2. As for area 3, none
of the time-lapse strategies can recover the velocity change. Since the encoding function
is repeatable in a time-lapse survey, in the following sections, we used the same encoding

functions to invert baseline and monitor models.
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Different number of super-shots

In this section, to analyze the impact of super-shot number on time-lapse inverison, the
baseline data are still blended into 10 super-shots, while the monitor data are blended into
6 and 14 super-shots respectively. In Figs. 3.14 and 3.15, the inverted time-lapse results
in two cases are displayed. Compared with results in the section where the same number
of super-shots are used in both baseline and monitor inversions, in the case when 6 super-
shots are used in monitor inversion, much more artifacts are introduced in the time-lapse
images shown in Fig. 3.14. In the case when 14 super-shots are used in monitor inversion
shown in Fig. 3.15, the time-lapse images are also degraded, but the quality are still better
than those in the first case. Due to the enhanced convergence using more super-shots in
the monitor inversion, it results in stronger time-lapse changes as well as stronger noise.
The comparison of results from the last three sections shows that both different encoding
functions and different numbers of super-shots in baseline and monitor inversions introduce
significant noise into the time-lapse results. When employing the multi-source strategy, we
recommend composing baseline and monitor data into super-shots in the same way to achieve

more reliable time-lapse FWI outcomes.

Non-repeatable random noise

In this section, we performed time-lapse inverison using noisy datasets with a perfectly
repeatable acquisition geometry. We added the same level of Gaussian random noise with
different implements to the noise-free baseline and monitor data to obtain noisy data. In Figs.
3.16(a) to (c), the first super-shots of noisy baseline data with SNR (signal-to-noise ratio)
= 20,10 and 5. In Figs. 3.16(d) to (f), we display the corresponding differences between
noisy monitor and baseline data with SNR= 20, 10 and 5 (the amplitudes are magnified by
a factor of 10).

In Fig. 3.17, the inverted baseline models using noisy data with different levels of SNR

are plotted. In Figs. 3.18 to 3.20, we plot the corresponding time-lapse inversion results
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Figure 3.14: Tests with non-repeated source-encoding parameters. The time-lapse results of
different strategies, in the case baseline inversion uses 10 super-shots and monitor inversion
uses 6 super-shots using the same source-encoding function, data are noise-free with perfectly
repeated acquisition geometry: (a) and (b) are Vp and Vs using the PRS, (¢) and (d) are
Vp and Vs using the CMS, (e) and (f) are Vp and Vs using the TO CMS. Different number
of super-shots in baseline and monitor inversions introduce noise into the time-lapse results.
using three time-lapse strategies. From the results, we can see that with an increasing level
of Gaussian random noise, the time-lapse results tend to be more noisy. And the inversion of
the deeper time-lapse change is worse than those of the sallow ones, since the corresponding
reflections are weaker. The PRS still provided results with strong artifacts, and the CMS
and the TO CMS perform much better than it. From the results of the CMS and the TO
CMS, we observe that all Vp changes can be identified, even when SNR is as low as 5, but

for Vs, the deep reservoir change can not be recognized when SNR equals either 10 or 5.

The TO CMS still generates more accurate results than the CMS.

Non-repeatable source positions

In this section, we consider how the non-repeatable source positions affect the time-lapse
inversion results using different time-lapse strategies. We use noise-free datasets, but the

acquisition geometries for baseline and monitor surveys are different. In this work, we only
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Figure 3.15: Tests with non-repeated source-encoding parameters. The time-lapse results
of different strategies, in the case baseline inversion uses 10 super-shots and monitor inver-
sion uses 14 super-shots using the same source-encoding function, data are noise-free with
perfectly repeated acquisition geometry: (a) and (b) are Vp and Vs using the PRS, (c¢) and
(d) are Vp and Vs using the CMS, (e) and (f) are Vp and Vs using the TO CMS. Different
number of super-shots in baseline and monitor inversions introduce noise into the time-lapse
results.

consider the impact of source position non-repeatability on different time-lapse strategies,
and receivers are still deployed in each grid cell of the model and kept fixed. To analyze the
effects of non-repeatable source positions, we consider three different cases. In cases 1 and
2, the source locations in the baseline model remain the same as in previous sections, the
first source locations in monitor survey are, respectively, 10 m and 20 m larger than that in
baseline survey. In case 3, we consider an extreme scenario, the source locations in baseline
model are also changed, and shifted to left, the first source location starts from a distance
of 20 m. In the monitor model, the source locations are still shifted to right, and the first
source location starts from a distance of 140 m. In this case, the minimum source location
distance between baseline and monitor surveys are also 20 m as in case 2 , but the difference
between two acquisition geometries in both surveys are bigger. In the froward simulation
of monitor model inversion, the shifted source positions which are non-repeatable from the

baseline model are used.
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Figure 3.16: Synthetic data: (a), (b) and (c) are the first super-shots of noisy baseline data
with SNR=20, 10 and 5, (d), (e) and (f) are the differences between noisy monitor and
baseline data with SNR=20, 10 and 5 (the amplitudes are magnified by a factor of 10).

In Figs. 3.21, 3.22 and 3.23, the inverted time-lapse results in three cases are plot-
ted. From these results, we observe that the PRS is sensitive to the source position non-
repeatability and gives the worst results, especially in case 3, the time-lapse changes are
totally submerged in artifacts. In case 3, we observe that the CMS and TO CMS provide
similar results, while in case 1 and case 2, the TO CMS can recover more accurate values

for the deeper velocity change.

Non-repeatable seawater velocity change

In a time-lapse survey, the seawater velocity may change, and it seriously affects the recovery
of underground velocity change. In this section, we consider the overburden water velocity

change. Three cases are considered, in the first two cases, the maximum water velocity
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Figure 3.17: Inverted baseline model using noisy data: (a) and (b) are Vp and Vs using data
with SNR=20, (c) and (d) are Vp and Vs using data with SNR=10, (e) and (f) are Vp and
Vs using data with SNR=5.
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Figure 3.18: Tests with non-repeatable random noise. The time-lapse results of different
strategies, in the case baseline and monitor data are noisy (SNR=20) with perfectly repeated
acquisition geometry: (a) and (b) are Vp and Vs using the PRS, (c¢) and (d) are Vp and
Vs using the CMS, (e) and (f) are Vp and Vs using the TO CMS. An increasing level of
Gaussian random noise results in noisier time-lapse results, making it more difficult to detect
deeper time-lapse changes. In all the following tests, including this one, the source-encoding
method and parameters are identical across all FWI processes.
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Figure 3.19: Tests with non-repeatable random noise. The time-lapse results of different
strategies, in the case baseline and monitor data are noisy (SNR=10) with perfectly repeated
acquisition geometry: (a) and (b) are Vp and Vs using the PRS, (c¢) and (d) are Vp and
Vs using the CMS, (e) and (f) are Vp and Vs using the TO CMS. An increasing level of
Gaussian random noise results in noisier time-lapse results, making it more difficult to detect

deeper time-lapse changes.
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Figure 3.20: Tests with non-repeatable random noise. The time-lapse results of different
strategies, in the case baseline and monitor data are noisy (SNR=5) with perfectly repeated
acquisition geometry: (a) and (b) are Vp and Vs using the PRS, (c¢) and (d) are Vp and
Vs using the CMS, (e) and (f) are Vp and Vs using the TO CMS. An increasing level of
Gaussian random noise results in noisier time-lapse results, making it more difficult to detect

deeper time-lapse changes.
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Figure 3.21: Tests with non-repeatable acquisition geometry. The time-lapse results of
different strategies, in the case baseline and monitor data are noise-free, monitor source
locations as a whole have been moved to the right of baseline source locations by 10 m:
(a) and (b) are Vp and Vs using the PRS, (c) and (d) are Vp and Vs using the CMS, (e)
and (f) are Vp and Vs using the TO CMS. The PRS is sensitive to the source position
non-repeatability and gives the worst results and the TO CMS can recover more accurate
values for the deeper velocity change.
changes are 20 m/s and 35 m/s, respectively, the water velocity changes decrease linearly
from the surface to the seabed, and at the seabed, the minimum water velocity change is
5% of the maximum. In Figs. 3.24 and 3.25, the time-lapse inversion results for cases of
non-repeatable seawater velocity change are plotted. In the case of a small seawater velocity
change, we can observe that reservoir changes can still be identified from TO CMS and CMS,
with the former showing better convergence and less coherent noise, but stronger random
noise. In the case of a large seawater velocity change, the results are significantly impacted
for both TO CMS and CMS.

