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Energy partition at the boundary between anisotropicmedia;
Part one: Generalized Snell's law.
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ABSTRACT

The mathematical description of phenomena related to wave propagation in
anisotropic media differs significantly from that for isotropic media. In general, the
expressions are more complicated and more difficult for intuitive understanding. In
the anisotropic case the relationship between the angles of incident, reflected and
refracted rays, i.e., Snell's law, cannot be reduced to such a simple form as in the
isotropic case. This paper attempts, with aid of familiar, and thus rather intuitive,
notions of vector calculus, to provide a framework for calculating these angles. In the
anisotropic case there exist the concepts of both phase and group (ray, energy)
velocities. The phase-slowness surface, i.e., the inverse of the phase-velocity surface,
can be described as a function of three space variables: x, y, and z. By virtue of the
continuity conditions across the planar, horizontal boundary between two media, the
horizontal components of phase-slowness must be continuous across this boundary.
The knowledge of the expression for phase-slowness surfaces in both the incidence
and transmission media, the fact that all phase velocities and thus phase-slowness
vectors must be coplanar and the enforcement of the continuity conditions form the
core of the Snell's law in anisotropic media. The direction of the actual ray is
perpendicular to the plane tangent to the phase-slowness surface at a given point and
can be mathematically determined using gradients. One must also stipulate that the
incident ray points towards the boundary while the reflected and transmitted rays
point away from it. This condition can be mathematically described using the
properties of the dot product. Implication for critical angles and Fermat's principle are
discussed with the aid of analytically derived expressions.

There exist efficient, numerical schemes for calculating the angles of
incidence, reflection and transmission. The merit of the present approach is believed
to lie in the clarity of the analytical method. A method allowing the description of
phase-slowness surfaces corresponding to various symmetry systems as a function of
three space variables x, y and z would extend the usefulness of the presented approach.
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INTRODUCTION

The mathematical description of phenomena related to wave propagation in
anisotropic media is considerably more complicated than that for isotropic media.
This complexity stems from the many physical properties distinguishing the
anisotropic and the isotropic medium. This paper presents a method of calculating the
angles of reflection and transmission for a ray impinging on a boundary between two
anisotropic media. For an interface between two isotropic media the relationship
among all the angles is elegantly and concisely described by the classic form of Snell's
law, i.e.,

sin 0; _ sin 0r _ sin O, (1)
vI v_ vz

where O's with respective subscripts, correspond to incident, reflected and transmitted
waves and v, and v2 are the velocities in the two media separated by a planar
interface.

In general, the inclusion of anisotropy renders the mathematical formulation
quite complicated. Snell's law is not an exception and the calculation of reflection and
transmission angles is not a trivial task. A graphical approach to calculating reflection
and transmission angles for anisotropic media is presented by Auld (1973) and
Rokhlin et al. (1986). Rokhlin et al. (1986) also outline a numerical scheme using
tensor equations. Daley and Hron (1977, 1979) derive Snell's law in the particular
cases of transversely isotropic and ellipsoidally anisotropic media. The present paper
seeks to express the concept of incidence, reflection and transmission angles using the
intuitively clear mathematical apparatus of vector calculus in a rather general case.
Therefore, the foremost intention of this note is the clarity of the analytical
formulation and its relation to physical phenomena, rather than the computational
efficiency of the method.

Although providing a thorough overview of numerous physical phenomena in
anisotropic media lies beyond the scope of this paper, it can be stated that two aspects
of physical properties inherent in wave propagation in anisotropic media are
responsible for the more complicated formulation than in the case of isotropic media.
Firstly, the velocity of the ray depends on direction and thus, for instance, the velocity
of the incident ray is, in general, unequal to the velocity of the reflected ray, although
both rays propagate in the same medium. This means that, in general, the angle of
incidence is not equal to the angle of reflection. This consequence should not be
surprising since it is analogous to the phenomena observed in studying converted
waves exhibiting different velocities for incident and reflected rays. Secondly, both
group, w, and phase, v, velocities have to be considered in studying wave propagation
in anisotropic media. The two are related, e.g., Rokhlin et al. (1986) by the formula:

w.n=v, (2)
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where n is the wave normal.

IMPORTANT CONCEPTS

In formulating the method for calculating reflected and transmitted angles at
an interface between isotropic and anisotropic media, it is helpful to restate certain
basic concepts. The intention is not to present those concepts in a rigorous and
complete way but to invoke those aspects which are most useful for the task at hand.
The concepts in question include: phase and group velocities, Snell's law and phase-
slowness surfaces.