In a realistic scenario, the velocity of seawater is subject to fluctuations due to various

factors such as water temperature (7'), salinity (S) and depth (D). The water temperature

and the salinity vary at different time, the seawater velocity is described as Medwin (1975):
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Figure 3.22: Tests with non-repeatable acquisition geometry. The time-lapse results of
different strategies, in the case baseline and monitor data are noise-free, monitor source
locations as a whole have been moved to the right of baseline source locations by 20 m: (a)
and (b) are Vp and Vs using the PRS, (c¢) and (d) are Vp and Vs using the CMS, (e) and
(f) are Vp and Vs using the TO CMS. The TO CMS can recover more accurate values for
the deeper velocity change.
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Figure 3.23: Tests with non-repeatable acquisition geometry. The time-lapse results of
different strategies, in the case baseline and monitor data are noise-free. monitor source
locations as a whole have been moved to the right of baseline source locations by 120 m: (a)
and (b) are Vp and Vs using the PRS, (¢) and (d) are Vp and Vs using the CMS, (e) and (f)
are Vp and Vs using the TO CMS. The CMS and TO CMS provide similarly good results.
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Figure 3.24: Tests with non-repeatable seawater velocity. The time-lapse results of different
strategies, in the case baseline and monitor data are noise-free, the water velocity in monitor
model is 20 m/s larger and kept constant in all FWI processes: (a) and (b) are Vp and Vs
using the PRS, (c¢) and (d) are Vp and Vs using the CMS, (e) and (f) are Vp and Vs using
the TO CMS. The CMS and TO CMS can still identify the velocity change areas.
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Figure 3.25: Tests with non-repeatable seawater velocity. The time-lapse results of different
strategies, in the case baseline and monitor data are noise-free, the water velocity in monitor
model is 35 m/s larger and kept constant in all FWI processes: (a) and (b) are Vp and Vs
using the PRS, (c) and (d) are Vp and Vs using the CMS, (e) and (f) are Vp and Vs using
the TO CMS. When the water velocity change is large, none of the time-lapse strategies
succeed.

60



0 0 0 150
a 100
| o e ]
>, 05 Ty 50
/e 7
0
!
1 ; -50
—— e f . 100
— e
. 1.5 -150
1 2 3 4 0 1 2 3 4
f (m/s)
)o
80
60
— . 40
05 05 105
E - P i~ 20
£ Z 0
[oX
Q 1 1 20
o . -40
-60
-80
1.5 1.5 ‘ 1.5
0 0 1 2 3 4 0 1 2 3 4 (s)
Distance (km) Distance (km) Distance (km)

Figure 3.26: Tests with unknown and fluctuating spatially seawater velocity. The time-lapse
results of different strategies, in the case where baseline and monitor data are noise-free,
and the water velocity in the monitor model is spatially fluctuating and kept constant in all
FWI processes: (a) and (b) are Vp and Vs using the PRS, (c¢) and (d) are Vp and Vs using
the CMS, (e) and (f) are Vp and Vs using the TO CMS. The CMS and TO CMS can still
identify the velocity change areas.

¢ =1449.2 + 4.6T — 0.05572 + 0.0002973
+ (1.34 — 0.010T)(S — 35) (3.13)
+0.016D

In the third case, we assume the water temperature (T') decreases linearly from the surface
at 30 °C to the seabed at 0 °C, the salinity (5) increases linearly from left to right of the
model from 35 to 0 ppt, the depth increases from the surface at 0 m to the seabed at 200 m.
In this model, the maximum of seawater velocity difference is around 130 m/s. However, in
most practical cases of FWI, the seawater velocity remains fixed as a constant. Hence, it is
necessary to investigate how this affects the time-lapse FWI results, and the test results are
plotted in Fig. 26. We observe that all the tested strategies exhibit strong artifacts. The
TO CMS seems more sensitive to this situation. The non-repeatable seawater change issue

in time-lapse FWI still requires further research Zhou and Lumley (2021b); Fu et al. (2024).
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Overburden velocity change, no matter in a land time-lapse survey or a marine time-lapse
survey, is still a trouble to identify the underground velocity changes and recover the velocity
change values. It requires further investigation with more advanced time-lapse strategies. In
land seismic surveys, surface-wave inversion may be incorporated into time-lapse inversion

to exclude the surface velocity change effects.

Combined random noise and non-repeatable source locations

In this subsection, we test different strategies in the case that non-repeatable random noise
and non-repeatable source locations exist at the same time. In this experiment, the SNRs of
both baseline and monitor data are set to 20, and the source location in the monitor survey
is 10 m (case 1) or 20 m (case 2) larger than that in the baseline survey. In Figs. 3.27 and
3.28, we plot the inversion results of different strategies. From the results, we observe that
the PRS can not handle either cases 1 or 2, we can only recognize the reservoir change from
the Vp result in case 2. For the CMS, the Vp and Vs changes can be imaged only in case
1, and the result for Vs in case 1 contains a lot of coherent artifacts. The best results are
given by the TO CMS, we can clearly recognize the Vp and Vs changes from the results in

both cases.

Crosstalk analysis

In this section, we analyze the crosstalk introduced by the coupling effects using our time-
lapse EFWI strategy using two additional time-lapse models. The two time-lapse models
are analogous to those employed in the previous sections utilizing the Marmousi model.
However, they differ in that the first model exhibits only Vp time-lapse changes, while the
second model exhibits only Vs time-lapse changes. In this way, the time-lapse changes can
be used as Vp and Vs perturbations to analyze the crosstalk. The true and initial models
remain the same. The general parameters for forward modeling and inversion are set to

the same as in the section “Noise-free data tests”. In Figs. 3.29 and 3.30, we respectively
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Figure 3.27: Tests with non-repeatable seawater velocity. The time-lapse results of different
strategies, in the case baseline and monitor data are noisy (SNR=20), monitor source loca-
tions as a whole have been moved to the right of baseline source locations by 10 m: (a) and
(b) are Vp and Vs using the PRS, (c¢) and (d) are Vp and Vs using the CMS, (e) and (f)
are Vp and Vs using the TO CMS. The PRS fails, the CMS and TO CMS can detect the
time-lapse changes.
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Figure 3.28: Tests with non-repeatable seawater velocity. The time-lapse results of different
strategies, in the case baseline and monitor data are noisy (SNR=20), monitor source loca-
tions as a whole have been moved to the right of baseline source locations by 20 m: (a) and
(b) are Vp and Vs using the PRS, (¢) and (d) are Vp and Vs using the CMS, (e) and (f)
are Vp and Vs using the TO CMS. The PRS and CMS fails, only the TO CMS can detect
the time-lapse changes.
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Figure 3.29: Tests with only Vp time-lapse changes in the Marmousi model: a) and b) are
Vp and Vs using the PRS, ¢) and d) are Vp and Vs using the CMS, e) and f) are Vp and
Vs using the TO CMS.

present the inverted time-lapse results for two time-lapse models using different time-lapse
strategies. When only perturbations of Vp exist as shown in Fig. 3.29, in the results by the
PRS, the artifacts are strong and we can’t tell any time-lapse change of Vs, in the results
by the CMS with mitigated artifacts, some subtle crosstalk can be revealed. In contrast, the

TO CMS results effectively mitigate both artifacts and crosstalk. Similarly, in Fig. 3.30,

when there are only perturbations of Vs, we observe similar outcomes.

Biased initial models

In the previous tests, the initial model in Fig 3.3 is unbiased, being a smoothed version of
the true baseline model shown in Fig 3.2. In this section, we use two biased initial models
to test the resilience of the different strategies to bias, using baseline and monitor datasets
that are noise-free and are of identical acquisition geometries. The two biased Vp initial
models are equal to the unbiased models minus and plus 100 m/s below the water layer.
The biased Vs initial models are changed accordingly. In Figs. 3.31 and 3.32, the inverted

time-lapse models using different strategies are plotted. In fist case, FWI can still relatively
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Figure 3.30: Tests with only Vs time-lapse changes in the Marmousi model: a) and b) are
Vp and Vs using the PRS, ¢) and d) are Vp and Vs using the CMS, e) and f) are Vp and
Vs using the TO CMS.

well recover the true models. In Fig 3.31, we can observe similar results as in Fig 3.11. In the
second case, the increased velocities in the initial models results in degraded convergence,
espetically in the inverted Vs modelw. In Fig 3.32, we observe that the PRS and CMS
provide no meaningful results. However, in the results using the TO CMS, we can still

identify the time-lapse changes.

3.3.3 Overthrust model

In this section, we also use a down-sampled Overthrust model to demonstrate the efficiency
of the amplitude-encoding strategy in EFWI and feasibility of the CMS and the TO CMS in
time-lapse EFWI. The true baseline Vp and Vs models are plotted in Fig. 3.33. We employ
the smoothed true models as the initial models, which are plotted in Fig. 3.34. The time-
lapse models are shown in Fig. 3.35, the Vp and Vs changes are set to 300 and 176 m/s. The
dimension and grid size are the same as the Marmousi model. The general parameters for
forward modeling and inversion are set to the same as in previous sections. In this section,

we only consider two scenarios as in the Marmousi model tests.
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Figure 3.31: Tests with biased initial models. The time-lapse results of different strategies,
in the case the biased Vp initial model is equal to the unbiased model (Fig. 3.3a) minus 100
m/s below the water layer. The biased Vs initial model is changed accordingly: a) and b)
are Vp and Vs using the PRS, ¢) and d) are Vp and Vs using the CMS, e) and f) are Vp
and Vs using the TO CMS.

Noise-free data tests

In the first case, we consider noise-free datasets with repeatable acquisition geometry. To
further consider the influence of the target area on the time-lapse results of the TO CMS,
in Fig. 3.36, we present the inverted time-lapse results of the PRS, CMS and TO CMS with
varying target areas. As with the Marmousi model examples, the comparison of results by
different time-lapse strategies leads to the same conclusion. The results of the TO CMS
with different scales of target area demonstrate that more precise prior information leads to
more accurate time-lapse change recovery. In Fig. 3.37, we plot the extracted traces at the
distance of 1.9 km in the inverted time-lapse results using the PRS, the CMS, and the TO

CMS with the smallest target updating area, respectively.
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Figure 3.32: Tests with biased initial models. The time-lapse results of different strategies,
in the case the biased Vp initial model is equal to the unbiased model (Fig. 3.3a) plus 100
m/s below the water layer. The biased Vs initial model is changed accordingly: a) and b)
are Vp and Vs using the PRS, ¢) and d) are Vp and Vs using the CMS, e) and f) are Vp
and Vs using the TO CMS.
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Figure 3.33: True baseline model: (a) Vp model and (b) Vs model.

Combined random noise and non-repeatable source locations

In the second test, we consider the second case in the ’Combined random noise’ section,
where the SNRs of both baseline and monitor data are set to 20, and the source location
in the monitor survey is or 20 m larger than that in the baseline survey. In Figs. 3.38 and
7?7, we present the inverted time-lapse results and extracted traces at distance 1.9 km using

different strategies. From the results using two different models, we have illustrated the
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Figure 3.34: The initial baseline model: (a) Vp model and (b) Vs model.
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Figure 3.35: True time-lapse model: (a) Vp model and (b) Vs model.
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Figure 3.36: Tests with varying target areas in the Overthrust model. The time-lapse results
of different strategies, in the case baseline and monitor data are noise-free: a) and b) are Vp
and Vs using the PRS, ¢) and d) are Vp and Vs using the CMS, e), g) and i) are Vp using
the TO CMS with decreasing updating target area, f), h) and j) are Vs using the TO CMS
with decreasing updating target area.

feasibility of the CMS and the TO CMS in multi-source time-lapse elastic FWI.
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Figure 3.37: Extracted traces of inverted time-lapse results of different strategies, in the case
baseline and monitor inversions use the noise-free data with perfectly repeated acquisition

geometry: (a) and (b) are time-lapse Vp and Vs.
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Figure 3.38: Tests with varying target areas in the Overthrust model. The time-lapse results
of different strategies, in the case baseline and monitor data are noisy (SNR=20) and monitor
source locations as a whole have been moved to the right of baseline source locations by 20
m: a) and b) are Vp and Vs using the PRS, ¢) and d) are Vp and Vs using the CMS, e), g)
and i) are Vp using the TO CMS with decreasing updating target area, f), h) and j) are Vs

using the TO CMS with decreasing updating target area.

3.4 Discussions

The difference between acoustic and elastic FWI is that elastic FWI concerns more than

one parameter to be inverted, and there is inevitable crosstalk between Vp and Vs Matharu



and Sacchi (2018). Compared with acoustic FWI, elastic FWI demands much more compu-
tational effort. Hence, the investigation of application of multi-source strategies in elastic
FWI is important, especially in a time-lapse survey, which requires carrying out more times
of elastic FWI. The issue of source-encoding strategy applied to FWTI is the crosstalk intro-
duced by the individual shot gathers, which can be represented by the off-diagonal elements
in the crosstalk matrix shown in Fig. 3.5(b). The crosstalk resulting from multi-parameter
inversion and source-encoding strategy makes the multi-source elastic FWI more challenging.
When this come to the time-lapse elastic FWI, where a small area of time-lapse change exist
in the monitor survey, it requires much higher resolution and accuracy for us to identify the
time-lapse change location and recover the time-lapse change value.