Phase and group velocities

Phase velocity is defined as the velocity with which plane-wave crests and
troughs travel through a medium and is expressed as the ratio of the frequency of
vibration and the wave number (i.e., the number of wavelengths per unit distance).
Group velocity, also known as energy or ray velocity, is defined as a velocity with
which the energy of a wave propagates. Direct measurements of traveltime usually
yield the group velocity.

In dispersive media, e.g., an anelastic medium exhibiting frequency dispersion
or an anisotropic medium exhibiting angular dispersion phase and group velocities are
different; both in magnitude and direction. For an anisotropic medium, at the same
point on the wavefront, the group velocity is higher than the phase velocity. Also, for
an anisotropic medium the direction of the group velocity is perpendicular to the
phase-slowness surface, i.e., to the surface representing the inverse of the phase-
velocity surface (Rokhlin et al, 1986).

Snelrs law

Snell's law is a direct consequence of Fermat's principle of stationary time. It
can be conveniently restated as a requirement for the horizontal component of the
wave number, k=, to be continuous across the boundary. As a matter of fact, the
horizontal component of the wave number remains constant for all layers and is
analogous to the ray parameter. This property must be preserved for both isotropic and
anisotropic media regardless of the type of the wave generated at the boundary, e.g.,
longitudinal or transverse, and serves as a kernel for the strategy of calculating
reflected and transmitted angles.

Slowness surfaces

Phase-slowness is defined (e.g., Winterstein, 1990) as the reciprocal of the
scalar phase velocity, and therefore can be expressed as the ratio of wave number, k,

and angular frequency, co. In an isotropic medium the phase-slowness surface is a
sphere with radius equal to the inverse of the phase velocity (which does not vary
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with direction). In such a case, phase and group velocities are collinear since the
normal to the surface of a sphere is collinear with its radius vector.

For an anisotropic medium the shape of the phase-slowness surface can form a
much more complicated figure including concave and convex shapes. The number of
symmetry planes decreases as the number of elastic constants necessary to describe
the material increases. An infinite number of symmetry planes exist for an isotropic
medium described by two elastic constants, i.e., Lam6 parameters; no symmetry
planes exist for a triclinic medium which requires twenty-one elastic constants to be
uniquely characterized (see e.g., Crampin and Kirkwood, 1981).

There are, in general, three slowness surfaces, each corresponding to a given
wave type: one for quasi-compressional and two for quasi-shear waves. The slowness
surfaces can touch, thus forming singularities, i.e., points corresponding to
orientations along which phase velocities become equal for two wave types.
Interesting phenomena relating to polarization occur in the neighbourhood of those
points.

GEOMETRICAL FORMULATION

Snell's law can be illustrated using phase-slowness surfaces for both incident
and transmitted media (Auld, 1973). The geometrical construction is facilitated by the
fact that the phase-slowness vectors of the incident, reflected and refracted waves are
coplanar. Their being coplanar is guaranteed by the necessity to satisfy boundary
conditions at all times and at every point of the interface. Therefore, it is convenient
to choose a Cartesian coordinate system such that all the phase-slowness vectors lie in
the xz-plane. Below we consider the familiar case of isotropic media.

Invoking the continuity of the horizontal component of the wave number, kx,
across a boundary, and by applying simple trigonometry to Figure 1, it is easy to
obtain the usual form of Snell's law for an isotropic medium, i.e., Equation 1. Other
concepts, such as total internal reflection, also have their geometrical interpretation.
For a sufficiently large incidence angle one has kx > 1/v2, in which case no transmitted
ray is possible. The equality kx=l/v 2 yields the angle at which this first occurs, i.e., the
critical angle. Note that if the radius of the phase-slowness sphere in the transmitted
medium is larger than in the incident medium, there is always a transmitted ray and
total internal reflection cannot occur. For anisotropic media, each phase-slowness
surface is, in general, described by a different function and the phase- and group-
velocity angles do not coincide. To deal with a more complex situation, a more
complicated mathematical scheme has to be employed. Figure 1, without loss of
generality, illustrates a generic case, i.e., the wave type is not specified. Consideration
of mode conversion would yield, in an isotropic case, two concentric circles in both
media, representing phase-slowness surfaces for compressional and shear waves. In
an anisotropic case three geometrical figures would appear in each medium due to the
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bi-refringence of quasi-shear waves, i.e., due to different velocities of two types of
quasi-shear waves.