Using a multi-source strategy will eventually introduce crosstalk noise in a baseline model
inversion or a monitor model inversion, and this crosstalk noise will eventually exist in the
time-lapse result. If the crosstalk noise is large enough, we can’t obtain an acceptable in-
version result even for a baseline model, not to mention the time-lapse result. While using
a multi-source strategy is still a good choice to accelerate FWI, the key is that we need to
balance the calculation efficiency and the imaging quality, that’s why we compose the indi-
vidual shot gathers into several super-shots instead of just one super-shot, because using too
few super-shots will introduce non-ignorable crosstalk noise into the inversion result. The
speed-up ratio for the amplitude-encoding EFWI is roughly the total number of individual
shots divided by the number of super-shots. The numerical experiment illustrates that the
output Vp and Vs of adopting this strategy are comparable to those of using the conventional
EFWI. Then the amplitude-encoding EFWI is employed for the time-lapse inversion to save
computational time. To stably invert the reservoir changes, the same amplitude-encoding
parameters should be set up for baseline and monitor EFWI both, otherwise, it could gen-
erate artifacts due to the non-repeated amplitude-encoding parameters. In our results, we
tried to show that balance and feasibility when the time-lapse result can be well recovered

with improved calculation efficiency.
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In this study, we use one target area to include three reservoir changes while conducting
the TO CMS. On one hand, we are trying to include enough background area, since the con-
trast between the time-lapse change and the background is important to detect the reservoir
change area in practice. On the other hand, precisely locating the reservoir change area is
difficult in practice, using a big target area is easy to operate. Of course, for some cases
with good prior location information on the reservoir change area, a tight target area can be
used. For instance, three independent target areas can be utilized in the modified Marmousi
model in this study. It may help to enhance the inverted results further. Actually, in the test
of the time-lapse Overthrust model in this study, a tighter target area is employed, which
also gives satisfactory results.

In the study, the SNR for time-lapse data with non-repeatable random noise is relatively
high, and the value should be much lower in real cases, which could damage signals corre-
sponding to reservoir changes. A more anti-noise EFWI algorithm, such as adding certain
penalty terms to the EFWI, could be better. As for how to handle non-repeatable correlated
noise, we believe it is still an open question. Moreover, using ambient noise to perform
passive time-lapse imaging of the subsurface is also proven in some seismic monitoring cases
(Mordret et al., 2014; De Ridder et al., 2014).

The non-repeatability scenarios tested in this study are not too serious compared with
real field data cases. For strong non-repeatable noise, large source/receiver position non-
repeatability, and complex sea-surface conditions all the time-lapse methods mentioned in
this study could fail. Moreover, all tests in this study are based on a good initial model, and
the impact of a bad initial model is not discussed, which could be serious. Hence, developing

more powerful time-lapse imaging methods is still significant.
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3.5 Conclusions

In this study, we have implemented the amplitude-encoding strategy for EFWI, which can
significantly improve computational efficiency. In time-lapse EFWI, the same amplitude-
encoding parameters should be set up for baseline and monitor model inversions, which
would avoid the artifacts resulting from the non-repeated amplitude-encoding parameters.
Furthermore, we’ve applied CMS to time-lapse EFWI and assessed its robustness and
effectiveness through numerical examples in different scenarios. Compared with the con-
ventional PRS, the CMS can effectively reduce the artifacts arising from the convergence
difference between the baseline and monitor inversions. Moreover, we have designed a TO
CMS by incorporating the prior location information of the reservoir changes into the CMS,
and the numerical tests demonstrate that the TO CMS can enhance the model convergence
and improve the accuracy of the inverted time-lapse changes. In the application of the TO
CMS, a more precise target area results in better time-lapse change resolution. Experiments
have also shown that strong noise and changes in seawater velocity have a serious impact on

time-lapse EFWI results, these issues require further research.
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Chapter 4

Time-lapse FWI using field

accelerometer data at CaMlI

Applying full-waveform inversion (FWI) to walkway vertical seismic profile (VSP) data pro-
vides a promising method for obtaining high-resolution models of subsurface physical prop-
erties. While time-lapse FWI has shown potential for monitoring reservoir changes caused
by CO, storage with high resolution, its application in field data remains scarce due to its
vulnerability to non-repeatable noise. We conduct a field experiment using time-lapse VSP
data and FWI to monitor long-term changes in a thin, shallow reservoir due to CO5 injec-
tion. We present a workflow that uses time-lapse FWI for field walkway VSP data to identify
time-lapse changes related to less than 60 tons of CO5 injected into a 7 m-thick reservoir at a
depth of 300 m. A frequency range of 5 to 60 Hz is applied to achieve high-resolution results.
This experiment showcases the capability of FWI to perform high-resolution inversion and
detect time-lapse anomalies within a shallow reservoir caused by a small amount of CO,

injection. To the best of our knowledge, no similar field experiments have been reported.
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4.1 Introduction

Time-lapse seismic inversion is a powerful tool for monitoring reservoir changes introduced
by COx injection and sequestration. Vertical seismic profile (VSP) surveys offer higher verti-
cal resolution and an improved signal-to-noise ratio compared with surface seismic methods.
When combined with full-waveform inversion (FWTI), a high-resolution seismic imaging tech-
nique capable of capturing subtle reservoir changes over time (Virieux and Operto, 2009),
VSP data further improves the detection of time-lapse anomalies. This makes the appli-
cation of FWI to VSP data particularly well-suited for reservoir monitoring. Liang et al.
(2013) detected the time-lapse changes in a heavy oil field introduced by steam injection.
Yang et al. (2014) reported challenges in detecting time-lapse differences related to CO,
injection, partly due to limitations in acquisition geometry. A notable result was obtained
by Egorov et al. (2017), who applied FWI to single-source VSP data and identified changes
in a saline aquifer at 1500 m depth, caused by the injection of 15,000 tons of COs. Cai et al.
(2024) used FWI to monitor short-term COs injection at 300 m depth with rapidly repeated
single-source VSP data. Other studies have explored using FWI with various borehole data
to monitor water injection at shallow depths. Nakata et al. (2022) monitored the dynamic
transient fluid-flow effects introduced by water injection at a depth around 25 m, using
controlled-source crosswell data. Liu et al. (2023) monitored velocity changes at an approx-
imate depth of 11.6 m associated with in-situ fracture evolution at a shallow contamination
site, using continuous active-source borehole data. These studies underscore the potential
of this technique for high-resolution subsurface imaging. However, due to its sensitivity to
non-repeatable noise, the application of FWI to time-lapse VSP data remains relatively rare,
particularly for CO5 monitoring.

Unlike the cases mentioned above, which involve shallow water injection, large-scale deep
COs injections, single-source time-lapse surveys, or short-term monitoring, this study con-
ducts a field experiment using time-lapse walkaway VSP data and FWI to track long-term

changes in a thin (7 meters), shallow (at approximately 300 m depth) reservoir caused by
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less than 60 tons of COs injection.

4.2 Geologic background at the CaMI.FRS

The Field Research Station (FRS), located approximately 200 km southeast of Calgary and
developed by the Containment and Monitoring Institute (CaMI) under Canada Management
Canada (CMC) Research Institutes Inc., was established to drive research in secure COq
storage technologies (Macquet et al., 2019). The injection target is the Basal Belly River
Sandstone (BBRS) formation, situated at a depth of 295-302 m. Overlying the BBRS is the
152 m-thick Foremost Formation, consisting of clayey sandstone interbedded with coal layers.
The VSP datasets were acquired in 2018 and 2022, serving as the baseline and monitor data
(Hall et al., 2019a; Innanen et al., 2022). The injection well is located 20 m northeast of the
observation well, where accelerometers were deployed at intervals of 1 to 2 meters, extending
from the surface to a depth of approximately 324 m. A Vp well log was recorded from the
injection well between depths of 61 and 337 m, as shown on the right side in Fig 4.1. The
distributions of geology formations and rock types at different depths in the subsurface of

CaMI.FRS also are plotted in Fig 4.1.
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Figure 4.1: On the left is the geology formation at different depths, different colors denote
different rock types. On the right side is the Vp velocity well log measured from the in-
jection well (gray line). The horizontal dashed lines indicate dashed gray lines indicate the
boundaries of geological formations. The blue stars on top of the surface denote the sources
deployed from the southwest to the observation well, in which the red rectangles denote the

receivers are deployed. The blue cloud denotes the COs injected into the BBRS layer.