mediumof BI_

incidence k k x ,
I

\oo/
interface "_

0 t

mediumof _ 0_tt

transmission x

FIG. 1. The geometrical construction yielding reflection and transmission angles of
slowness vectors in an isotropic medium using the phase-slowness surface. The same
concept applies in an anisotropic medium except that the xz-plane cross-section of the
phase-slowness surface does not, in general, form a circle. The thin lines within the
circles (radii) are collinear with the phase-slowness vectors; the thick lines, normal to
the phase-slowness surface correspond to the group-slowness vectors, o_,13,and "yare
the angles between phase-slowness vectors for incident, reflected and transmitted
waves and the normal to the interface. 0i, Or and 0t are the angles between group-
slowness vectors for incident, reflected and transmitted waves and the normal to the
interface, i.e., ray angles. In the anisotropic case, (x=0i, 13=0r, y=0t.

MATHEMATICAL FORMULATION

The geometrical approach described above for the isotropic case (i.e., spherical
slowness surfaces) is easily extended to include more general scenarios, where the
slowness surface is an arbitrary surface in slowness space. Although there exist more
efficient computational schemes, e.g., Keith and Crampin (1976), Rokhlin et al.
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(1986), the following analytical description provides an intuitive insight which is lost
in various numerical methods.

Consider two anisotropic media separated by a planar, horizontal interface.
Let the phase-slowness surface in the upper medium be given by the level surface of a
function J( x, y, z),

f(x,y,z)=a. (3)

Similarly, let the phase-slowness surface in the lower medium be given by the level
surface of a function g( x, y, z),

g(x,y,z)=b. (4)

A ray is incident on the boundary from above. Since all phase-slowness vectors (for
incident, reflected and transmitted waves) must be coplanar, without loss of
generality we take them to lie in the xz-plane (see Figure 2).

Z

0r. wr

medium ( I \ / i )
\ x x i / x

incidence_

z i interfacet

medium xf i 0tof x
transmission ..

t W
t

FIG.2. Illustration of ray angles for incident, reflected and transmitted rays in
anisotropic media separated by a horizontal, planar interface using phase-slowness
surfaces described by functionsfand g. m's correspond to phase-slowness vectors and
w's to group-slowness vectors and O's to the ray angles for incident, reflected and

transmitted waves. Note that ot_:0;,_Or, and 3q:0t; cf. Figure 1.

Denoting the phase-slowness vector as m, the continuity conditions require that:
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m m _

m,- x = m,-x = m,. x, (5)

where x is a unit vector in the x-direction and subscripts i, r, and t refer to incident,
reflected and transmitted waves respectively. Recall that the group (ray)-slowness
vector, w, is normal to the phase-slowness surface at the point where the phase-
slowness vector intersects the surface. Using properties of the gradient, i.e., its
pointing in the direction along whichfis increasing the fastest and its being normal to
the surface on whichfis constant, gives:

w i o_Vf(x,y,z)(,,,y,,z,)" (6)

Normalizing, and choosing the function f to have a minimum at the origin 0(0,0,0)
and be monotonicaly increasing outwards, yields

- Vf(x,y,z)(x,,,,,,,)w, = (7)
Vf(x,y,z) (,,,y,,,,'

where the negative sign ensures that the incident unit ray vector points towards the
boundary. The angle of incidence, i.e., the angle between the ray vector and the
normal to the interface is given by:

_Z(xi,Yi,Zi)
z'Vf(x'Y'Z)(x"Y"")- (8)

cos0, =--wi-(-z)= Vf(x,y,z) (,,,,y,,z,)- Vf(x,y,z) (",.y,.,,)

Now by choice of the coordinate system, Yi = 0; given % zi is determined by
Equation (3). Thus Equation (3) provides an expression for 0 i as a function of %

Typically 0 i is taken as an independent parameter; however, it may not always be
possible to invert Equation (3) to obtain a closed-form expression for x; as a function
of 0_. Thus as already emphasized, the present approach is presented chiefly for the
intuitive understanding it provides, rather than for its computational convenience.

Similarly, the normalized reflected ray vector can be expressed as:

-- Vf(x'Y'Z)("'Y"Z') , (9)
w, = Vf(x,y,z)

and the angle of reflection, i.e., the angle between the ray vector and the normal is
given by:
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_f (x,,y,,z,)z'Vf(x,y,Z)(x.Yr,Z, ) OaZ
COS O r : Wr" z : - (10)

Vf(x,y,z) (",,Y,,'r) -- Vf(x,y,z) (",,:",,",_

In evaluating the above expression one uses the fact that by continuity x r = -xi;

Yr is zero by the choice of the coordinate system, and zr can be found by substituting

into Equation (3).

Physically, we require that the reflected ray be directed back into the incident

medium; thus the physical solutions must have Wr" Z > 0. Note that the reflected ray

need not be unique: given the slowness surface in Figure (3), for instance, we have

two physical reflected solutions and one non-physical solution.

z i
!

X

FIG.3. Illustration of the mathematical solution giving three reflected ray vectors.

The one pointing towards the interface is not physically realizable. The existence of

the remaining two rays depends on the existence of the symmetry system giving such
a slowness surface.

The normalized transmitted ray vector is given by:

-- Vg(x'Y'Z)("'Y"z') (11)Wt _

Vg(x,y,z) (,_,,y,,z,_

and thus the angle of the transmitted ray measured between the transmitted ray vector

and the normal is given by:

z" Vg(x,Y,Z) (x,,y,,z,) _ (,_,,y,,z,)

cos0 t = (-z). w, = Vg(x,y,z) (x,,y,,z,) = Vg(x,y,z) (x,.y,.z,)" (12)
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In evaluating the above expression one uses the fact that xt = -xi; Yt is zero by
the choice of the coordinate system and zt can be found by substituting into Equation
(4). Similar comments concerning physical realizability and uniqueness apply to
transmitted rays; the only difference here is that in the transmitted case, we require
that rays be directed into the transmitted medium, i.e., physical solutions must have

w, .(-z) >__0.

It must be emphasized that, although the phase-slowness vectors, m, are
coplanar for the incident, reflected and transmitted waves, the ray vectors, w, need not
lie in the same plane. Their direction is determined by that of the normal to the plane
tangent to the phase-slowness surface. They will, however, remain in the same plane
if the phase-slowness surfaces are, for instance, rotationally symmetric about the x-
axis. In all cases the magnitude of the ray velocity is obtained from Equation (2).

Other concepts, such as total internal reflection, also emerge naturally from the
present formalism. Although for complicated slowness surfaces it may be impossible
to characterize total internal reflection by a single critical angle as in the isotropic
case, the general approach remains as described above.

EXAMPLES

The approach described above can be illustrated by several examples. Some
cases allow a simple analytical solutions leading to valuable physical insight.

General case of elliptical anisotropy

Let us consider the ellipsoidal case where the velocities are different in the x, y
and z directions. Considering the xz-plane, the two phase-slowness surfaces can be
written as:

f(x, z) = (vxx) 2+ (v,z) 2 = 1, (13)
and

g(x,z)=(v'xx) 2 +(v',z) z= 1, (14)

for the media of incidence and transmission respectively. Again, without loss of
generality, we treat a generic case ignoring the mode conversions between different
wave types.

Using Equation (7) we can write:

- 2v,zi]
wi = (15)

_/rV2 x2._.eV2Z"2 '
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and by Equation (8):

2

vzzi (16)
COS0 i = l/ 2 ,,2_{_,'V2Z ,,2 'xl_vxxi) _ z _)

Solving for z in Equation (13) yields:

_/1- (v,x,) =
z, - (17)

Vz

in the case of the incident ray. Substituting Equation (17) into Equation (16) gives:

Vz41-(VxX')2 (18)
cos0, = a/v,,x ' + Vz[l+(VxX) 2]

4 2 2

which can be explicitly solved for x_:

x_ = v_(1- cos z 0,) (19)
v=4coszO,+ V2xV_(1- cosz0,)"

Analogous expressions can be derived for reflected and transmitted rays.

2 xt2, the three expressions can be equated, thus givingFurthermore, since x_ = xr =
Snell's law for ellipsoidally anisotropic media. Upon some algebraic manipulation this
can be expressed as:

2 2 '2

2[-_-cot2 O,+ 11= v_LV_cot2, 0r + 11= v_ [v_ cot2,, 0, + 11, (20)
Vx 1)z Vz Vz

where primed quantities refer to the medium of transmission. Equivalent expressions
for Snell's law with elliptical anisotropy were obtained by Dunoyer de Segonzac and

Laherrere (1959). Examining Equation (20) we see that Or = 0i. Also, the critical

angle can be obtained by setting 0t = 1r/2. After some algebraic manipulation one gets:

cotOc= v .Vv_ -I (21)

For isotropic media one can write:

v = v, = vl, (22)
and:

v' =v' =v 2. (23)
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Equation (20) then reduces to Equation (1), i.e., the standard form of Snell's law in
isotropic media and Equation (21) to the standard expression for the critical angle in
the isotropic medium.