The Vp (P-wave velocity) well log is available from the observation well from 61 to 336 m
The distributions of geology formations and rock types at different depths in the subsurface
of CaMI.FRS also are plotted in Fig 4.1. In 2018 and 2022, two 3D VSP DAS datasets were
acquired by CREWES. One baseline survey before the injection and one monitor after the
injection. In both 3D datasets (referred to as Snowflake data I and II), a total of 12 shot
lines are deployed at 15-degree intervals centered around the observation well. The INOVA

Univib system was employed during the 2018 survey, whereas the 2022 survey utilized the
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INOVA AHV-IV vibrator. Although both vibrators exhibit comparable source signatures,
the preferred sweep parameters differ slightly between the two surveys (Innanen et al., 2022).
The acquisition is presented by Ji et al. (2024). The observation well is located in the center
of the snowflake, and the injection well is located 20 m away from the observation well to the
northeast aligned in line 4. In the observation well, straight DAS fibers and accelerometers

are deployed at 1 to 2 m intervals from the surface to around 324 m in depth.

4.3 Full-waveform inversion

In time-domain acoustic FWI, we adopt the global-correlation norm (GCN) as the objec-
tive function (Choi and Alkhalifah, 2012). The GCN measures the coherence between the
predicted data and the observed data by

ns Mg

E(m)=> " [~t(s,r,m) - d(s,r)] (4.1)

s=1 r=1
where m represents the subsurface model parameters, s and r denote the source and receiver
location vectors (Liu et al., 2023). The GCN, similar to phase-only inversion in the frequency
domain (Choi and Alkhalifah, 2012), is expected to make the inversion of onshore VSP
data more stable than methods based on the standard objective function. The normalized

predicted and observed data are expressed as:

(s rm) — u(s,r,m)
B AR 42

and

A d(s,r)

d(s,r) = ETCRSIS (4.3)

where u(s,r,m) and d(s,r) are the predicted and observed data, respectively. The gradient
of the objective function with respect to the model parameters is derived as (Choi and

Alkhalifah, 2012):
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where m; € m, and b(s,r, m) is the back-propagated residual, defined as :

~
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[u(s, r, m)[[;

b(s,r,m) =

4.4 Results

In the walkway VSP acquisition, the offsets range from 10 m to 480 m. The surveys include
47 sources deployed from east to west, with a nearly uniform spatial interval of 10 m. To
focus on the direct waves and the reflected waves from the target layer, we apply a time
window of 300 ms and a bandpass filter within 5 to 60 Hz. We convert accelerometer data
to displacement by negating the sign to maintain consistency in polarity with displacement.
The grid cell size is set to 2 m and the receiver spatial interval is resampled accordingly
accounting for the thickness of the reservoir. In Figure 4.2, we present three VSP gathers
from the baseline data, the monitor data and their differences.

We conduct FWI of Vp using the vertical component of the field data. The inversion
workflow is implemented in an open-source software package IFOS2D (Bohlen et al., 2016a).
Following several trial experiments, the filtered Ricker wavelet was identified as a suitable
wavelet for the inversion. The inverted baseline and monitor models are presented in Figure
4.3c and d, illustrating effective model updates within a 300 m offset, with the observation
well located at 0 m. Compared with the initial model derived by Gaussian smoothing the
well log data shown in Figure 4.3a, we observe that FWI significantly improves the model’s
resolution by introducing fine details into the initial model. The inversion results resolve
the target layer at approximately 300 m depth. Furthermore, a 3 m-thick coal layer at
approximately 160 m depth is visible in the inverted model, emphasizing FWI’s ability to

capture thin and subtle subsurface features. In Figure 4.3b, we compare the smoothed well
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Figure 4.2: Three VSP gathers from the field baseline data (first row), the field monitor
data (second row) and their differences (third row). The offsets of the three gathers from left
to right are 290, 190, and 90 m, respectively. The differences between the strong upgoing
reflected waves in these gathers highlight the seismic response changes introduced by CO,
injection.

log, initial model, and inverted baseline and monitor models at an offset of 0 m. Both
inverted models align well, with only minor discrepancies. For quality control, in Figure 4.4,
we present the comparisons of the field baseline data, the simulated data before and after
FWI at different offsets.

Following the workflows of the parallel strategy (Lumley et al., 2003) and common-model
strategy (Hicks et al., 2016), we obtain the time-lapse change as shown in Figure 4.5a and
b. The results demonstrate that the time-lapse change is captured within the 7 m-thick
reservoir, and due to the illumination limitations of VSP acquisition geometry, the far edge
of the reservoir cannot be accurately identified using VSP data. Comparing two time-lapse

results, we observe that the CMS reduces 4D noise while maintaining the localized time-lapse

change.
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Figure 4.3: (a) The initial model constructed by Gaussian smoothing the well log. The red
and green triangles denote the sources and receivers. (b) Comparison of the smoothed well
log (gray line), initial model (bold black line), and inverted baseline and monitor models
(blue and red lines) using field data at an offset of 0 m. (c) The inverted baseline model
using the field baseline data. (d) The inverted monitor model using the field monitor data.
The target layer is resolved in the inversion results. A comparison of both inverted models
reveals that FWI reproduces identical subsurface structures using both field datasets.

Since the true subsurface conditions are unknown, direct QC of the reservoir change
results is not feasible. Instead, we use synthetic seismic data generated from a time-lapse
model that closely matches the real geological conditions for inversion. The entire inversion
process is repeated, and QC is performed by comparing the inversion results of the field
data with those of the synthetic data. A reliable field data inversion result should closely
align with the synthetic data inversion result. The true synthetic time-lapse model and the
baseline model (also obtained by Gaussian smoothing the well log data) are shown in Figure
4.5c and e. We use the same workflow and acquisition geometry as in the field data inversion.
In Figure 4.5d and f, we present the inverted time-lapse change using the parallel strategy
and the inverted baseline model. The synthetic test replicates the results observed in the

field data, showing a clear time-lapse change within the thin layer. This consistency between

synthetic and field results confirms the capability of FWI to effectively detect and identify
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Figure 4.4: Comparison of field baseline data, simulated data from the initial model, and
simulated data from the inverted baseline model. The offsets of three gathers (left to right)
are 90, 190, and 290 m, respectively. In the first two rows, on the left side of each panel are
the field baseline data. On the right side of (a) to (c) are the simulated data using the initial
model. On the right side of (d) to (f) are the simulated data using the inverted baseline
model. The last row presents the extracted traces from all datasets, spaced at 60 m intervals.

time-lapse changes in the reservoir.

4.5 Discussions

Certain limitations affect the accuracy of the time-lapse inversion. The initial model is
based on the Vp well log between 61 m and 337 m, leaving the near-surface velocity profile
poorly constrained. Additionally, the absence of initial models for Vs and density further
complicates the inversion, as natural elastic effects present in the field data are not accounted
for. Observed differences in the data include not only the upgoing reflected waves from the

target layer but also components commonly referred to as 4D noise. Despite these challenges,

81



the results underscore the effectiveness of FWI for monitoring CO, injection. Future work
could address these limitations by incorporating more detailed near-surface information and
developing advanced methods to mitigate 4D noise. Such improvements would enhance the

accuracy and robustness of time-lapse FWI for reservoir monitoring.

4.6 Conclusions

The application of FWI to baseline and monitor VSP datasets at the FRS demonstrates
its feasibility for CO, injection monitoring. The time-lapse results from both the field and
synthetic data show that this technology can produce high-resolution models of reservoir
properties and effectively detect time-lapse velocity changes. This study provides clear ev-
idence that a small-scale CO, injection in a shallow 7 m-thick reservoir can be monitored
using FWI, offering valuable insights into CO, storage dynamics. The results also highlight
the potential of time-lapse FWI for small-scale, real-time monitoring, especially when inte-
grated with permanently installed distributed acoustic sensing (DAS) systems as discussed
in the next chapter . Moreover, this small-scale injection project establishes a foundation

for extending the approach to larger-scale deployments in the future.
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Figure 4.5: (a) The inverted time-lapse change using field data by the parallel strategy. (b)
The inverted time-lapse change using field data by the common-model strategy. (c) The true
time-lapse model, and the thickness of time-lapse anomaly aligns to the target layer. (d)
The inverted time-lapse change using synthetic data. (e) The true baseline model. (f) The
inverted baseline model using synthetic data. The results demonstrate that the time-lapse

change is captured.
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Chapter 5

Time-lapse FWI using field DAS data
at CaMlI

Time-lapse full-waveform inversion (FWI) using vertical seismic profile (VSP) data has shown
great promise for cost-effective and long-term monitoring of CO, injection and sequestration.
Compared to conventional receivers, Distributed Acoustic Sensing (DAS) offers advantages
such as high spatial sampling, long-term deployment, and lower costs, making it particularly
well-suited for CO, monitoring. While time-lapse FWI with VSP data has demonstrated
high-resolution imaging capabilities for tracking reservoir changes due to CO, storage, its
application to field data remains limited, primarily due to its sensitivity to non-repeatable
noise. A recent study has explored FWI using combined single-source DAS and accelerometer
VSP data, yet its effectiveness for long-term monitoring remains unverified. To address this
gap, we conduct a field experiment using time-lapse walkaway DAS VSP data and FWI to
monitor long-term subsurface changes induced by COs injection. We present a workflow
that applies FWI to detect time-lapse anomalies associated with the injection of less than
60 tons of CO4 into a 7 m-thick shallow reservoir. Our results demonstrate the capability
of DAS-based FWI to achieve high-resolution inversion and accurately track small-scale

COs-induced changes. This study highlights the feasibility of leveraging DAS for long-term,
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high-resolution COy monitoring in real field conditions.

5.1 Introduction

In the previous chapters, I have introduced field cases of CO, sequestration and monitoring,
as well as the COy monitoring project and geologic background at the CaMI.FRS. Previous
studies have demonstrated the potential of full-waveform inversion (FWI) for CO5 monitoring
using both conventional and fiber-optic measurements. For example, Eaid et al. (2023) and
Zhang et al. (2025) investigated FWI using combined accelerometer and DAS VSP data,
providing early evidence that integrating the two sensing technologies can enhance subsurface
imaging. Building on this direction, Cai et al. (2024) implemented time-lapse FWI with real-
time, single-source DAS and accelerometer VSP data at CaMI, demonstrating that FWI can
capture short-term injection-related changes using field DAS measurements. Furthermore,
Ji et al. (2024) extended the investigation to a fully 3D setting, exploring the feasibility of
applying 3D time-lapse FWI to accelerometer VSP data and highlighting the potential for
high-resolution monitoring in more complex geometries. In Chapter 4, I have conducted
time-lapse FWI for field walkway VSP accelerometer data to identify the time-lapse change
within the target layer. In this chapter, I conduct a field experiment using walkaway DAS
VSP data and FWI to track long-term subsurface changes. Specifically, we monitor a thin
(7-meter), shallow (approximately 300 m deep) reservoir following the injection of less than
60 tons of CO,. This work provides new insights into the feasibility of using DAS-based
FWI for high-resolution, long-term COs monitoring. The theory section is consistent with
the last chapter and omitted here. Hence, I first review the DAS datasets, describe data
matching process, time-lapse strategy and results. Then, I verify the time-lapse result using

a synthetic test.
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5.1.1 Datasets review

In our 2D FWI for COy monitoring, among all the 13 shot lines in the Snowflake dataset,
we chose the shot gathers from line 1 because this line has well-repeated source locations.
As depicted in Fig 4.1, the blue stars denote the sources deployed at the surface from the
southwest to the observation well, in which the red rectangles denote the deployed receivers.
In this 2D walkway VSP DAS acquisition, the offset varies from 470 m to 20 m, there are
a total of 29 shot gathers, the minimum distance between two source locations is 10 m, and
the maximum distance between two source locations is 90 m. The depth of DAS channels is
from the surface to 342 m deep. In the datasets, because most of the signals occur in the first
500 ms, we windowed the data within the first 300 ms which contains direct and reflected
waves from the BBRS layer. For both datasets, the preprocessing procedure is conducted

following the workflow in Table 5.1 (Cai et al., 2024).

Table 5.1: DAS data processing workflow
DAS data processing
Geometry assignment
Conversion of strain-rate data to strain data
Curvelet-transform-based denoising
Bandpass Butterworth filtering (5-100 Hz)
Median filtering to suppress spike and artifact noise
Time-domain resampling to dt = 0.3 ms
Spatial-domain resampling to dr = 2 m

5.1.2 Data matching

To achieve a successful imaging of time-lapse change in the reservoir where the CO, was
injected, the datasets from baseline and monitor surveyed have to be well-matched. To cope
with the data-matching issue in the DAS VSP datasets, we propose an appoach following the
steps below. At first, we also balance the energy of each shot-gather pairs in both datasets,
which assures the amplitude of both datasets is at the same level. Second, we separate the

upgoing and downgoing waves in the VSP shot gathers using f-k filters. In this way, we can
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obtain the upgoing reflected waves from the BBRS layer, which are expected to result in the
data difference introduced by the CO, injection. After the wavefield separation, we calculate
a filter based on a spectral balancing filter or matching filter using the downgoing waves in
each shot-gather pair. A spectral balancing filter or matching filer is designed to match the
amplitude, time delay, and spectra of two traces, making them almost identical. Since in a
time-lapse survey, the physical parameters above the time-lapse change area are expected to
remain the same, hence the downgoing waves received by the receivers above the injection
reservoir should be almost identical. Adopting a spectral balancing filter or matching filter
will make the downgoing waves well-matched and eliminate the 4D noise introduced by
velocity change at shallow depths and data acquisition. Then we apply the calculated filters
to the upgoing waves in the baseline datasets followed by a time-shift correction. Then we
sum up the matched downgoing and upgoing waves as the matched baseline datasets.

In practice, we only match the datasets with receivers located below 120 m. Since at
shallow depth, there are strong shearing effects not removed by preprocessing. After adopting
this new workflow, we found that some shot-gather pairs still could not be matched due to
some limitations of the field datasets. First of all, the quality of the baseline datasets is
quite poor compared with the monitor datasets, we can’t even observe the reflection from
the BBRS layer in some shot gathers. Second, the acquired downgoing and/or upgoing
waves in a shot-gather pair are not comparable. We tried with all the shot-gather pairs
with 29 well-repeated source locations and matched only 10 of them. In Fig 5.1, we present
one matched data example at an offset of 60 m. In the first row of Fig 5.1, we present the
separated upgoing waves in monitor data, baseline data, and their difference at an offset of
60 m. In the second row of Fig 5.1, we respectively present the matched baseline data and
the data difference after the data-matching workflow. From this comparison, we can notice
the data difference introduced by the BBRS reflection is well enhanced, and the 4D noise

that existed at the bottom right is well mitigated.
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Figure 5.1: Separated upgoing waves in (a) monitor data, (b) baseline data, and (d) matched
baseline data at an offset of 60 m. (d) is the data difference before the data-matching

workflow, and (e) is the data difference after the data-matching workflow.