A particular case of isotropic/anisotropic interface

Let us consider a planar boundary between the isotropic and elliptically
anisotropic media. Let the velocities be so chosen that:

v, =Vz=V=V'x, (24)

i.e., the horizontal velocity in the anisotropic medium equals the velocity in the
isotropic medium. Using Equation (20) gives:

V

tan 0, = --7-tan 0i. (25)
vz

An interesting phenomenon can be observed by examining Equation (25). For
small angles one can write:

V

O,= --:-0,. (26)
Vz

Thus if v'z > v, the transmitted ray is bent towards the normal, which is the opposite
of what happens in the isotropic case. This phenomenon is related to the complicated
form Fermat's principle takes in the anisotropic case, as discussed below.

DISCUSSION

Numerous physical consequences can be described using the approach
presented above. First of all, however, mathematical solutions stemming from this
formulation must be examined in the light of physical realizability. The ray vector for
an incident ray must be pointing towards the boundary, while for reflected and
transmitted rays must point away from it. This physically intuitive requirement is not
satisfied naturally by the mathematical formalism. Employing either the numerical
approach stemming from tensor analysis (Rokhlin et al., 1986) or the analytical
approach described above, one must select correct ray vectors and reject the ones
which fail to satisfy the obvious physical requirements.

Since, in general, the slowness surface is not represented by a single-valued
function, i.e., several points on the slowness surface can correspond to the same value
of x, there is a non-uniqueness by which a given incident ray could generate several
reflected or transmitted rays of the same wave type, i.e., originating from the same
slowness surface. This apparent or actual non-uniqueness has to be investigated in the
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light of the existence of such slowness surfaces and the consequences for reflection
and transmission coefficients.

As already mentioned above, an interesting phenomenon related to Fermat's
principle of stationary time can be observed by applying the small-angle
approximation to Equation (20):

V'2x Vz

o, 7 v7o, (27

In the isotropic case if, say, the velocity in the medium of transmission is greater than
in the medium of incidence, we obtain the familiar result that the transmitted ray is
bent away from the normal. However in the particular case of isotropic/anisotropic
interface considered in Equation (26), we obtain the opposite result. Equation (27)
gives the behavior in the case of general ellipsoidal anisotropy.

The behaviour in the isotropic case may be intuitively understood as being the
consequence of Fermat's principle of stationary time; the behaviour in the particular
anisotropic case, considered in Equation (26), appears counterintuitive when viewed
from this point of view. However, the form of Fermat's principle in the general
anisotropic case can be formulated as (Helbig, 1994):

,(Jm. dw)= 6(_mw.dw) = 0. (28)

where m is the phase-slowness vector, mw is the ray-slowness vector and dw is a
length element along the ray. Thus in deriving Snell's law we are minimizing the
traveltime along the ray with respect to the group (ray) velocity, rather than the phase
velocity. As a consequence the group- (ray-) slowness surface as well as the phase-
slowness surface must be considered in order to understand the behaviour of the ray at
the interface. Therefore, in the general anisotropic case, ray bending does not lend
itself to such an intuitive understanding as in the isotropic case. In the latter case, the
phase and group velocities are collinear, and the ray bending away from the normal
when it passes from a slower to a faster medium is easily understood as a consequence
of Fermat's principle which favours shortening the distance traveled by the ray in the
slower medium.

CONCLUSIONS

An analytical way for determining the angles of incidence, reflection and
transmission rays was derived. This analytical formulation provides a description of
some physical phenomena including the concepts of the critical angle and implications
of Fermat's principle. A case of ellipsoidal anisotropy is considered explicitly and
formulae for Snell's law and hence the critical angle are derived. The usefulness of the
above approach would be extended if one could easily express the slowness surfaces
for various materials as functions of three variables x, y and z. Most commonly the
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slowness surfaces are derived from the Christoffel equation which is a form of a wave

equation for plane waves in elastic media (Auld, 1973).
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