5.1.3 Time-lapse inversion strategy

In the previous section, we described the data matching workflow and presented the matched
data examples. However, the matched baseline dataset consists of only 10 gathers with
90 receivers, which is insufficient for directly applying FWI to obtain a baseline model
comparable to the monitor model. To address this limitation, I use the target-oriented
common-model strategy (TO CMS) (Liu et al., 2025) in chapter 3 for this scenario. Given
the higher quality of the monitor dataset, we first apply FWI to the monitor dataset to
obtain an inverted monitor model, which serves as the initial model for the second stage
of CMS. In the second stage, we perform FWI on the matched baseline dataset, using the
newly obtained initial model, despite its limited acquisition geometry. During the inversion,
we precondition the gradient and prevent the model at shallow depths from updating (Fu
et al., 2024). To ensure localized convergence, we then reapply FWI to the monitor dataset,
using the same acquisition geometry as the matched baseline dataset. Finally, we obtain

the time-lapse result by subtracting the inverted baseline model from the inverted monitor

model after the second stage.
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5.1.4 Results

As in chapter 4, the VSP DAS data inversion workflow follows the traditional FWI tech-
nology (Tarantola, 1984) implemented in an open-source software package IFOS2D (Bohlen
et al., 2016a; Kohn, 2011). Given the thin 7-meter Basal Belly River Sandstone (BBRS)
reservoir where CO, was injected, achieving high-resolution inversion is essential for reser-
voir identification. To meet this requirement, we use data with frequency components up to
60 Hz and set the grid cell size to 2 m. Both datasets are resampled with a receiver interval
of 2 m, spanning depths from 2 m to 342 m, and a temporal interval of 0.3 ms. The free
surface condition (Levander, 1988) is implemented on top of the model. At the sides and the
bottom of the model, there are 20 layers of Perfectly Matched Layers (PMLs) (Komatitsch
and Martin, 2007) implemented as the absorbing boundary condition in the finite difference
modeling. For inversion, we employ a filtered Klauder wavelet, which is shown in Fig 5.2.
The initial model is same as in chapter 4 shown in Fig 4.3a, which is constructed by applying
Gaussian smoothing to the well log data from 61 to 337 m, and then extended into a 2D

model.

Amplitude

0 0.05 0.1 0.15 0.2 0.25 0.3
Time (s)

Figure 5.2: The Klauder wavelet with minimum phase filtered with the same bandpass
applied to baseline and monitor datasets. This wavelet is used for baseline and monitor

model inversion using Snowflake datasets.

In Fig 5.3, we present the inverted monitor model, in which the observation well is located
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at 0 m. The maximum offset of the source location in our inversion is 470 m. We display part
of the model with effective model updates within a 300 m offset. Comparing this inverted
model with the initial Vp model shown in Fig 4.3a, we can see that FWI introduces many
details into the smooth initial model. The target layer can be identified in the inversion

result at a depth of around 300 m, where the COy was injected.

Monitor
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Figure 5.3: Inverted baseline Vp model using the baseline dataset from the northwest to the
observation well in line 4 with an offset ranging from 20 m to 470 m. Maximum offset of 300

m of inverted Vp model with effective model updates is depicted.

For quality control, in Fig 5.4, we present the comparison of field monitor data, simulated
data using the initial model, and simulated data using the inverted model shown in Fig 5.3
at offsets 100, 200, and 350 m. In Fig 5.5, we respectively extract 4 traces with a spatial
interval of 60 m from observed data, initial data, and inverted data in the shot gathers with

offsets being 100, 200, and 350 m for comparison.
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Figure 5.4: Comparison of field monitor data with simulated data from the initial and

inverted monitor models.

column, the right side of each panel presents simulated data from the initial model, while

in the right column, the right side of each panel displays simulated data from the inverted

model.

The left side of each panel shows the field data.
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Figure 5.5: Comparison of traces extracted with a spatial interval of 60 m from observed
data, initial data, and inverted data in the shot gathers with offsets being 100, 200, and 350
m. The bold gray lines denote the traces from observed data, the black dashed lines denote
the simulated data using the initial model, and the solid black lines denote the simulated

data using the final inverted model.

After the monitor model inversion, we perform the FWI of the monitor model and baseline
model using the first inverted monitor model as the new initial model with matched datasets.
The results are presented in Fig 5.6. From the comparison, we can see that applying FWI

to two matched datasets provides identical structures.
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Figure 5.6: (a) The inverted baseline model using matched baseline dataset using the first
inverted monitor model as the new initial model. (b) The inverted monitor model using

matched monitor dataset using the first inverted monitor model as the new initial model.

To further evaluate the inversion results, we compare the smoothed well log from the
observation well, the initial model, and the vertical profiles from the inverted baseline and
monitor models at 0 m offset, as shown in Fig 5.7. We can see that two inverted models

show good agreement.
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Figure 5.7: Comparison of the smoothed Vp Log from the injection well 20 m away to the
northeast of the observation well at offset 0 m, the 1D initial Vp model, and the vertical
profiles of the observation well in the inverted baseline and monitor Vp models at 0 m offset.
The gray line denotes the smoothed Vp log, the bold black line denotes the 1D initial Vp
model, and the blue and red lines denote the vertical profiles of the observation well in the

inverted baseline and monitor Vp models at 0 m offset, respectively.

Finally, we obtain the time-lapse change introduced by CO, injection by subtracting the
two inverted models, as shown in Fig 5.9a. From this figure, we can see the time-lapse change
is successfully captured within the thin target layer at a shallow depth. However, due to the
limited source illumination from only 10 matched datasets, the resolution of the time-lapse
result may also be constrained. Additionally, we also notice the time-lapse noise above the
reservoir, resulting from the 4D noise that’s not fully eliminated in the matched datasets.
For verification, we conduct a synthetic test. The true time-lapse and monitor models are
shown in Fig 5.9c and 5.9e. while the synthetic time-lapse result is presented in Fig 5.9b. A
comparison between the field and synthetic results reveals similar time-lapse patterns using

the same workflow, confirming the reliability of our approach.

94



a) 50 . T T : . 150
100 ¢ 100
E150 3 50 g
%200 0 ;&
8 250¢ SR N R
300 e -100

-150
300 250 200 150 100 50

o

b) s0 : . . : : 150 c) 50 . . : . . 150
100 - 100 100 100
—
E 150t 50 @ 150 50 @
£ £
< 200 0oz 200 0oz
= > >
L -50 -50
8 250 <4 250 <
300 - . -ﬁ -100 300 -100
-150 -150
300 250 200 150 100 50 0 300 250 200 150 100 50 0

3000 3000

2500 2500

Vp (m/s)
Vp (m/s)

2000
300 250 200 150 100 50 0 300 250 200 150 100 50 0

Offset (m) Offset (m)

2000

Figure 5.8: (a) The time-lapse result using the matched field data limited acquisition geom-
etry and the target-oriented strategy. (b) The time-lapse result using synthetic data and the
same workflow. (c¢) The true time-lapse model for synthetic test. (d) The inverted monitor
model using synthetic data. (e) The true monitor model for synthetic test, which is also

obtained by Gaussian smoothing the well log.

At last, we compare the time-lapse results using both accelerometer and DAS VSP
datasets. We can see that, the application of FWI to both datasets provides similar time-
lapse images, and with much larger offsets, the plume is better imaged due to better illumi-

nation. howver, we can also notice that the value of time-lapse anomaly is different.

95



a) 150
—~ 100 g 100
£ 50
< 0
5 200
[} -50
()]
| e— -100
300 | ]
: : -150
300 200 100 0
Offset (m
b) — (m) o | |
50 50
—~ 100 § _ 100+ |
E E
e e
= 200 0 5 200 0
[} [y
()] ()]
300 | ‘ ‘ 1 B 50 300 ¢ ‘ ‘ 1 | -50
300 200 100 0 300 200 100 0
Offset (m) Offset (m)

Figure 5.9: Time-lapse inversion results from (a) matched-field DAS VSP data acquired
with limited acquisition geometry and the target-oriented common-model strategy, (b) field
accelerometer VSP data and the parallel strategy, and (c) field accelerometer data and the
common-model strategy. Panel (a) uses 10 shots and 70 receivers with offsets from 60 to 220

m, whereas panels (b) and (c) use 47 shots and 159 receivers with offsets from 10 to 480 m.

5.2 Discussions

In this work, we focus only on detecting time-lapse changes within the target reservoir.
However, time-lapse variations may also occur in the overburden, which could potentially
indicate CO4 or other fluid leakage — a critical concern for storage integrity and long-term
monitoring.

Due to the limited quality and repeatability of the field DAS data, the target-oriented
common-model strategy (TO-CMS) proposed in Chapter 3 is adopted as a practical solution.
Although this approach effectively helps identify local velocity changes within the reservoir,

it may reduce our sensitivity to subtle anomalies associated with CO, leakage in the overbur-
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den. Therefore, applying the target-oriented strategy represents a practical but necessary
compromise when conducting time-lapse FWI.

At the current stage of research on time-lapse FWI strategies, the primary focus remains
on detecting velocity changes within the reservoir. The numerical experiments presented
in Chapter 3 demonstrate that even under controlled conditions, identifying subtle time-
lapse anomalies is still highly challenging. At present, we are not yet able to reliably detect
such small changes, particularly in field data where noise, acquisition differences, and non-
repeatability further complicate the inversion — let alone the even subtler signals that might
be introduced by CO, leakage. Future research should aim to develop more advanced in-
version approaches that enhance both sensitivity and robustness, enabling the distinction
between genuine reservoir changes and overburden anomalies. Such developments will be es-
sential for improving the reliability of time-lapse FWTI in assessing and ensuring the long-term
safety of CO5 sequestration operations.

This work also suffers from the same limitations discussed in Chapter 4, including the
absence of P-wave velocity well logs at shallow depths and the lack of other elastic parameters.
In addition, the DAS VSP data exhibit relatively poor quality. To mitigate the influence
of strong near-surface noise, the data recorded at shallow depths were excluded from the
data-matching process.

These limitations primarily affect the shallow section of the model but have only a minor

influence on the time-lapse change interpretation, which remains the main focus of this study.

5.3 Conclusions

This study demonstrates the feasibility of applying time-lapse full-waveform inversion (FWT)
to field distributed acoustic sensing (DAS) vertical seismic profile (VSP) data for CO, se-
questration monitoring. The results highlight the potential of integrating DAS with FWI for

high-resolution, small-scale COy monitoring in a shallow, thin reservoir. Synthetic experi-
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ments further validate the applicability of time-lapse FWI to DAS VSP data, confirming its
capability to recover reservoir-scale velocity changes associated with COs injection.

The time-lapse inversion results obtained from both DAS and accelerometer VSP datasets
exhibit consistent patterns, reinforcing the reliability and robustness of the proposed work-
flow. Nevertheless, due to the limited quality and repeatability of the field DAS data,
meaningful inversion updates are primarily confined to the reservoir zone. As a practical mit-
igation, a target-oriented inversion strategy was adopted to concentrate the model updates
within this region, ensuring inversion stability while reducing the impact of non-repeatable
noise and near-surface inconsistencies.

Overall, this work represents a key step toward establishing a cost-effective, field-deployable
time-lapse monitoring framework for CO4 sequestration using DAS VSP data. The demon-
strated approach lays a practical foundation for extending time-lapse FWI to larger-scale and
longer-term carbon storage projects, where reliable and continuous subsurface monitoring is

essential for ensuring storage security.

98



Chapter 6

Conclusions

Time-lapse full-waveform inversion (FWI) is a powerful tool for CO, monitoring, offering
high-resolution imaging of subsurface physical properties to detect reservoir changes during
injection, production, and long-term storage. By comparing inversion results from seismic
datasets acquired at different times, time-lapse FWI enables the identification and charac-
terization of dynamic reservoir behavior associated with COs injection and sequestration.
This thesis develops a novel time-lapse FWI strategy to address the limitations of conven-
tional approaches, which often rely on a parallel inversion strategy and suffer from significant
artifacts and inconsistent convergence between baseline and monitor models due to survey
non-repeatability. Specifically, Chapter 3 introduces a target-oriented common-model strat-
egy (TO CMS) that incorporates prior knowledge about the location of reservoir changes into
the common-model framework. When combined with the amplitude-encoding technique pre-
sented in Chapter 2 to improve computational efficiency, numerical experiments demonstrate
that TO CMS improves convergence within the target region and enhances the accuracy of
inverted time-lapse changes. The results also suggest that more precise delineation of the tar-
get area leads to improved imaging. Nonetheless, the experiments indicate that strong noise
and variations in seawater velocity can significantly impair inversion performance—issues

that warrant further investigation.
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Chapter 4 explores the feasibility of CO, monitoring using time-lapse FWI and vertical
seismic profile (VSP) data acquired at the Field Research Station (FRS). In this field exper-
iment, accelerometer-based VSP data are used to construct high-resolution velocity models
that successfully capture subtle time-lapse changes in reservoir properties. The results clearly
demonstrate that even small-scale CO, injections into a shallow, 7-meter-thick reservoir can
be effectively monitored using time-lapse FWI. These findings also underscore the potential
of time-lapse FWI for real-time, high-resolution subsurface monitoring, particularly when
integrated with distributed acoustic sensing (DAS) technology.

Building on this, Chapter 5 presents a second field experiment using DAS-based VSP
data. To mitigate the impact of strong near-surface noise, shallow-depth recordings were
excluded from the data matching process. Despite the limited acquisition geometry, the use
of the TO CMS strategy—employing the monitor model from the first stage as the initial
model—enabled successful application of time-lapse FWI to both the baseline and monitor
DAS datasets at the FRS. The resulting time-lapse velocity changes exhibit strong agreement
with synthetic benchmarks, validating the robustness and reliability of the proposed work-
flow. This study confirms the feasibility of integrating DAS data with FWI for small-scale
CO2 monitoring in shallow, thin reservoirs.

Together, these two field experiments demonstrate the practical viability of time-lapse
FWI for monitoring small-scale CO, injection projects and lay a foundation for its extension
to larger-scale and long-term deployments. The findings of this thesis highlight the effective-
ness of advanced time-lapse FWI strategies, the feasibility of using VSP data for monitoring
small-scale CO» injection and sequestration, as well as the potential of integrating DAS data
into time-lapse FWI workflows for high-resolution, real-time subsurface monitoring under

challenging field conditions.
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